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Fast Time Domain Simulation for Large Order
Linear Time-Invariant Systems

Kin Cheong Sou∗ and Olivier L. de Weck†,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Time domain simulation is an essential technique in multidisciplinary design opti-
mization (MDO). Unfortunately it can be time consuming and cause memory saturation
problems when systems get large, sampling rates are high and input time histories are
long. In this paper, an efficient simulation scheme is presented to simulate large or-
der continuous-time linear time-invariant (LTI) systems. The A matrix (assumed to be
block-diagonalizable) of the system is first diagonalized. Then, subsystems of manageable
dimensions and bandwidth are formed and multiple sampling rates can be chosen to asso-
ciate with the subsystems. Each subsystem is then discretized using a O(ns) discretization
scheme, where ns is the number of state variables. Next, a sparse matrix recognizable
O(ns) discrete-time system solver (i.e. matrix-vector product solver) is employed to com-
pute the history of the state and the output. Finally, the response of the original system
is obtained by superposition and interpolation of the subsystem responses. In practical
engineering applications, closing feedback loops, cascading filters (shaping filters or other
feedforward compensators) and other structures can hinder the efficient use of the simu-
lation scheme (e.g. by destroying the block diagonal structure of the A matrix). Solutions
to these problems are also addressed in the latter part of the paper. The simulation
scheme, implemented as a MATLAB script newlsim.m, is compared with the established
LTI system simulator lsim.m in MATLAB and is shown to be superior in the case of
medium and large order systems. The 2184 state variable Space Interferometry Mission
(SIM v2.2) simulation is enabled with the proposed technique (standard simulation fails
due to excessive memory requirements) and a computer time savings factor of ≈ 50 is
demonstrated without loss of accuracy. Aside from handling realistic applications the
simulator brings time domain simulation on par with frequency domain and Lyapunov
analyses, while allowing transient response computation.

Nomenclature
A,B,C,D = State space matrices
BZ = Block size of a subsystem
C = The set of all complex numbers
DSF = Downsampling factor
EM = Ending mode
I = Identity matrix
R = The set of all real numbers
SM = Starting mode
SS = Subsystem
TM = Total number of modes
T = CPU time
T = Sampling time period
Z = The set of all integers
m = Number of input channels
n = Number of samples
ns = Number of state variables
p = Number of output channels
u = Control input
v = Discrete-time signal
w = Disturbance input
x = State vector
y = Measurement output
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z = Performance output
σ = Root-mean-square
θ = Attitude angles
./ = Matrix entry-wise division

Subscripts

d = Discrete-time / Disturbance
i = i-th subsystem
k = Controller
o = Optical controller
p = Plant
(·) = Lift operator

Superscripts
−1 = Matrix inversion
T = Matrix transpose

1 Introduction

SIMULATION is an essential tool for the design
of complex engineering systems, as the models of

these systems become more and more complex. Fig.
1 shows some example systems and their complex-
ity in terms of model dynamic bandwidth (normal-
ized) and size. We have previously discussed the need
for efficiency in large system time domain simulation
and rationalized the distinction between large systems
(ns ≥ 500), medium systems (100 < ns < 500) and
small systems (ns ≤ 100).1
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Fig. 1 Examples of size and dynamic bandwidth
for LTI models of various space systems. The x-axis
is the ratio between the highest and lowest natural
frequencies in the model. The y-axis is the number
of state variables of the model. The highlighted
region motivates the presented simulation scheme.

Model dimension (or size/order) is a delicate issue in
systems design because of the tradeoff between model
fidelity and the number of designs explored within a
limited time budget, Ttot = N × Tcpu, where N is the
number of simulations or designs explored and Tcpu

is the runtime of a single simulation. The dilemma
is shown in Fig. 2. It is clear from Fig. 2 that
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Fig. 2 Notional tradeoff curve between number of
designs explored and model fidelity. The solid line
is the curve allowed by current techniques, based
on a Tcpu ∝ n3

s scaling relationship, see de Weck et
al.1 The dashed line is the objective of this work.
The upper right corner is the utopia point.

the more efficient a simulation is for a given level of
model fidelity, the better a position system designers
find themselves in. In addition, efficient simulation can
facilitate the performance evaluation step of multidis-
ciplinary design optimization (MDO), whose prospect
and significance have been reported by Giesing et al.,2

Sobieski et al.3 and Anderson4 among others. In
Gutierrez,5 de Weck et al.1 and de Weck,6 three meth-

ods for performance evaluation of dynamic systems
are summarized: 1) Time domain simulation, 2) Fre-
quency domain analysis and 3) Lyapunov analysis. In
these papers, improvements for frequency domain and
Lyapunov methods were proposed with the derivation
of new algorithms such as newlyap.m and modified in-
ternally balanced model reduction (see also Mallory7)
with apriori error bounds, but the problem of time do-
main simulation remained unsolved. While frequency
domain analysis and Lyapunov analysis can provide
critical performance metrics such as steady state root-
mean-square (RMS) values of performances, they can-
not provide information on the transient response of
the systems, which is sometimes required (e.g. in de-
signing control systems). Also, while model reduction
can result in smaller systems with acceptable accu-
racy, it suffers from the fact that arbitrary decisions
must be made as to the amount of reduction and the
balancing process itself requires substantial resources
in computer time and memory, even though there are
exciting improvements in this area, see for example,
Willcox et al.8 and Beran.9 The problem just men-
tioned can be relieved without parallelization, if not
entirely solved, by the capability of efficient time do-
main simulation of large order systems, which is the
topic of this paper.

The proposed simulation algorithm, newlsim.m,
first decouples the original dynamical system by im-
plementing a block diagonalization1 of the A matrix,
it then forms fictitious subsystems with lower, and thus
manageable dimensions and narrower bandwidths. Af-
ter that, the subsystems are discretized so that efficient
computation of state transition can be realized. Fi-
nally the responses of the subsystems are interpolated
and superposed to form the response of the original
large-order system.

The organization of the paper is as follows: In Sec-
tion 2 the technical time domain simulation problem
will be discussed. Then in Section 3 the flow chart and
some important details of the operations are presented.
After describing the algorithm, Section 4 studies the
simulation problems and solutions with various kinds
of control loops. In Section 5 simulation results ap-
plied to a high fidelity Space Interferometry Mission
(SIM) model, version 2.2, are given and some of these
results are compared with those obtained by the stan-
dard MATLAB LTI systems simulator, lsim.m, as well
as other techniques. A summary and conclusions are
discussed in Section 6.

1For a diagonalizable matrix, the transformed matrix can
be strictly diagonal but the result is usually complex, which is
not very useful in practice. However, for a real diagonalizable
matrix, the complex diagonal matrix can be converted into a
real block diagonal one. Also, whenever the word “diagonal” is
used in this paper, it means real block diagonal, unless noted
otherwise.
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2 Time Domain Simulation Problem

The time domain simulation problem of an LTI sys-
tem can be defined as follows: Given a system in (1)

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t), (1)

where x(t) is the state, u(t) is the input, y(t) is the out-
put and the matrices are of appropriate dimensions.
The solution to this problem is the unique y(t), given
an external input u(t) and initial conditions x(t0).
There are at least two ways to solve the problem: 1)
Standard ordinary differential equation (ODE) solvers
like Runge Kutta, and 2) The state transition formula
in (2)

x(t) = eA(t−t0)x(t0)︸ ︷︷ ︸
xH

+
∫ t

t0

eA(t−τ)Bu(τ)dτ︸ ︷︷ ︸
xp

,
(2)

where t0 denotes the initial time instant, τ is a dummy
variable, eA(t−τ) is the matrix exponential of the ma-
trix A(t − τ) and u(t) is the external input to the
system, xH and xP denote the homogenous and par-
ticular solutions, respectively. The state transition
method just mentioned is equivalent to transforming
the original problem (1) into its discretized version in
(3), provided that a further assumption is made on
u(t) (e.g. zero order hold (ZOH)).

x[n+ 1] = Adx[n] +Bdu[n]
y[n] = Cx[n] +Du[n],

where,
Ad = eAT ,

Bd =
∫ (K+1)T

KT
eA(KT+T−τ)Bdτ =

∫ T

0
eAτBdτ,

and T is the sampling period and n ∈ Z.

(3)

The state transition method serves the current prob-
lem better in that it requires less computation and it
maps left half s-plane poles to inside the unit circle
in the z-plane, no matter how large the discretization
time step, T , is. Nevertheless, the benefits of the state
transition method do not come for free in that the fol-
lowing problems must be addressed: The first problem
is the computational expense of eAT in (3). The cost
of this operation is O(n3

s) with ns being the number
of state variables.10 The second problem is memory
saturation, if the computation requires the whole his-
tory of states before the history of the output can be
computed (see lsim.m for such an algorithm11), in that
case the simulation might halt because of memory sat-
uration. The solutions to these problems will be given
in Section 3.

3 Fast Time Domain Simulation
Algorithm

In this section, the steps and implementation issues
of the presented algorithm will be addressed. Before
the details are discussed, an overview of the algorithm
is given by the flowchart in Fig. 3. In this flow chart,
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Fig. 3 Flow chart of the fast time domain simula-
tion algorithm, newlsim.m.

the circles correspond to data such as the original sys-
tem A,B,C,D matrices, the external input and the
computed response (output). Each block represents
an operation or process with the actual MATLAB im-
plementation label next to it (The name of the m-file
is in italic font).

Diagonalization

Diagonalization is a similarity transform of the orig-
inal system into a system that has a block diagonal A
matrix. That is,

A = SΛS−1,

where S is an invertible similarity transform matrix
and Λ is a real block diagonal matrix. This similar-
ity transform can be an eigenvalue decomposition or
state variable reordering, whereby the latter is less ex-
pensive. Additionally, the corresponding subroutine
of the presented simulation scheme sorts the modes of
the diagonalized system in ascending natural frequen-
cies. This diagonalization step is necessary in order to
enable the following implementations:

• Decoupling the dynamics and forming fictitious
subsystems. This can relieve the problem of mem-
ory saturation since the original large problem is
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divided into smaller subproblems. Also, this gives
rise to the potential for parallel computation.

• Applying multiple sampling rates. The reason for
this implementation is twofold. First, simulation
can be facilitated by the application of multiple
sampling rates. Secondly and more importantly,
this can pave the way to solving multiple time
scale dynamics problems, see Reich12 for such a
problem in molecular dynamics.

• Exploiting the sparsity resulting from the diagonal
structure of the A matrix. The number of nonzero
entries of an ordinary dense matrix A∈ R

n×n is
n2, but the number of nonzero entries in the diag-
onalized matrix is less then or equal to 2×n. This
sparsity is important in the matrix-vector product
computation to be discussed later.

Subsystem Planning

The subsystem planning subroutine is the key deci-
sion element in the algorithm. The objective of this
function is to form fictitious subsystems and to assign
them appropriate sampling rates. The assumption in
this subsection is that the plant is already block di-
agonal and that the modes are sorted (i.e. after the
preceding diagonalization step). There are two consid-
erations for the subsystem planning.
The first issue is the size (number of state vari-

ables) of each subsystem. In terms of floating point
operations (FLOPS), the size of the subsystems is not
very important because the number of FLOPS for sim-
ulating discrete-time systems (after diagonalization)
depends linearly on the number of state variables. Ac-
cording to Sou10 the approximate cost is2,

FLOPS = 2× (2 +m+ p)× ns × n (4)

where m is the number of input channels, p is the
number of output channels, ns is the number of state
variables and n is the number of samples to be pro-
cessed. This is in contrast to non-sparse continuous
time system simulation, where the cost is proportional
to the number of states to the third power.1 Never-
theless, simulating subsystems that are too large and
too small is not efficient because of memory saturation
and size independent overhead, respectively.
The other issue is the sampling rate for each sim-

ulation. The minimum sampling rate is given by
Nyquist’s sampling theorem (e.g. see Oppenheim13)
but it is usually insufficient for computer simulations.
As a rule of thumb, the sampling rate should be four
to ten times the system bandwidth. The issue of ap-
propriate sampling rate selection has been extensively
discussed by Franklin14 and Åström15 among others.
Taking into account the aforementioned issues, the

corresponding subsystem planning subroutine has the
following features:

2The FLOPS due to feedthrough are ignored.

• It automatically chooses an appropriate subsys-
tem block size by considering a lower bound, up-
per bound and the effect of the number of input
and output channels.

• It automatically suggests downsampling based on
an estimate of the ratio between the high fre-
quency components and low frequency compo-
nents of the output.

A flow chart of this subroutine is given in Fig. 4.

DSF init (max)

SM=1

EM = f(DSF)

EM > TM?

EM-SM + 1

>= BZ_min ?

Update DSF

EM - SM >

BZ_max ?

EM=SM+BZ_max-1

or TM, SM=EM+1

EM = EM or TM

SM = EM + 1

DSF = DSF / 2 or 1

DSF =

DSF /2 or 1

Terminate

Y

N

Y

N

Y

N

Fig. 4 Flow chart of the subsystem planning sub-
routine. DSF denotes downsampling factor (the
ratio between the original sampling rate and the
reduced sampling rate). SM is the starting mode
of the subsystem. EM is the ending mode of the
subsystem. TM is the total number of modes of
the original system. This serves as a termination
criterion. BZ is the currently chosen block size of
each subsystem.

In this flowchart, the f(DSF) is implemented as a
bisection process that determines the ending mode
(EM) of each subsystem. As an example, the subsys-
tem planning of the SIM v2.2 flexible mode model was
considered with the planning result and downsampling
factors given in Fig. 5.

Discretization

As can be seen in (3), the bottleneck of discretiza-
tion is the matrix exponential. Fortunately the diag-
onalization described earlier relieves the problem. By
exploiting the sparsity of the block diagonal A matrix
structure, a O(ns) matrix exponential algorithm can
be realized. This is obviously seen if the matrix expo-
nential Ad in (3) is expressed as follows (see Chen,16

for example):

Ad = eAT = I +AT +
A2T 2

2
+
A3T 3

3!
+ · · · . (5)
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Fig. 5 Subsystem planning result of SIM v2.2 flex-
ible mode model. The original sampling rate is
4096 Hz.

By noticing the fact that

AnTn =




A1T 0 · · ·
0 A2T

. . .
...

. . . . . .




n

=




An
1 0 · · ·
0 An

2

. . .
...

. . . . . .


Tn,

(6)
where Ai ∈ R

2×2 ∀ i ∈ {1, 2, . . .} and applying (6) to
(5), the following equality holds:

exp

(
A1T 0 · · ·
0 A2T

. . .
...

. . . . . .



)
=




eA1T 0 · · ·
0 eA2T . . .
...

. . . . . .


 .

(7)
Equation (7) is the basis of the proposed O(ns) dis-
cretization scheme. As a result, a generic procedure
for the fast discretization can be given as:

for i = 1 to total number of subsystems
index = location of subsystem ;
DT_system(index) = c2d(subsystem) ;

end

Here the size of each subsystem is not fixed and a the-
oretical optimal block size can be found. Nevertheless,
the optimality is not an important issue since the dif-
ference between optimal and suboptimal strategies is
not obvious here3.
A simple example as follows should reveal the fact4:

% create a random diagonal matrix
>> A = diag(randn(1000,1));
% dense matrix exponential

3This is in contrast to the case of newlyap.m discussed in de
Weck et al.1

4The test machine is a Pentium 4 PC with a 1.5GHz CPU
and 128MB RAM. Any other computations in this report were
performed on the same machine

>> tic; Aexp = expm(A); toc
% computation time
elapsed_time = 27.1090
% diagonal matrix exponential
>> tic; Aexp1 = diag(exp(diag(A))); toc
% computation time
elapsed_time = 0.0310
% error checking
>> norm(Aexp - Aexp1)/length(Aexp)^2
ans = 3.7303e-020

That is, the computation of the diagonal matrix ex-
ponential is 874 times faster than that of the dense
matrix, and the difference between the results is neg-
ligible. Although in the example just shown, the A
matrix is strictly diagonal, it can be concluded that a
significant amount of computation is saved even in the
case of a block diagonal A matrix, since the compari-
son is between O(n3) and O(n) operations. Neverthe-
less, the advantage of fast discretization comes with
the expense of the diagonalization step itself, which is
also O(n3). Fortunately, the computation of eigenval-
ues is usually more efficient than that of the matrix
exponential, as Table 1 shows.

Table 1 Computation time of eigenvalues (eig)
and matrix exponential (expm) in seconds with test
matrices of size n. The specifications of the test
machine are given in footnote 4.

Size (n) 100 200 400 600 1000

eig 0.0310 0.2340 1.9850 6.4530 29.4530

expm 0.0310 0.3280 2.6250 9.0620 40.9530

Downsampling

Downsampling the input is required whenever the
assigned sampling rate of a particular simulation is
lower than that of the input (this is true if the multiple
sampling rates strategy is employed). The straightfor-
ward way to achieve the goal is to low-pass filter the
signal and then downsample it (see Oppenheim, for
example13). That is,

xd[n] = x[Mn],

where x[n] has been low-pass filtered and M is the
downsampling factor.
In addition to the direct method just discussed,

there is another way to downsampling. Recall the state
transition formula (or the state equations for the dis-
cretized system),

x[n+ 1] = Adx[n] +Bdu[n]
y[n] = Cx[n] +Du[n].

(8)

The first equation in (8) is certainly satisfied at the
n+ 1 instant,

x[n+ 2] = Adx[n+ 1] +Bdu[n+ 1]. (9)
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If (8) is substituted into in (9), then the following re-
sults

x[n+ 2] = Ad {Adx[n] +Bdu[n]}+Bdu[n+ 1]
= A2

dx[n] +AdBdu[n] +Bdu[n+ 1].(10)

Equation (10) can be generalized for N steps,

x[n+N ] = AN
d x[n]+A

N−1
d Bdu[n]+· · ·+Bdu[n+N−1]

(11)
If the following new matrices are defined

u[n] =
[
u[n] · · · u[n+N − 1]

]T
Ad = AN

d

Bd =
[
AN−1

d Bd · · · Bd

]
C = C

D =
[
D 0 · · · 0

]
,

then the N-step propagation version of (8) is

x[n+N ] = Adx[n] +Bdu[n]
y[n] = Cx[n] +Du[n].

(12)

By employing a long time step state transition, the
calculation of the unwanted intermediate states and
outputs can be avoided. This downsampling scheme
essentially downsamples the output instead of the in-
put and the accuracy is much better than the first
direct approach. However, the efficiency gain achieved
by the second method is less than that by the first
method. Compare the FLOPS for the direct down-
sampling (13) and those of the second method (14):

FLOPS = 2× (2 +m+ p)× ns × n

DSF
, (13)

FLOPS = 2× (2 +DSF ×m+ p)× ns × n

DSF
. (14)

Here DSF ≥ 1 is the downsampling factor. The
meanings of other parameters in (13) and (14) are re-
ferred back to (4). In conclusion, the second method is
more conservative. The current version of newlsim.m
adopts the second method, also referred to as lifting,
if downsampling is to be realized.

Simulation, Interpolation and Superposition

With the subsystems formed and discretized, the
burden on the simulator (the actual code that com-
putes the states and outputs) is lighter compared to
the original ODE problem and it now becomes a much
simpler problem of matrix-vector multiplication (cf.
(3)). Taking into account the sparsity of the A matrix,
the matrix-vector multiplication (state transition) can
be realized in O(nsn) (ns is the number of state vari-
ables and n is the number of samples to be simulated)
FLOPS. The required features of the simulator are
summarized as follows:

• The simulator must be memory conscious. It can-
not request any amount of memory (in bytes)
proportional to nsn or more.

• The simulator must be able to recognize the zero
pattern of the A matrix, otherwise, the advantage
of the sparsity will be lost and the computation
effort estimate in (4) will not be achieved.

Taking into account the above considerations, MAT-
LAB SIMULINK’s17 discrete-time system solver “dis-
crete state-space” is chosen, instead of the conven-
tional choice of ltitr.
Interpolation is needed whenever the output is

downsampled. Because the downsampling instants are
evenly spaced, the downsampling can be viewed as the
resampling of discrete-time signals and efficient inter-
polation methods in signal processing (i.e. inserting
zeros and then low-pass filtering) can be employed.
In fact, newlsim.m applies the MATLAB command
interp.m,18 which does exactly this.
With the responses of the subsystems computed, it

is finally possible to form the response of the original
system due to the original input. This is allowable
because of the linearity property of LTI systems.
The commands mentioned above are very MATLAB

specific because the current version of newlsim.m is
implemented in MATLAB. Nevertheless, the idea to
take advantage of problem specific insights and struc-
ture extends naturally to more general platforms.

4 Closed Loop Systems Issues
In this section, issues concerning the implementa-

tion of the newlsim.m algorithm are addressed. The
first problem is due to closing a feedback loop (e.g.
attitude control systems (ACS) for a satellite). The
second problem is due to cascade connections between
the plant and some other filters (e.g. noise shaping
filter and/or optical controller). These two problems
will be studied in two separate subsections.

Simulation with Feedback Loop

The block diagram of the problem is given in Figure
6.

A B B

C
C

D D
D 0
zw

yw

z

y

w u

zu

A B

C D
k k

k k

plant

controller

zw

u y

Fig. 6 Block diagram of the plant with a feedback
controller.

Suppose the open loop system is in modal form (i.e.
the A matrix is block diagonal) and the state-space
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form is5 
 A Bw Bu

Cz Dzw Dzu

Cy Dyw 0


 . (15)

The feedback controller has the following state-space
realization: [

Ak Bk

Ck Dk

]
, (16)

where subscripts w and u denote quantities related
to disturbance input and control input, respectively.
Subscripts z and y are related to performance out-
put and measurement output, and subscript k denotes
quantities related to the controller. The closed loop
system has the state space form
 A+BuDkCy BuCk Bw +BuDkDyw

BkCy Ak BkDyw

Cz +DzuDkCy DzuCk Dzw +DzuDkDyw


 .

(17)
The off-diagonal terms, BuCk and BkCy in the “A”
matrix of (17) are not expected to be zero, otherwise
there will be no control effect at all. Now the problem
is: Even if the open loop system is in modal form (i.e.
the A matrix is block diagonal), the closed loop sys-
tem will not be so because of the dynamics coupling
(off diagonal terms in “A” in (17)). Another prob-
lem arises if the feedback controller is a discrete-time
system6 and this causes the closed loop system to be
hybrid7. For the problem of dynamics coupling, two
solutions are proposed:

Rediagonalization by eigenvalue decomposi-
tion. An eigenvalue decomposition is applied to the
system in (17). This is the most straightforward way
but the computation can be expensive if the systems
considered are large-order, because of the eigenvalue
problem involved.

Forced decoupling. This is a heuristic method in
that some of the entries of Cy in (17) are set to zero. In
other words, some of the measurements are regarded
as insensitive to some of the state variables. Suppose
for simplicity that allD matrices are zero and the state
variables are reordered in such a way that the following
equalities hold (A is assumed to be block diagonal and
Cy is partitioned into two blocks):

A =

[
A1 0
0 A2

]

5The Dyu is missing here to avoid an algebraic loop, i.e. the
coexistence of feedthroughs in the plant and the controller.

6In practical implementations, controllers are usually digi-
tal, which implies that the signals, as well time instants, are
discrete. The discrete-time assumption here is merely for the
ease of analysis.

7Here the term “hybrid” is used in the very specific sense
that the system contains both continuous-time and discrete-time
states. There is no discrete state involved.

Bu =

[
B1u

B2u

]

Bw =

[
B1w

B2w

]

Cy =
[
0 C2y

]
Cz =

[
C1z C2z

]
.

Then the state-space representation of the closed loop
system (17) is as follows:


A1 0 B1uCk B1w

0 A2 B2uCk B2w

0 BkC2y Ak 0

C1z C2z 0 0


 . (18)

It can be verified that the system in (18) can be de-
composed into two subsystems. The first subsystem
includes controller dynamics and is subject to distur-
bance input only,

 A2 B2uCk B2w

BkC2y Ak 0

C2z 0 0


 (19)

and the second subsystem evolves in time with distur-
bance input and control input that is determined by
solving the first subsystem (as the output signal of the
controller) [

A1 B1u B1w

C1z 0 0

]
. (20)

It can be seen that if the dimension of A2 in (19)
is much smaller than that of A1 in (20) and if A1

is block diagonal, then the bottleneck of diagonaliza-
tion can be avoided. The justification of this method
hinges upon the ability to find the state variables that
are insensitive to sensor measurements and the rel-
ative significance of the contributions of the ignored
measurements to the total measurements. The de-
termination of the “important” state variables can be
quite case specific. For example, in the study of a space
structure with an attitude control system (ACS), if
the measurements are attitude angles, then it is natu-
ral that the rigid body modes are far more important
than other flexible modes. In order to quantify the
error induced by the forced decoupling method, it is
possible to compute the ratio

E =
σ1

σ2
, (21)

where σ1 and σ2 are the open (feedback control) loop
RMS values of the contributions of the unimportant
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and important dynamics to the measurement. If E is
smaller than some tolerance, then the forced decou-
pling heuristic is justified, otherwise rediagonalization
by eigenvalue decomposition must be applied. The
computation of the ratio E in (21) can be very effi-
cient if the open loop system is already in modal form.
For example, the Lyapunov analysis with newlyap.m
in de Weck et al.1 can be applied here. As an example,
consider the 2184 state variable SIM model v2.2 with
three unstable (or marginally stable) rotational rigid
body modes and assume the attitude angles (propor-
tional to rigid body mode angles, together with some
additional contributions from other flexible modes) are
measured directly. The numeric values of E in (21) in
this example are summarized in Table 2.

Table 2 E: The ratio (%) between the RMS atti-
tude angle of the flexible mode subsystem over the
rigid body mode subsystem.

θ1 θ2 θ3

0.1021 0.2201 0.1950

The results in Table 2 shows that E is quite small
if the forced decoupling heuristic is used. To ver-
ify the prediction, the actual results from the two
methods are computed: The RMS values of the per-
formance outputs by eigenvalue decomposition method
and the forced decoupling heuristic are 1.8275× 10−5

and 1.8276 × 10−5, respectively. Their difference is
1.8135×10−9, which amounts to about 0.0099 % of the
performance given by the eigenvalue decomposition
method (chosen as a reference here). In conclusion,
the forced decoupling heuristic is not exact but can be
fairly accurate if properly applied.
For the problem of “hybrid” closed loop systems,

there are two options suggested:
Continuous-time approximation. If the sam-

pling rate of the control is high enough, then the
digital controller can actually be approximated by a
continuous-time system using techniques like zero or-
der hold (ZOH) or bilinear (Tustin) transform. The
accuracy of this approximation can be found in any
common digital (or computer) control text.

Lifting. This is a useful approach to deal with
sampled-data control systems analysis problems. For
example, see Chen19 and Yamamoto.20 Suppose a
discrete-time signal v[n] is defined as

v = {v[0], v[1], v[2], . . .}.

The lifted version of the signal v can be expressed as

v =







v[0]
v[1]
...

v[n− 1]


 ,



v[n]
v[n+ 1]

...
v[2n− 1]


 , . . .



,

where n ∈ Z. If an LTI system is represented as[
A B

C D

]
,

then its lifted version is defined such that the original
inputs and outputs signals are lifted. That is,


An An−1B An−2B · · · B

C D 0 · · · 0

CA CB D
. . . 0

...
...

...
. . .

...
CAn−1 CAn−2B CAn−3B · · · D




(22)

The lifting procedure in (22) basically reduces sam-
pling rate at the expense of an increase in input and
output dimensions. Equivalently this procedure can
be viewed as one of the applications of the state aug-
mentation technique. The main application of this
method in the algorithm is to convert a multiple sam-
pling rates8 system into a single rate (slow rate) LTI
system without losing the effect of fast dynamics. The
drawback of this method is the high resulting dimen-
sionality. Nevertheless, this method can work well in
conjunction with the forced decoupling method dis-
cussed previously if the subsystem coupled with the
controller has low dimension.

Simulation with Feedforward Controller

The block diagram is depicted in Figure 7. Even

A B

C D

A B

C D

d d

d d

A B

C D

k k

k k

plantshaping filter forward controller

p

p

p

p

Fig. 7 Block diagram of the plant with shaping
filter and feedforward controller appended.

if the open loop plant is in modal form (block diag-
onal A matrix), the cascade connection of the plant
and other dynamic systems (e.g. noise shaping filter
or feedforward controller) does not in general have a
block diagonal A matrix. Suppose the plant dynamics
is [

Ap Bp

Cp 0

]
(23)

and the controller has the state-space representation
as [

Ak Bk

Ck 0

]
, (24)

8Sometimes the sampling rate of the plant is much higher
than that of the controller, in order to represent the plant dy-
namics accurately, see Chen19 for more detail. Note also that a
multiple sampling rate system is time-variant.
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then the cascade connection of these two systems will
have the state-space representation as follows:

 Ap BpCk 0
0 Ak Bk

Cp 0 0


 . (25)

It is clear that even if Ap is block diagonal, the A ma-
trix of the closed loop system will not be so because
of BpCk. Therefore, a rediagonalization is necessary.
Nevertheless, it is not necessary to call the eigenvalue
solver (e.g. eig in MATLAB) to redo the diagonaliza-
tion if the plant and the controller do not have the
same eigenvalues. That is,

λ (Ap) ∩ λ (Ak) = ∅,
where λ(·) denotes the set of all eigenvalues of a ma-
trix. This is true because of the following lemma (from
Golub and Van Loan21):

Lemma 4.1 Let T ∈ C
n×n be partitioned as follows:

T =

[
T11 T12

0 T22

]
, (26)

where T11 ∈ C
p×p and T22 ∈ C

q×q. Define the linear
transformation φ : C

p×q → C
p×q by

φ(X) = T11X −XT22, (27)

where X ∈ C
p×q. Then φ is nonsingular if and only

if λ(T11) ∩ λ(T22) = ∅, where λ(T11) and λ(T22) are
sets of eigenvalues of T11 and T22 respectively. If φ is
nonsingular and Y is defined by

Y =

[
Ip Z

0 Iq

]
φ(Z) = −T12,

then Y −1TY = diag(T11, T22).
Proof: See Appendix.

In the current context, Ap and Ak can be thought of
as T11 and T22 in the lemma. It is assumed that the
digonalization of Ak (or T22) is possible and easy to
find (e.g. controller A matrix). The implication of this
lemma is that the eigenvalues and eigenvectors of the
closed loop A matrix can be found without using gen-
eral purpose eigenvalue solvers (e.g. eig in MATLAB),
and thus the rediagonalization can be computed effi-
ciently. The reason is as follows: Suppose T11 ∈ R

p×p

and T22 ∈ R
q×q are block diagonal and diagonalizable,

so there exist invertible matrices (eigenvector matri-
ces) V11 and V22 such that V −1

11 T11V11 = D11 and
V −1

22 T22V22 = D22, where D11 ∈ C
p×p and D22 ∈ C

q×q

are both strictly diagonal. The matrix T in (26) can
be expressed as[

V −1
11 0
0 V −1

22

][
D11 D12

0 D22

][
V11 0
0 V22

]
, (28)

where D12 = V11T12V
−1
22 . The middle matrix in (28)

can be transformed into block diagonal form by apply-
ing lemma 4.1. That is,[
D11 D12

0 D22

]
=

[
I X ′

0 I

][
D11 0
0 D22

][
I −X ′

0 I

]
,

(29)
where X ′ can be solved by the following equation (es-
sentially (27))

−D12 = D11X
′ −X ′D22.

It can be seen that

X ′ = −D12 · / (D11U − UD22) , (30)

where U denotes a matrix whose entries are all one
and ·/ denotes the operation of elementwise division.
Combining (29) and (30), it can be seen that the eigen-
vector matrix of T in (26) is[

I −X ′

0 I

][
V11 0
0 V22

]
=

[
V11 −X ′V22

0 V22

]
.

(31)
With the eigenvalues and eigenvectors of T in (26)
known, it is straightforward to compute the rediago-
nalization required in the beginning of this subsection.

5 Simulation Results
In this section, some application examples are given

to show the potential value of the newlsim.m algo-
rithm. The first example computes the performance
RMS values of randomly generated stable SISO sys-
tems of different dimensions, ns, driven by randomly
generated input signals. As in de Weck et al.,1 three
methods are compared: Time domain method, fre-
quency domain method and Lyapunov method. For
the time domain method, the input signal is 105 sam-
ples long and for the frequency domain method, 105

frequency points (single sided) are computed. The re-
sults are summarized in Table 3.
In this table, ns is the number of state variables.

Tcpu is the CPU time (in seconds) of each computation
and σ is the RMS value of each performance output
(the actual unit is not of interest here). Methods: freq
denotes the frequency domain method, newlyap de-
notes the fast Lyapunov method, lsim is the standard
time domain simulation method provided by MAT-
LAB. Finally, newlsim is the proposed time domain
simulation method. Note that freq and newlyap are
the fast implementations of frequency domain method
and Lyapunov method respectively, see de Weck et al.1

Note also that the time for newlsim includes the time
to diagonalize. Since new data is generated in each
case with a different ns, the RMS values of different ns

cases differ accordingly and should be not compared.
The main point to illustrate here is that the per-

formance RMS values computed by the three different
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Fig. 8 Logarithmic plot of CPU times by
lsim.m and newlsim.m versus number of state vari-
ables. Circle: lsim.m time. Triangle: newlsim.m

time. Maximum savings factor Tlsim/Tnewlsim � 50.
Crossover at around ns = 12 state variables.

methods are quite close to each other. As shown in
Table 3, time domain methods are generally not as
efficient as other methods for small systems (ns <
100). However, the situation changes when systems
get larger (ns > 500). The reason for this trend is that
size-independent overhead of the time domain method
is more significant in small system cases. It should also
be noted that the computation time of the frequency
domain and time domain methods varies with the
number of samples evaluated. Nevertheless, it is this
computation that provides the additional information
that the Lyapunov method does not provide (i.e. time
history and power spectral density). The reason why
the results from lsim are unavailable (N/A) is that the
computer ran out of memory, which means that lsim
is not very suited for large-order systems simulation.
The above example shows that newlsim can achieve
efficiency similar to the fast implementations of other
methods (frequency domain and Lyapunov methods)
with acceptable accuracy when computing RMS val-
ues.
Computing output RMS values does not fully ex-

emplify the advantage of newlsim. A time domain
simulation scheme should be compared with another
time domain simulation scheme. Therefore the MAT-
LAB simulator, lsim.m, is chosen as a reference in the
following example. In the example, a number of ran-
domly generated systems with different sizes are simu-
lated in the time domain with lsim.m and newlsim.m.
The computation time of each simulation is given in
Figure 8. The time responses of a sample system by
lsim.m and newlsim.m are shown in Figure 9.
The example shows that newlsim.m is more efficient

than lsim.m, while the error is insignificant.
The remaining examples are concerned with con-
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Fig. 9 Time responses for a ns = 200 state system
by lsim.m - Tcpu = 71.1 [sec] - and newlsim.m Tcpu = 2.4
[sec]. Both the system and the external input are
randomly generated.

Table 3 Comparison between frequency domain,
Lyapunov and time domain methods for randomly
generated systems of different size. N/A indicates
memory saturation.

ns results freq newlyap lsim newlsim

50
Tcpu[s] 0.2960 0.0780 1.3750 0.6880

σ 1.714E-6 1.713E-6 1.722E-6 1.722E-6

100
Tcpu[s] 0.6410 0.2340 4.5310 1.0150

σ 1.167E-5 1.159E-5 1.187E-5 1.187E-5

200
Tcpu[s] 2.0000 1.375 71.078 2.3900

σ 1.516E-5 1.448E-5 1.463E-5 1.463E-5

500
Tcpu[s] 15.3280 13.859 N/A 15.2030

σ 3.006E-5 3.002E-5 N/A 3.061E-5

1000
Tcpu[s] 104.25 98.562 N/A 96.0320

σ 5.452E-5 5.184E-5 N/A 5.228E-5

1500
Tcpu[s] 425.3 393.3 N/A 382.7

σ 1.346E-5 1.325E-5 N/A 1.334E-5

2000
Tcpu[s] 1046.4 949.3 N/A 934.4

σ 2.869E-5 2.714E-5 N/A 2.733E-5

trol tuning of the Space Interferometry Mission (SIM)
model v2.2 (see Figure 10 for its finite element model)
that is enabled by newlsim.m.
The SIM v2.2 model presents significant challenges
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Fig. 10 Finite element model of SIM v2.2.

to time domain simulation because of its high di-
mensionality (2184 state variables) and wide dynamic
range (ωmin/ωmax ≈ 4700)9. For more information
on SIM, see JPL.22 Due to the scientific purpose,
stringent design requirements are imposed on the SIM
model. For example, see Table 4 for some requirements
from Miller et al.23 and Laskin.24

Table 4 SIM opto-mechanical performance re-
quirements.

performance zi units requirement

Starlight OPD nm 10 (RMS)

Internal Metrology OPD nm 20 (RMS)

Starlight WFT asec 0.210 (RSS)

In order for the SIM system to work properly, two
control systems are needed. One is the attitude con-
trol system (ACS) and the other is the optical control
system. The overall system configuration is given in
Fig. 11.

Opto-Structural Plant

SIM v2.2

2184 state variables

ACS

Optical control
disturbance input

control input

phasing (OPD)

rigid body angles

pointing (WFT)

Fig. 11 Appended LTI system dynamics of SIM.
The opto-structural plant is obtained by combining
the optics and the finite element models (FEM).
The attitude control system (ACS) is necessary to
stabilize the open-loop unstable rigid body modes.
The optical control system is added to improve op-
tical performance.

The ACS in Fig. 11 stabilizes the open loop un-
stable rigid body modes of the SIM model. It can
be designed by classical methods like PID, lead-lag or
modern control techniques such as LQG. The optical

9ωmin is the minimum flexible mode natural frequency. The
zero natural frequency of rigid body modes is not counted.

control here is modelled as a second order high-pass
filter and the transfer function of one channel is

Ko(s) =
s2

s2 + 2ζoωos+ ω2
o

, (32)

where ζo is the damping ratio of the controller and is
set to 0.707 and ωo is the corner frequency, which is
treated as a variable design parameter.
The first example is a parameter study of optical

controller corner frequency ωo [rad/s] (or fo [Hz]). The
system consists of the open loop SIMmodel (2184 state
variables), an ACS designed by the standard LQG ap-
proach (e.g. Bélanger25) and the optical controller as
given in (32). The ACS loop is closed by a rediagonal-
ization by eigenvalue decomposition and the optical
control path is closed by the method prescribed in
Section 4. There are six input channels (three forces
and three torques), which are driven by the six chan-
nels of Magellan reaction wheel assembly disturbance
data (see Elias26). The outputs are starlight optical
path difference (OPD), internal metrology (IM) and
starlight wavefront tilt (WFT). In the simulation runs,
different closed loop systems with different optical con-
troller corner frequencies (fo) are formed and the RMS
values of the performance outputs are recorded. The
result is shown in Figure 12. The result in Figure 12 is
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Fig. 12 RMS and RSS of the performance out-
puts. Circle: Starlight OPD #1. Asterisk: Inter-
nal Metrology OPD #1. Square: Starlight WFT
#1.

consistent with the intuition that higher optical con-
trol bandwidth leads to better system performance.
Nevertheless, it can be a problem of cost, implemen-
tation and stability margins if fo is chosen too high.
A controller cutoff frequency above 10 [Hz] appears to
satisfy the requirements.
The second example is the tuning of the attitude

control system (ACS). The performance outputs here
are the three attitude angles (θx, θy and θz). In this
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tuning, two typical scenarios are shown. One is the
cheap control case and the other is the expensive con-
trol case. These cases are determined by the weights
on the state and control when the ACS controller is de-
signed. The unit step transient responses of the three
attitude angles are shown in Figure 13.
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Fig. 13 Unit step responses of the attitude angles.
(a) Expensive control case. (b) Cheap control case.

It can be seen from Figure 13 that while the set-
tling time reduces with the increase of control effort,
the overshoot remains large. The reason for this dif-
ficulty is the existence of non-minimum phase zeros
of the open loop plant. In the simplest interpreta-
tion, the non-minimum phase zeros draw the closed
loop root loci further to right half s-plane as control
effort increases, and are thus reducing the stability
margin. Therefore, if a structural design such that
the non-minimum phase zeros are eliminated can be
realized, then the transient responses of the model are
expected to be much better. These transient analyses
for large systems require fast time domain simulation
algorithms such as newlsim.m.

6 Summary
Time domain simulation is an important technique

for multidisciplinary design, analysis and optimization
of dynamic systems. Unfortunately, as model fidelity
and size get large one experiences excessive computa-
tion times and memory saturation problems. In this
paper, the simulation scheme, newlsim.m, based on

a block diagonalization pre-processing, is presented in
response to this challenge. The targeted systems are
large-order, diagonalizable continuous-time LTI sys-
tems. It has been found that diagonalization provides
three benefits (dynamics decoupling, fast discretiza-
tion and multiple sampling rates) that facilitate the
simulation. In conjunction with the block diagonaliza-
tion structure of the resultant A matrix, it has been
shown that a sparse matrix recognizable state transi-
tion must be employed in order to achieve the O(nsn)
state transition by taking advantage of the resultant
sparsity. Problems with feedback and feedforward con-
trollers are discussed and the corresponding solutions
(e.g. forced decoupling and rediagonalization with-
out using iterative eigenvalue solver) are proposed.
It has been shown that newlsim.m can achieve sim-
ilar efficiences as those achieved by fast implementa-
tions of frequency domain and Lyapunov methods (e.g.
newlyap.m), while retaining the advantage of transient
response calculations. Finally, applications enabled by
newlsim.m are given as optical and ACS control tuning
of the 2200 state SIM spacecraft system to illustrate
the potential value of the simulation scheme.
Recommendations for future work include exten-

sions of the algorithm to time-varying and weakly non-
linear systems as well implementation of distributed
computation of the subsystem responses on parallel
computers.
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Appendix: Derivation of Lemma 4.1
Suppose φ(X) = 0 for X �= 0 and that

UHXV =

[
Σr 0
0 0

]
r

p− r

r q − r

is the SVD of X with Σr = diag(σi), r = rank(X).
Substituting this into the equation T11X = XT22 gives[
A11 A12

A21 A22

][
Σr 0
0 0

]
=

[
Σr 0
0 0

][
B11 B12

B21 B22

]
,

where UHT11U = (Aij) and V HT22V = (Bij). By
comparing blocks we see that A21 = 0, B12 = 0, and
λ(A11) = λ(B11). Consequently,

∅ �= λ(A11) = λ(B11) ⊆ λ(T11) ∩ λ(T22).

On the other hand, if λ ∈ λ(T11) ∩ λ(T22) then we have
nonzero vectors x and y so T11x = λx and yHT22 =
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λyH . A calculation shows that φ(xyH) = 0. Finally if
φ is nonsingular then the matrix Z above exists and

Y −1TY =

[
I −Z
0 I

][
T11 T12

0 T22

][
I Z

0 I

]

=

[
T11 T11Z − ZT22 + T12

0 T22

]

=

[
T11 0
0 T22

]

Q.E.D.
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