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ABSTRACT

Time domain simulation can be time consuming and cause
memory saturation problems when systems get large, sam-
pling rates are high and input time histories are long. In
this paper, an efficient simulation scheme is presented to
simulate large order continuous-time linear time-invariant
(LTT) systems. The A matrix (assumed to be block-
diagonalizable) of the system is first diagonalized. Then,
subsystems of manageable dimensions and bandwidth are
formed and multiple sampling rates can be chosen to as-
sociate with the subsystems. Each subsystem is then dis-
cretized using a O(n;) discretization scheme, where ng is
the number of state variables. Next, a sparse matrix rec-
ognizable O(n,) discrete-time system solver (i.e. matrix-
vector product solver) is employed to compute the history
of the state and the output. Finally, the response of the
original system is obtained by superposition and interpola-
tion of the subsystem responses. The simulation scheme is
shown to be superior in the case of medium and large order
systems.
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Nomenclature

A, B,C,D = State space matrices

BZ = Block size of a subsystem

DSF = Downsampling factor

EM = Ending mode

SM = Starting mode

SS = Subsystem

™ = Total number of modes

T = CPU time

T = Sampling time period

m = Number of input channels of a system
n = Number of samples / Matrix dimension
Ng = Number of state variables

p = Number of output channels of a system
u = Control input
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= Discrete-time signal
Disturbance input
State vector
Measurement output
Performance output
= Root-mean-square
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1 Introduction

Simulation is an essential tool for the design of complex en-
gineering systems, as the models of these systems become
more and more complex. Model dimension (or size/order)
is a delicate issue in systems design because of the tradeoff
between model fidelity and the number of designs explored
within a limited time budget, T}o¢ = N X T¢py, Where N is
the number of simulations or designs explored and Ty, is
the runtime of a single simulation. The dilemma is shown
in Fig. 1. It is clear from Fig. 1 that the more efficient a
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Figure 1. Notional tradeoff curve between number of de-
signs explored and model fidelity. The solid line is the
curve allowed by current techniques, based on a T, o n?
scaling relationship, see de Weck et al.[1]. The dashed line
is the objective of this work. The upper right corner is the
utopia point.



simulation is for a given level of model fidelity, the better a
position system designers find themselves in. In Gutierrez
[2] and de Weck et al. [1], three methods for performance
evaluation of dynamic systems are summarized: 1) Time
domain simulation, 2) Frequency domain analysis and 3)
Lyapunov analysis. In these papers, improvements for fre-
quency domain and Lyapunov methods were proposed with
the derivation of new algorithms such as newlyap.m,
but the problem of time domain simulation remained un-
solved. Particularly challenging time domain simulations
are caused by large dimensionality of the state space sys-
tem (ns > 500) and/or large model dynamic bandwidth as
it occurs in engineering systems or molecular dynamics [3].
The problem can be relieved without parallelization, if not
entirely solved, by the capability of efficient time domain
simulation of large order systems, which is the topic of this
paper. Computationally efficient algorithms can be viewed
as a complement to model reduction techniques such as the
ones recently proposed by de Weck et. al. [1], Willcox and
Peraire [4] as well as Beran and Silva [5].

2 Time Domain Simulation Problem

The time domain simulation problem of an LTI system can
be defined as follows: Given a system in (1)

z(t) = Az(t) + Bu(t) )
y(t) = Cz(t) + Du(t),

where z(t) is the state, u(t) is the input, y(t) is the output
and the matrices are of appropriate dimensions. The solu-
tion to this problem is the unique y(¢), given an external
input u(t) and initial conditions z(ty). There are at least
two ways to solve the problem: 1) Standard ordinary dif-
ferential equation (ODE) solvers like Runge Kutta [6], and
2) The state transition formula in (2)

t
z(t) = e g (t0) —0—/ A=) Bu(r)dr,
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where tp denotes the initial time instant, 7 is a dummy
variable, eA(*~7) is the matrix exponential of the matrix
A(t — 1) and u(t) is the external input to the system, z g
and zp denote the homogenous and particular solutions,
respectively. The state transition method just mentioned is
equivalent to transforming the original problem (1) into its
discretized version in (3), provided that a further assump-
tion is made on u(t) (e.g. zero order hold (ZOH)).

z[n + 1] = Agz[n] + Bqu[n]
y[n] = Cz[n] + Duln],

where, (3
Ad = eAT,

By = I((I;H)T cAKT+T—7) Bdr — foT eA™ Bdr,
and T is the sampling period and n € Z.

The state transition method serves the current problem bet-
ter in that it requires less computation and it maps left half
s-plane poles to inside the unit circle in the z-plane, no mat-
ter how large the discretization time step, 7', is. Never-
theless, the benefits of the state transition method do not
come for free in that the following problems must be ad-
dressed: The first problem is the computational expense of
eAT in (3). The cost of this operation is O(n?) with n
being the number of state variables [7]. The second prob-
lem is memory saturation, if the computation requires the
whole history of states before the history of the output can
be computed (see 1sim.m for such an algorithm [8]), in
that case the simulation might halt because of memory sat-
uration. The solutions to these problems will be given in
Section 3.

3 Fast Time Domain Simulation Algorithm

In this section, the steps and implementation issues of the
presented algorithm will be addressed. Before the details
are discussed, an overview of the algorithm is given by the
flowchart in Fig. 2. In this flow chart, the circles corre-

Original System
A,B, C D

(md.m)

Diagonalization

Modal System

Subsystems Subsystem | (S¢g_plan_x.m)
Planner
Subsystem Bandwidth
|m=— == _ - L — — — 4 (build_mutirate
1 1 _sys.m)
! |Discretization Downsamplingl:Ho
: | Original Input

---------------- m—— )

Downsampled Input

DT LTI
DT Subsystems | System Solver | (sz_sim.m)

Subsystem Responses

Superposition| (summation & interp.m)

$ Final Response Y(?)

Figure 2. Flow chart of the fast time domain simulation
algorithm, newlsim.m.

spond to data such as the original system A, B, C;, D matri-
ces, the external input and the computed response (output).
Each block represents an operation or process with the ac-
tual MATLAB implementation label next to it (The name
of the m-file is in italic font).



3.1 Diagonalization

Diagonalization is a similarity transform of the original
system into a system that has a block diagonal A matrix.
That is,

A=SAS7!,

where S is an invertible similarity transform matrix and A
is a real block diagonal matrix. This similarity transform
can be an eigenvalue decomposition or state variable re-
ordering, whereby the latter is less expensive. Addition-
ally, the corresponding subroutine of the presented simu-
lation scheme sorts the modes of the diagonalized system
in ascending natural frequencies. This diagonalization step
is necessary in order to enable the following implementa-
tions:

e Decoupling the dynamics and forming fictitious sub-
systems.

o Applying multiple sampling rates.

e FExploiting the sparsity resulting from the diagonal
structure of the A matrix.

3.2 Subsystem Planning

The subsystem planning subroutine is the key decision el-
ement in the algorithm. There are two considerations for
the subsystem planning. The first issue is the size (number
of state variables) of each subsystem. According to Sou[7]
the approximate cost is',

FLOPS =2 X (2+m+p) X ns xn @

where m is the number of input channels, p is the num-
ber of output channels, ng is the number of state variables
and n is the number of samples to be processed. This is in
contrast to non-sparse continuous time system simulation,
where the cost is proportional to the number of states to the
third power[1]. Nevertheless, simulating subsystems that
are too large and too small is not efficient because of mem-
ory saturation and size independent overhead, respectively.

The other issue is the sampling rate for each simu-
lation. The minimum sampling rate is given by Nyquist’s
sampling theorem but it is usually insufficient for computer
simulations. As a rule of thumb, the sampling rate should
be four to ten times the system bandwidth. The issue of ap-
propriate sampling rate selection has been extensively dis-
cussed by Astrom [9] among others. A flow chart of this
subroutine is given in Fig. 3.

In this flowchart, the f(DSF) is implemented as a bi-
section process that determines the ending mode (EM) of
each subsystem.

IThe FLOPS due to feedthrough are ignored.
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Figure 3. Flow chart of the subsystem planning subroutine.
DSF denotes downsampling factor (the ratio between the
original sampling rate and the reduced sampling rate). SM
is the starting mode of the subsystem. EM is the ending
mode of the subsystem. TM is the total number of modes of
the original system. This serves as a termination criterion.
BZ is the currently chosen block size of each subsystem.

3.3 Discretization

As can be seen in (3), the bottleneck of discretization is
the matrix exponential. Fortunately the diagonalization de-
scribed earlier relieves the problem. By exploiting the spar-
sity of the block diagonal A matrix structure, a O(n,) ma-
trix exponential algorithm can be realized. This is obvi-
ously seen if the matrix exponential A, in (3) is expressed
as follows (see Chen [10], for example):

22 373
Ad=eAT=I+AT+A2T +—A3T SRR &)
By noticing the fact that
AT o 1" [ar oo
AT = 0 AT . =| 0 Ay - |T",
(6)

where A; € R2*2 Vi € {1,2,...} and applying (6) to (5),
the following equality holds:

N



The advantage of fast discretization comes with the ex-
pense of the diagonalization step itself, which is also
O(n?). Fortunately, the computation of eigenvalues is
usually more efficient than that of the matrix exponen-
tial. Other references for discrete time systems are by Ya-
mamoto [11], Chen and Francis [12] as well as Oppenheim
et. al [13].

3.4 Downsampling

Downsampling the input is required whenever the assigned
sampling rate of a particular simulation is lower than that of
the input (this is true if the multiple sampling rates strategy
is employed). The straightforward way to achieve the goal
is to low-pass filter the signal and then downsample it. That
is,

zq[n] = x[Mn],

where z[n] has been low-pass filtered and M is the down-
sampling factor.

In addition to the direct method just discussed, there
is another way to downsampling. Recall the state transition
formula (or the state equations for the discretized system),

z[n + 1] = Agz[n] + Bguln]

y[n] = Cx[n] + Duln]. ®

The first equation in (8) is certainly satisfied at the n + 1
instant,

z[n + 2] = Agz[n + 1] + Bgu[n + 1]. )]
If (8) is substituted into in (9), then the following results

zln+2] = Ag{Aqz[n] + Bgu[n]} + Bqu[n + 1]
= A%z[n] + AqBqu[n] + Baqu[n + 1].(10)

Equation (10) can be generalized for N steps,
zn+N] = AYz[n]+AY "' Bau[n]+- - -+ Bgun+N—1]
(11

If the following new matrices are defined

uln] = [u[n] u[n—i—N—l]]T
4 = Ay

By = [Afzv_le Bd]

¢ = C

D = [D 0 - 0],

then the N-step propagation version of (8) is

#ln+ N] = Aqzln] + Bauln]

y[n] = Cx[n] + Du[n]. (12)

By employing a long time step state transition, the calcu-
lation of the unwanted intermediate states and outputs can

be avoided. This downsampling scheme essentially down-
samples the output instead of the input and the accuracy is
much better than the first direct approach. However, the
efficiency gain achieved by the second method is less than
that by the first method. Compare the FLOPS for the direct
downsampling (13) and those of the second method (14):

24+m+p)xnsxn

FLOPS =2
OPS X DSE ,

13)

(24 DSF xm+p) xns xn
DSF '

Here DSF > 1 is the downsampling factor. The meanings
of other parameters in (13) and (14) are referred back to
(4). In conclusion, the second method is more conserva-
tive. The current version of newlsim.m adopts the sec-
ond method, also referred to as lifting, if downsampling is
to be realized.

FLOPS = 2 x

(14)

3.5 Simulation, Interpolation and Superpo-
sition

With the subsystems formed and discretized, the burden on
the simulator (the actual code that computes the states and
outputs) is lighter compared to the original ODE problem
and it now becomes a much simpler problem of matrix-
vector multiplication (cf. (3)). Taking into account the spar-
sity of the A matrix, the matrix-vector multiplication (state
transition) can be realized in O(n n) (n, is the number of
state variables and n is the number of samples to be simu-
lated) FLOPS.

Interpolation is needed whenever the output is down-
sampled. Because the downsampling instants are evenly
spaced, the downsampling can be viewed as the resampling
of discrete-time signals and efficient interpolation methods
in signal processing (i.e. inserting zeros and then low-pass
filtering) can be employed. In fact, newlsim.m applies
the MATLAB command interp.m [14], which does ex-
actly this.

With the responses of the subsystems computed, it is
finally possible to form the response of the original system
due to the original input. This is allowable because of the
linearity property of LTI systems.

The commands mentioned above are very MATLAB
specific because the current version of newlsim.mis im-
plemented in MATLAB. Nevertheless, the idea to take ad-
vantage of problem specific insights and structure extends
naturally to more general platforms.

4 Simulation Results

In this section, some application examples are given to
show the potential value of the newlsim.m algorithm.
The first example computes the performance RMS values
of randomly generated stable SISO systems of different di-



mensions, n,, driven by randomly generated input signals?.
Similar to previous work by de Weck et al. [1], two meth-
ods are compared: Frequency domain method and Time
domain method. For the time domain method, the input
signal is 10° samples long and for the frequency domain
method, 10° frequency points (single sided) are computed.
The results are summarized in Table 1.

Table 1. Comparison between frequency domain and time
domain methods for randomly generated systems of differ-
ent size. N/A indicates memory saturation.

N | results ‘ freq lsim newlsim
50 Tepuls] | 0.2960 1.3750 0.6880
o 1.714E-6 | 1.722E-6 | 1.722E-6
100 Tepuls] | 0.6410 4.5310 1.0150
o 1.167E-5 | 1.187E-5 | 1.187E-5
200 Tepuls] | 2.0000 71.078 2.3900
o 1.516E-5 | 1.463E-5 | 1.463E-5
500 Tepuls] | 15.3280 N/A 15.2030
o 3.006E-5 N/A 3.061E-5
1000 Tepuls] 104.25 N/A 96.0320
o 5.452E-5 N/A 5.228E-5
1500 Tepuls] 4253 N/A 382.7
o 1.346E-5 N/A 1.334E-5
2000 Tepuls] 1046.4 N/A 934.4
o 2.869E-5 N/A 2.733E-5

In this table, n, is the number of state variables. T¢py
is the CPU time (in seconds) of each computation and o
is the RMS value of each performance output (the actual
unit is not of interest here). Methods: freq denotes the
frequency domain method, 1sim is the standard time do-
main simulation method provided by MATLAB. Finally,
newlsimis the proposed time domain simulation method.
Note that £req is the fast implementation of the frequency
domain method, see de Weck et al. [1]. Note also that the
time for newlsim includes the time to diagonalize. Since
new data is generated in each case with a different ng, the
RMS values of different n, cases differ accordingly and
should be not compared.

The main point to illustrate here is that the perfor-
mance RMS values computed by the three different meth-
ods are quite close to each other. As shown in Table 1,
time domain methods are generally not as efficient as other
methods for small systems (ns; < 100). However, the sit-
uation changes when systems get larger (ns > 500). The
reason for this trend is that size-independent overhead of

2The test machine is a Pentium 4 PC with a 1.5GHz CPU and 128MB
RAM. Any other computations in this report were performed on the same
machine

the time domain method is more significant in small sys-
tem cases. It should also be noted that the computation time
of the frequency domain and time domain methods varies
with the number of samples evaluated. The reason why the
results from 1sim are unavailable (N/A) is that the com-
puter ran out of memory, which means that 1sim is not
very suited for large-order systems simulation. The above
example shows that newlsim can achieve efficiency sim-
ilar to the fast implementations of other methods (e.g. fre-
quency domain) with acceptable accuracy when computing
RMS values.

Computing output RMS values does not fully exem-
plify the advantage of newlsim. A time domain simula-
tion scheme should be compared with another time domain
simulation scheme. Therefore the MATLAB simulator,
lsim.m, is chosen as a reference in the following exam-
ple. In the example, a number of randomly generated sys-
tems with different sizes are simulated in the time domain
with 1sim.m and newlsim.m. The computation time of
each simulation is given in Figure 4. The time responses of

CPU time Tcpu [sec]

Figure 4. Logarithmic plot of CPU times by lsim.m
and newlsim.m versus number of state variables. Circle:
lsim.m time. Triangle: newlsim.m time. Maximum
savings factor Tysim /Thewisim = 50. Crossover at around
ns = 12 state variables.

a sample system by 1sim.m and newlsim.m are shown
in Figure 5. The example shows that newlsim.mis more
efficient than 1 sim.m, while the error is insignificant.

S Summary

Time domain simulation is an important technique for mul-
tidisciplinary design, analysis and optimization of dynamic
systems. Unfortunately, as model fidelity and size get
large one experiences excessive computation times and
memory saturation problems. In this paper, the simula-
tion scheme, newlsim.m, based on a block diagonaliza-
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Figure 5. Time responses for a ng = 200 state sys-
tem by 1sim.m - Ty, = 71.1 [sec] - and newlsim.m
Tepu = 2.4 [sec]. Both the system and the external input
are randomly generated.

tion pre-processing, is presented in response to this chal-
lenge. The targeted systems are large-order, diagonaliz-
able continuous-time LTI systems. It has been found that
diagonalization provides three benefits (dynamics decou-
pling, fast discretization and multiple sampling rates) that
facilitate the simulation. In conjunction with the block
diagonalization structure of the resultant A matrix, it has
been shown that a sparse matrix recognizable state transi-
tion must be employed in order to achieve the O(n4n) state
transition by taking advantage of the resultant sparsity.

Recommendations for future work include extensions
of the algorithm to time-varying and weakly non-linear sys-
tems as well implementation of distributed computation of
the subsystem responses on parallel computers.
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