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Abstract This article introduces variable chromosome
lengths (VCL) in the context of a genetic algorithm (GA).
This concept is applied to structural topology optimiza-
tion but is also suitable to a broader class of design prob-
lems. In traditional genetic algorithms, the chromosome
length is determined a priori when the phenotype is en-
coded into the corresponding genotype. Subsequently, the
chromosome length does not change. This approach does
not effectively solve problems with large numbers of design
variables in complex design spaces such as those encoun-
tered in structural topology optimization. We propose an
alternative approach based on a progressive refinement strat-
egy, where a GA starts with a short chromosome and first
finds an ‘optimum’ solution in the simple design space. The
‘optimum’ solutions are then transferred to the following
stages with longer chromosomes, while maintaining diver-
sity in the population. Progressively refined solutions are
obtained in subsequent stages. A strain energy filter is used
in order to filter out inefficiently used design cells such as
protrusions or isolated islands. The variable chromosome
length genetic algorithm (VCL-GA) is applied to two struc-
tural topology optimization problems: a short cantilever and
a bridge problem. The performance of the method is com-
pared to a brute-force approach GA, which operates ab initio
at the highest level of resolution.

Keywords Consanguineous - Genetic algorithms - Multi-
stage search - Progressive refinement - Structural topology
optimization - Variable chromosome length
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1 Introduction

Genetic algorithms (GA) have gained increasing popularity
in design optimization, operations research, and for general
combinatorial search problems (Holland 1975; Goldberg
1989). A key operator is the encoding step which translates
the design variables from the phenotypic space to the geno-
typic space, resulting — for example — in a binary, real, or
hexadecimal chromosome. The length of the chromosome,
i.e. the number of alleles, in the genotype space is a surro-
gate for the amount of information describing an artifact in
the phenotype space. Figure 1 shows examples of both the
phenotype and genotype (chromosomes) of two hypothetical
designs.

The chromosome length, L, in units of bits is a func-
tion of the number of design variables, x; € R, where
i=1,2,...,n, the resolution level of each variable, Ax;,
as well as the dimensionality, d, of the encoding base. For
binary encoding we set d = 2. One can then estimate the
chromosome length as:

L= fn, Axi.d)=Y (m <W>/lnd—‘ (1)

i=1

where x; yp and x; 1 p are the upper and lower bounds on
the i-th design variable, respectively, and [ ] is the ceiling
function (rounding to the next largest integer).
Traditionally, in genetic design optimization the chro-
mosome length is fixed a priori and it cannot change in
subsequent generations. Evolution in this sense is under-
stood as the process of approaching an optimal instantiation
of alleles given a constant phenotype-genotype mapping and
a fixed chromosome length. We suggest that this traditional
approach has some disadvantages when dealing with com-
plex design problems. First, the best achievable fitness is
inherently limited by the chromosome length. Hence, the
fitness asymptote that is typically observed in genetic opti-
mization is as much a result of constraints as of the number
of design variables and their resolutions. Second, the prob-
lem is that we do not a priori know how much design free-
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Fig.1 Examples of designs in the phenotype and corresponding chro-
mosomes in the genotype domain

dom is required and consequently how long chromosomes
should be. If short chromosomes are used, one may not ob-
tain good solutions due to the lack of design freedom. On
the other hand, if chromosome length is excessive for a par-
ticular problem, it will cause a high computational burden
without much performance benefit.

This article presents the development of an effective ge-
netic algorithm that can change the chromosome length by
implementing the design principle “from coarse to fine”,
otherwise referred to as progressive refinement. We hypothe-
size that significant fitness improvements can be achieved by
gradually increasing chromosome length. We will also show
that increasing the design freedom gradually by extending
chromosome lengths in stages allows for the reduction of
computational costs for complex problems with many de-
sign variables. The increase in chromosome length can be
achieved either by an increase in the resolution of existing
design variables or by the addition of new design variables
during encoding.

1.1 Literature review

We will first review the general literature on structural top-
ology optimization. This will be followed by a focused dis-
cussion of previous work in the area of variable bit-string
genetic algorithms in the context of structural optimization.
Michell (1904) first studied structural topology optimization
and obtained an analytical solution, called Michell trusses,
which have an infinite number of truss members. For struc-
tural shape optimization, Cea (1981), Zolésio (1981), Rous-
selet (1981) and Haug et al. (1986) developed the theory
for analytical sensitivity analysis based on the continuum
approach. Haftka and Grandhi (1986) and Kwak (1994)
reviewed structural optimization methods and shape sensi-
tivity analysis. Bendsge and Kikuchi (1988) developed the
homogenization method for topology optimization.

The evolutionary structural optimization method, in
which the von Mises stress was adopted as the measure
of performance of each cell in a structural member, was
studied by Xie and Steven (1993) and Guan et al. (2003).
Later the principal stress-based method was developed to
deal with tension-dominated or compression-dominated
material. Maute and Ramm (1995) proposed an adaptive

topology and shape optimization method. They performed
shape optimization and topology optimization separately
and mapped the results to each other. DeRose and Diaz
(2000) developed a meshless, wavelet-based layout opti-
mization method. In order to overcome the problems of
mesh degradation in convergence for large-scale layout
optimization problems, a fictitious domain and a wavelet-
Galerkin technique were used. Kim and Yoon (2000) pro-
posed a multi-resolution topology optimization based on
a multi-scale wavelet-Galerkin technique, and later, an adap-
tive multi-scale, wavelet-Galerkin method was developed by
Diaz (1999), Kim et al. (2003).

Kim and Kwak (2002) proposed a generalized topology
optimization formulation where the design domain grows
in order to obtain better solutions that cannot be obtained
by conventional methods. Diaz and Bendsge (1992) dealt
with problems with multiple loading conditions, and Min
et al. (2000) studied multi-objective topology optimization
considering static compliance and eigenvalues. Extensive
reviews of topology optimization can also be found in Bend-
sge (1995), Kirsch (1989) and Rozvany et al. (1995). More
recent reviews can be found in Eschenauer and Olhoff
(2001), Kim et al. (2002) and Mackerle (2003).

The drawbacks of gradient-based approaches or optimal-
ity criteria methods are that (1) they may converge to a local
optimum and that (2) often intermediate densities are ob-
tained, which are not physically meaningful. Genetic algo-
rithms can remedy these problems effectively, albeit at addi-
tional computational expense. GAs explore the entire design
space and are less likely to get trapped in local minima, pro-
vided that sufficiently large initial populations and mutation
rates are used. Moreover, it is possible to have only binary
values of density, ON (= 1) or OFF (=0), at each cell.
Chapman et al. (1994) used GAs for continuum topology
optimization with domain refinement. However, the chromo-
some length did not change in their study. In order to create
diversity, a high mutation rate was used. This work has been
extended to several types of fitness functions (Chapman and
Jakiela 1996; Jakiela et al. 2000).

Lin and Hajela (1993, 1994) as well as Hajela and
Lee (1995) used genetic algorithms for large-scale prob-
lems and truss topology optimization problems. Ryoo and
Hajela (2004) also developed a genetic algorithm for top-
ology optimization that handles variable string lengths. This
work allows crossover between chromosomes with differ-
ent lengths. While Ryoo and Hajela also implemented an
efficient micro GA technique in their context, they did not
actively control the chromosome length in order to achieve
progressive refinement. In Hajela’s work, multiple chromo-
some lengths exist in each generation to allow crossover
between chromosomes with different lengths, but the num-
ber of different chromosome lengths remains the same from
the beginning until the end. While Hajela’s method was ap-
plied to a truss structure and composite panel, the VCL
GA presented here is applied to continuum structures with
a large numbers of cells. Todoroki and Haftka (1997) come
to a similar conclusion as we do in their development of
a two-stage ‘consanguineous’ genetic algorithm. They ap-
plied their work to the problem of optimizing the stack-
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ing sequence of a multi-layered composite material and
found significant improvement in the GA’s reliability when
a coarse representation of the stacking sequence was opti-
mized first and subsequently used to create the initial popu-
lation for a second, finer stage. However, they restricted their
work to two stages and the stacking problem.

The contribution of our work is threefold. First, we
combine the concepts of variable chromosome lengths and
multi-stage search to achieve progressive refinement. We
demonstrate the superiority of this strategy compared to
a ‘brute-force’ search starting from a finely resolved, but
random initial population. Second, we demonstrate that the
multi-stage approach also promotes the use of constraint re-
laxation and imposition during various stages of the search
process. Third, we develop the concept of seeding the design
spaces of finer resolution with mutated best designs from
design spaces of coarser resolution.

1.2 Motivation

We observed that the solutions obtained by the GA topology
optimization method developed by Chapman et al. (1994)
were quite noisy. This is primarily caused by the combinato-
rial size of the search space with many design variables and
the difficulty of filtering out bad designs. In addition, it was
not possible to impose mass constraints to the optimization
problem as formulated by Chapman et al. (1994).

The design space in topology optimization is typic-
ally very large, as can be seen in their work. Hence, the
GA requires large population sizes and long computing
times. For example, the combinatorial number of design
choices is 2640 ~ 4.6 x 10'°% or larger for a simple two-
dimensional cantilever optimization problem (32 x 20 cells).
Among the hypothetical design choices, only a very small
fraction (< 5%) is physically meaningful, and it is not ef-
ficient to explore the entire design space. One of the main
difficulties is producing new designs that are meaningful and
that feature no disconnected material regions or load paths.

In this paper, we first develop a variable chromosome
length GA using a multi-stage search strategy. This reduces
the size of the search space for exploration of problems
with many design variables. It also increases the likelihood
of approaching the global optimum by gradually refining
the design space. This procedure allows a gradual imposi-
tion of mass constraints. Second, we adopt strain energy
cell ranking as a measure for filtering out inferior designs.
During the multi-stage procedure a non-dominated (approx-
imate Pareto) front is formed, revealing the tradeoff between
structural mass and compliance.

2 Variable chromosome length genetic algorithm

The overall procedure for topology design optimization
using the variable chromosome length genetic algorithm
(VCL-GA) is shown in Fig. 2. The inner loop represents the
typical topology optimization by GA. Strain energy ranking
is used to ensure the connectivity of structural elements and
to specify the mass constraint (Sect. 3). Optimization starts

Random generation

Initial population generation based on the
optimum of the previous stage

|
y

Calculate the strain energy at each element

Determine the ranking according to the strain
energy

¥

Delete cell whose strain energy is the lowest.

Next generation
Next stage

Repeat until the mass constraint is satisfied

)

| Reproduction & Crossover & Mutation

<t
Y &
Increase the
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| Obtain the best solution of the stage

Converge?
Y

Fig.2 Flow diagram of variable length chromosome genetic algo-
rithm

from a short chromosome length, and when it converges at
one stage, it transitions to the next stage featuring longer
chromosomes or higher refinement.

Convergence within the inner loop is achieved when the
rate of progress from one generation to the next, as measured
by the average population fitness, falls below a numerical
tolerance. Convergence of the outer loop is a more diffi-
cult question since this depends on the desirable resolution
of the design. We use both the final mass constraint and
a maximum chromosome length as termination criteria for
the outer loop.

An example of topology optimization is shown in Fig. 3.
We consider a short cantilever whose left side is clamped
with a concentrated load applied at the mid-point of the right
side. The design domain is discretized into rectangular cells.
The normalized density of each cell becomes a design vari-
able. Binary encoding is used and the density is either zero

Design
domain

SOANNSNANNANN

Yp

Fig.3 Short cantilever problem
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(void) or one (solid), which leads to a binary 0-1 choice for
each cell.

In the computational implementation of this problem, the
elasticity of a void cell is set to a very low value. The ob-
jective function to be minimized is the compliance of the
structure. The optimization problem statement is

Minimize / FiZldQ,
2
Subject to /,0 dR2 < My,

2
O<p=1l 2

where F' is i-th component of force vector F, 7' is i-th
component of displacement vector z, §2 is the design do-
main, p is the normalized density of each cell, and M is the
maximum allowable mass which is often expressed as a per-

Optimum design of Stage 1

centage of the design domain volume. The design variables
in this optimization are the densities of the cells.

In the proposed adaptive genetic algorithm, the design
domain is initially discretized into coarse design cells, which
are represented by short chromosomes in the early stages
of design. The optimal solution of this stage is transferred
to the next stage that has more refined design cells and
therefore longer chromosomes. In this transition, the opti-
mal solution is used to generate the initial population of the
next stage. Some individuals of the next population are ex-
act copies of the previous-stage optimum (elitism), and other
members of the population are mutated variants stemming
from the optimum. This seeding of the initial populations
in finer stages is the main mechanism by which informa-
tion is transferred between stages. This allows us to keep the
number of generations and population sizes small compared
to a brute-force approach, in which topology optimization
would start at the finest resolution level with a random ini-
tial population. This brute-force approach is later used as
a baseline for comparison (Fig. 12).

When making the mutants, the density of each cell is de-
termined by the following equation:

plljew — round ((X _'_‘Bpllzrevious 4 y- F) (3)
where ,o}jew is the density of the k-th cell in the new stage,

Previous

Py is the density of the k-th cell in the previous stage,
I' is a uniformly distributed random variable on the interval
[0,1], and “round( )” is the function that rounds off to the
nearest integer. In this paper, the values of the parameters, o,
B, and y are set 0.1, 0.3 and 0.5, respectively.

With these values, the probability of retaining the dens-
ity of the previous stage in an individual cell is 80%, and the
probability of reversing it is 20%. By adjusting the three pa-

Initial population of stage 2

Identical
design in

Designs with no load paths

a=0.1, =03, y=05
Probability of retaining the density of each cell: 80%

Probability of reversing the density of each cell: 20%

refined design
space

Fig.5 Initial population of the second stage.
Six designs do not have closed-load paths
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rameters, the degree of diversity generated can be controlled,
depending on the characteristics of the problem. Figure 4
shows two sample cases for generating mutants, in which
17.5% and 32.5% of the cells are reversed, respectively. This
mechanism makes it possible to transfer a configuration to
a stage with a different chromosome length, while maintain-
ing diversity in the population.

Figure 5 represents an example of an optimum of the first
stage and 50 individuals of the initial population of the sec-
ond stage generated with this scheme. The optimum design
in the first stage is transferred to the second stage by elitism
and by the mutation equation (3). The first 13 designs are ex-
actly the same, but they are mapped to a more-refined design
domain. Another feature of this operation is that designs
with open load paths may be generated. In this example,
six designs do not have closed load paths. They are infeasi-
ble designs because theoretically the compliance is infinite.
They serve only as diversity-generating seeds in the process
of crossover, and later they are rejected from the population
because of their low fitness. In this algorithm, the elitism
GA replaces the worst designs with open-load paths with the
best design at the end of each generation.

3 Strain energy filter

One of the difficulties in applying GAs to structural top-
ology optimization is that noisy designs are often produced.
In particular, designs with protrusions or islands are infe-
rior solutions because these protrusions or islands contribute
very little or nothing to the strength of a structure. A tech-
nique for filtering out protrusions was considered in previ-
ous research (Chapman and Jakiela 1996). However, it was
applicable only for a protrusion with a corner point connec-
tion, and a protrusion with an edge connection or an island
was not dealt with.

In this work, we use strain energy as the contribution
measure of each cell for GA-based topology optimization:

1 1
Up= 3 / grox dI" = 3 / el Dyey dI” 4)
Iy Iy

where Uy is the strain energy in the k-th cell, I is the do-
main of the k-th cell, g; is the strain tensor of the k-th cell,

Table1 Strain energy and cell ranking (protrusion case)

Element Strain energy Ranking Feature
1 9.4419 3
2 8.0666 4
3 9.4815 2
4 4.9600 6
5 3.3997 x 10717 18 Void
6 6.1725 x 107! 12 Protrusion
7 1.2187 x 10718 24 Void
8 6.4800 x 10718 21 Void
9 2.0019 x 10~17 20 Void
10 3.8160 x 101 13 Protrusion
11 2.8523 x 10717 19 Void
12 5.0708 5
13 9.8526 1
14 2.5776 9
15 2.8597 8
16 3.7503 x 10~17 17 Void
17 6.9412 x 10717 16 Void
18 8.9555 x 10717 15 Void
19 9.5157 x 10717 14 Void
20 2.6762 x 10718 23 Void
21 47923 x 10718 22 Void
22 1.0727 11
23 1.7719 10
24 4.6901 7

oy 1s the stress tensor of the k-th cell, and Dy is the elastic-
ity tensor of the cell. In each step, the strain energy of each
cell is computed, and then the ranking of the cells in terms of
their strain energy is determined. Figure 6 demonstrates the
filtering procedure for noisy designs with protrusions and
islands in the short cantilever example. The figures in the
second column show the strain energy distribution in each
case.

Tables 1 and 2 present the strain energy values and the
ranking for each case shown in Fig. 6. The cells are num-
bered according to Fig. 7.

Void cells have strain energies that are almost zero, and
cells whose strain energies are relatively low are protrusions
or isolated islands to be deleted by the filter. This method
determines the ranking of the cells according to their strain
energy and then rejects them one by one beginning from the
last ranked until the mass constraint is met.

This scheme enables the mass constraint imposition at
an arbitrary level in any stage. However, our experience re-

T T
Original design | Strain energy | Filtered design strain
with noise 'l distribution J' energy
| | scale
I I
| | Weak
Protrusion } :
I I
| |
| (Table 1) |
T T
| |
| |
| I
Island } l Strong
l s l Fig.6 Strain energy filter for removing protru-
(Table 2) . .
| L sions and islands
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Table 2 Strain energy and cell ranking (island case)

Element Strain energy Ranking Feature
1 1.0049 x 10! 2
2 9.3191 4
3 9.784 3
4 4.9424 6
5 3.3772 x 1077 14 Void
6 1.8232 x 10717 16 Void
7 2.2150 x 10718 23 Void
8 1.2859 x 107 12 Protrusion
9 1.2928 x 10~17 19 Void
10 1.4381 x 10717 18 Void
11 1.5363 x 10~17 17 Void
12 49748 5
13 1.0109 x 10! 1
14 4.4807 8
15 2.9549 9
16 2.8325x 10717 15 Void
17 7.1200 x 1018 21 Void
18 6.0905 x 1076 13 Island
19 8.8569 x 1018 20 Void
20 1.5533x 10718 24 Void
21 3.7276 x 10718 22 Void
22 1.1345 11
23 1.8450 10
24 4.6690 7

Fig.7 Cell element numbering for strain energy filtering

vealed that the optimization method performs better when
the mass constraint is gradually tightened with increasing
refinement. The first reason is that a tight mass constraint
produces slender, fine structures, which are difficult to rep-
resent by coarse cells. Therefore, starting the optimization
with a tight mass constraint from the beginning is not a good
strategy. Second, massive structures generated by a relaxed
mass constraint are relatively simple to optimize initially,
because fewer design degrees of freedom exist.

4 Numerical examples
4.1 Short cantilever optimized by VCL-GA

Figure 8 shows the results obtained by the VCL-GA for the
case of a short cantilever beam. The design evolution starts
with a domain refinement of 4 x 5 and gradually refines each
cell in one or two dimensions (bisection). The final domain
is discretized into 32 x 20 cells. The maximum allowable
mass (2), is designated as My in Fig. 8. Only half of the do-
main is modelled and optimized since symmetry about the
horizontal axis is enforced. A population size of 50 is used

for the first three stages, while the population size of the
last stage is 150. The mutation rate is 1% and the crossover
probability is set to 100%. Because good solutions are often
destroyed by mating with bad designs, elitism is used where
the best individual replaces the worst 30% of individuals
in each generation. The mass constraint gradually decreases
from 90% mass of the total design domain to 25%. IMOS
(Milman et al. 1995) is used for the finite element analysis.
It is well known that checkerboards can be restricted to some
extent if quadratic finite elements are used. Because IMOS
does not have quadratic elements, four linear elements are
used to represent one design cell.

The first stage starts with a randomly generated popula-
tion. The best solution of each stage is then transferred to the
following generations by means of the diversity-generating
scheme in (3). From the second generation on, the initial
population designs are similar, because they are generated
based on the best solution from the previous stage. Because
the allowable mass decreases gradually, the structure be-
comes more slender with each refinement stage.

Figure 9 shows the chromosome length change for each
stage. The length in the first stage is 20, and it increases to
640 in the last stage (more information is required to de-
scribe the more refined designs). The history of the objective
function, compliance, is shown in Fig. 10. The first stage and
second stage have two sub-stages each, and the third stage
and fourth stage have three sub-stages each. The compli-
ance shows a monotonous decrease in most sub-stages, but
there are a few sub-stages where compliance does not con-
verge monotonically. The overall compliance increases as
the multi-stage search progresses. This is a consequence of
the gradual imposition of the mass constraint.

Another interesting aspect is that a non-dominated front
naturally emerges from the solutions obtained during the
whole analysis. The approximate Pareto front explores the
trade-off between mass and compliance, as shown in Fig. 11.
Tightening the mass constraint does not increase the compli-
ance severely during the early stages. However, as the total
mass approaches 20%, the mass reduction is achieved by
sacrificing considerable strength. This is an indication that
most of the structure is used very efficiently at later stages of
refinement.

4.2 Short cantilever optimized by a brute-force approach

It may be argued that the same ‘optimal’ solution can be
obtained by an ordinary GA with the finest design domain
resolution and that the seemingly complicated VCL method
does not provide a measurable benefit. Figure 12 shows the
solution obtained by the brute-force approach with approxi-
mately the same computational effort. The same strain en-
ergy filter is used to mitigate against protrusions and islands.
The mass constraint is 25%, which is the same value as that
imposed in the last stage of Fig. 8. The filter does remove
some islands and protrusions, but there remain residual is-
lands and protrusions because the original solution before
filtering is very noisy. Some checkerboard patterns are also
observed. It appears that, while the solution obtained by
this brute-force approach does not have a clear structure,
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Fig.8 Full design evolution for short cantilever design optimization with VCL-GA

the variable chromosome length GA produces a cleaner so- the brute-force method and the variable chromosome length
lution with the familiar X-shaped supports being revealed GA. With similar numbers of function evaluations, the ob-
in the structure. Figure 12 compares the performance of jective function value (compliance) obtained by the variable
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chromosome length GA is lower than that resulting from
a single-stage search.
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Fig.12 Performance comparison of the brute-force method and the
variable chromosome length GA

The VCL-GA multi-stage search method has two advan-
tages over the brute-force approach. First, the brute-force
approach may not find a design as good as the variable chro-
mosome length method can, because the design space for ex-
ploration is extremely large and it is very difficult to explore
the entire design space with reasonable population sizes.
Second, the variable chromosome length method determines
rough optimum designs in the early stages when compu-
tational cost is inexpensive, and these designs are used as
starting points in the following stages. Therefore, even when
the one-time approach can find a fairly good solution, its
computational cost is likely to be more expensive than that
of the variable length approach.

4.3 Short cantilever sensitivity analysis

The previously found best solution (Fig. 8, stage 4) is ob-
tained for a specific mass reduction history and population
size. In this section, three different settings are investigated,
as shown in Fig. 13. The final mass constraint is 25%, which
is the same for all three cases. Case 2 has a different mass
reduction history compared to Case 1 for the last three sub-
stages. Cases 1 and 2 have the same design evolution until
the third stage, and in the fourth stage, they start to evolve
into different solutions. Case 2 and Case 3 have the same
mass constraint throughout the whole analysis, but the pop-
ulation size in the third stage is different. This leads to
somewhat different solutions. The final solution is therefore
dependent on the parameters chosen and the evolution path
of the variable chromosome length GA. This might be seen
as a disadvantage, but it also enables one to find several
qualitatively different topologies during the early conceptual
stage of design.

4.4 Bridge problem

In Fig. 14 a bridge problem is investigated using the VCL-
GA method. A rigid roadway is given at the bottom of the
design domain with a normalized density of unity. A uni-
formly distributed load is applied downwards underneath the
domain, and both ends of the rigid domain are clamped. The
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Case 1 Case 2 Case 3
Stage ; Stage ' Stage

1 1 1
Mass constraint 18/20 (90% 18/20 (90%) 18/20 (90%)
Population size 50 50 50
Mass constraint 16/20 (80%) 16/20 (80%) 16/20 (80%)
Population size 50 50 50

2 2 2
Mass constraint 30/40 (75%) 30/40 (75%) 30/40 (75%)
Population size 30 50 50

3 3 3

[ ]

Mass constraint/ 110/160 (69%) 110/160 (69%)
Population size 50 50 100

3 3 3
Mass constraint  90/160 (56%)
Population size 50 50 100

) 2 3 3

" .=.-l =

Mass constraint ~ 70/160 (44%)
Population size 50 100

4 3 3
Mass constraint/  260/640 (41%) 50/160 (31%) 50/160 (31%)
Population size 150 50 100

4 4 4
N N TR
}'lj.-'ass wfrsn ‘({"_m __0!(3—10 (35%) 280/640 (44%)

opulation size 150
150
4 4 4

Mass constraint  160/640 (25%) 160/640 (25%) 160/640 (25%)
Population size 150 150 150
Compliance (N-m) 2420 2690 1940

Fig. 13 Different solutions for various settings of parameters
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Design domain

Distributed loading
Fig. 14 Bridge under uniform loading

Fig.15 Design optimization of bridge with VCL-GA

domain discretization starts with 8 x 4 and is subsequently
refined to 16 x 4, 32 x 8, and 64 x 16. Symmetry is enforced
about the vertical axis. As in the previous example, 30%
elitism and a 1% mutation rate are used.

The solution history is shown in Fig. 15. The overall lay-
out is found quickly in the first stage, and in the following
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Fig.16 Compliance history of bridge optimization with VCL-GA
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Compliance (N-m)
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Fig.17 Non-dominated trade-oft between mass and compliance for
bridge optimization with VCL-GA

stages, the solution becomes progressively more refined. In
this example, some checkerboards are observed, but finally
an arch bridge is obtained. It is observed that the ends of
the arch do not meet with the ends of the rigid roadway.
This is because the rigid roadway is quite thick, and only the
middle region of the bridge needs additional support by the
arch. The compliance converges in each sub-stage (Fig. 16),
but the overall compliance increases as the stages progress
due to the gradual imposition of the mass constraint. This
gradual change in mass naturally generates a non-dominated
front that shows the trade-off between mass and compliance,
as shown in Fig. 17.

5 Conclusions and future work

A novel genetic algorithm (GA) in which the length of chro-
mosomes evolves was developed for structural topology op-
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timization. We call this method the variable chromosome
length genetic algorithm, or VCL-GA for short. The de-
sign domain is refined gradually in a multi-stage search
process. The proposed method is applied to two structural
optimization problems: a short cantilever and a bridge prob-
lem. The algorithm increases the likelihood of approaching
higher levels of fitness, allows the solution of problems with
large numbers of design variables, and broadens the notion
of design evolution to include gradually increasing levels
of complexity. The solution is compared with the one-time
brute-force approach, and it is demonstrated that the vari-
able chromosome length GA finds a better solution with less
computational cost.

The strain energy filter can be used when the objec-
tive function is compliance or displacement. If eigenvalue
problems or thermal problems are considered, a new met-
ric for filtering that identifies inefficiently used elements
for the particular discipline will be needed. As discussed
in Sect. 4.3, the final optimal solution obtained depends on
several parameters: the number of stages, the mass con-
straint imposition history, and the population size for each
stage. Of course, the usual GA parameters, such as selection
level, crossover rate, mutation rate, and maximum number
of generations or termination criteria, affect the solution as
well. Because we use the bisection method for refinement,
which divides each cell into two or four cells, the num-
ber of stages is naturally determined for a given first and
final resolution. The choice of number of sub-stages, im-
plemented for the mass constraint tightening, in each stage
is up to the user. We found that mass constraint sched-
ules with rapid tightening often produce inferior local solu-
tions.

In this work, there is only a mass constraint which is im-
posed gradually resulting in non-dominated solutions. The
mass constraint will play the same role even when there are
other constraints. Mass is closely related to the number of
solid (or void) cells in a stage, and large mass (= a small
number of void cells) in the initial stages reduces the number
of design choices and the design space becomes relatively
simple. This helps quickly finding good solutions that can
be used as seeds for subsequent stages. It would be inter-
esting to compare the results obtained here with true multi-
objective optimization using genetic algorithms (MOGA).
This is left as future work.

An adaptive chromosome length GA, in which chromo-
some length changes adaptively according to the character-
istics of a problem, will be developed as future work. This
will also allow chromosomes to contract once the design
has converged according to a certain schema. The relative
efficiency of optimization methods can be assessed using in-
formation theory (Krus and Andersson 2003). Several con-
vergence criteria for outer-loop convergence will also be
developed and tested. We acknowledge the fact that for
some problems genetic algorithms may not be the best solu-
tion and that sensitivity-based methods might be superior in
some cases. Nevertheless, the results presented here demon-
strate the promise of adaptive, variable chromosome length
GAs, particularly when implemented in a parallel computing
environment.
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