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Adaptive weighted-sum method for bi-objective optimization:
Pareto front generation�

I.Y. Kim and O.L. de Weck

Abstract This paper presents a new method that ef-
fectively determines a Pareto front for bi-objective op-
timization with potential application to multiple objec-
tives. A traditional method for multiobjective optimiza-
tion is the weighted-sum method, which seeks Pareto
optimal solutions one by one by systematically chang-
ing the weights among the objective functions. Previ-
ous research has shown that this method often produces
poorly distributed solutions along a Pareto front, and
that it does not find Pareto optimal solutions in non-
convex regions. The proposed adaptive weighted sum
method focuses on unexplored regions by changing the
weights adaptively rather than by using a priori weight
selections and by specifying additional inequality con-
straints. It is demonstrated that the adaptive weighted
sum method produces well-distributed solutions, finds
Pareto optimal solutions in non-convex regions, and neg-
lects non-Pareto optimal solutions. This last point can
be a potential liability of Normal Boundary Intersection,
an otherwise successful multiobjective method, which is
mainly caused by its reliance on equality constraints. The
promise of this robust algorithm is demonstrated with
two numerical examples and a simple structural opti-
mization problem.
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1
Introduction

This section provides a brief review of multi-objective
optimization and discusses the shortcomings of the
weighted-sum method which is still – and may always
remain – the most frequently used technique.

1.1
Multiobjective optimization

Engineering design often deals with multiple, possibly
conflicting, objective functions or design criteria. For ex-
ample, one may want to maximize the performance of
a system while minimizing its cost. Such design problems
are the subject of multiobjective optimization and can
generally be formulated as a Multiple Objective Nonlin-
ear Program (MONLP) of the form:

min J (x,p)

s.t. g(x,p)≤ 0

h(x,p) = 0

xi,LB ≤ xi ≤ xi,UB (i= 1, . . . , n)

J= [J1 (x) · · ·Jz (x)]
T

x= [x1 · · ·xi · · ·xn]
T

g= [g1(x) · · · gm1(x)]
T

h= [h1(x) · · · hm2(x)]
T (1)

where J = [J1, J2, . . . , Jz ]
T is an objective function vec-

tor, x is a design vector, p is a vector of fixed parameters,
g is an inequality constraint vector, and h is an equal-
ity constraint vector. In this case there are z objectives, n
design variables,m1 inequality constraints andm2 equal-
ity constraints. Additionally, the design variables may be
bounded by side constraints assuming that xi ∈ R.
The most popular way of solving the MONLP or vec-

tor minimization problem is to reduce it to a scalar prob-
lem of the form:
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min J̃ =
z∑
i=1

λi

sfi
Ji (2)

where J̃ is an aggregated, weighted sum of the individual
objectives and sfi and λi are the scale factor and weight
of the i-th objective, respectively. Typically, weights are
chosen such that

∑z
i=1 λi = 1 and λi ≥ 0 leading to a con-

vex combination of objectives. The special case of two
objectives is the focus of this paper.

1.2
Literature review

After Pareto (1906) introduced the concept of non-
inferior solutions in the context of economics, Stadler
(1979, 1984) began to apply the notion of Pareto optimal-
ity to the fields of engineering and science in the 1970s.
The applications of multiobjective optimization in engin-
eering design grew over the following decades. One of the
most widely used methods for solving multiobjective op-
timization problems is to transform a multiple objective
(vector) problem into a series of single-objective (scalar)
problems, see (2). When an appropriate set of solutions
is obtained by the single-objective optimizations, the so-
lutions can approximate a Pareto front (z = 2) or Pareto
surface (z > 2) in objective space. The weighted-sum
method is a traditional, popular method that paramet-
rically changes the weights among objective functions to
obtain the Pareto front. Initial work on the weighted-
sum method can be found in Zadeh (1963) with many
subsequent applications and citations. Koski (1988), for
example, studied the weighted summethod in the context
of multicriteria truss optimization. Multiobjective opti-
mization applications on aircraft control systems design
can be found in Schy and Giesy (1988).
Marglin (1967) developed the ε-constraint method,

where one individual objective function is minimized
with an upper level constraint imposed on the other ob-
jective functions (Steuer 1986). Lin (1976) developed
the equality constraint method that minimizes objective
functions one by one by simultaneously specifying equal-
ity constraints on the other objective functions. Heuristic
methods are also used for multiobjective optimization;
Suppapitnarm et al. (1999) applied simulated annealing
to multiobjective optimization, and multiobjective opti-
mization by Genetic Algorithms can be found in Gold-
berg (1989), Fonseca and Fleming (1995), and Tamaki
et al. (1996) among others. Messac and Mattson (2002)
used physical programming for generating a Pareto front,
and they (2003) introduced the concept of s-Pareto fronts
for concept selection. Messac and Mattson (2002, 2004)
also developed the normal constraint method, which gen-
erates evenly distributed Pareto solutions along the entire
Pareto front for n-dimensional problems. Das and Den-
nis (1998) proposed the Normal Boundary Intersection
(NBI) method where a series of single-objective optimiza-
tions is solved on normal lines to the utopia line. The

NBI method gives fairly uniform solutions and can treat
problems with non-convex regions on the Pareto front.
It achieves this by imposing equality constraints along
equally spaced lines or hyperplanes in the multidimen-
sional case.
As discussed in a number of studies by Messac and

Mattson (2002), Das and Dennis (1997), and Koski
(1985), the traditional weighted-sum approach has two
main drawbacks. First, an even distribution of the weights
among objective functions does not always result in an
even distribution of solutions on the Pareto front. Indeed,
in real applications, solutions quite often appear only in
some parts of the Pareto front, while no solutions are ob-
tained in other parts. Second, the weighted-sum approach
cannot find solutions on non-convex parts of the Pareto
front, although such non-dominated solutions (Pareto op-
timal solutions) do often exist. This is due to the fact
that the weighted-sum method is often implemented as
a convex combination of objectives, where the sum of all
weights is constant and negative weights are not allowed.
Increasing the number of weights by reducing the step
size does not solve this problem. Eventually, this may
result in selection of an inferior solution by missing im-
portant solutions in the non-convex regions.
Despite the drawbacks aforementioned, it is true that

the weighted-sum approach is extensively used because it
is simple to understand and easy to implement. Also, the
weight itself reflects the relative importance (preference)
among the objective functions under consideration.
We propose a new adaptive method, based on the

weighted-sum approach, for multiobjective optimization.
In this approach, the weights are not predetermined,
but they evolve according to the nature of the Pareto
front of the problem. Starting from a large weight step
size, ∆λ, a coarse representation of the solution is gen-
erated and regions where more refinement is needed are
identified. The specific regions are then designated as
a feasible region for sub-optimization by imposing in-
equality constraints in the objective space. The typical
weighted-sum multiobjective optimization is performed
in these regions. When all the regions of the Pareto front
reach a pre-specified resolution, the algorithm termi-
nates. The methodology is formulated and demonstrated
for bi-objective optimization where there are two objec-
tive functions. The potential for extension to a greater
number of objectives is briefly discussed.

2
Adaptive weighted-sum method: overview

2.1
Fundamental concepts

Figure 1 shows the concept of the adaptive weighted-sum
(AWS) method, compared with the typical weighted-sum
approach. The true Pareto front is represented by a solid
line, and the solution points obtained by multiobjective
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Fig. 1 (a) Weighted-sum method, (b) Initial step of AWS,
(c) AWS constraint imposition, (d) Pareto front refinement

optimization are denoted by round black dots. In this ex-
ample, the whole Pareto line is composed of two parts:
a relatively flat convex region and a distinctly concave
region. A typical way to solve the problem is to use the
weighted-sum method, which is stated as:

min λ
J1(x)

sf1,0(x)
+ (1−λ)

J2(x)

sf2,0(x)

s.t. h(x) = 0 and g(x)≤ 0

and λ ∈ [0, 1] (3)

where J1 and J2 are two objective functions to be mutu-
ally minimized, sf1,0 and sf2,0 are normalization factors
for J1 and J2, respectively, and λ is the weighting factor
which reveals the relative importance between J1 and J2.
When the typical weighted-sum method is used, as

shown in Fig. 1(a), most solutions concentrate near the
anchor points and the inflection point, and no solutions
are obtained in the concave region. The figure illustrates
the two typical drawbacks of the weighted-sum method:

– Generally, the solutions are not uniformly distributed.
– The weighted-sum method cannot find solutions that
lie in non-convex regions of the Pareto front. Increas-
ing the number of steps of the weighting factor does
not resolve this problem.

These are the main reasons that restrict the usage of
the weighted-sum method despite its simplicity and in-
sight into the relative importance among objective func-
tions. The ill-behaved nature of the method is frequently
observed in realistic design optimization problems.

Figure 1(b)–(d) illustrates the fundamental concepts
and overall procedure of the proposed adaptive weighted-
sum method. It starts from a small number of divisions
with a large step size of the weighting factor, λ, using
the traditional weighted-sum method (Fig. 1(b)). By cal-
culating the distances between neighboring solutions on
the front in objective space, regions for further refine-
ment are identified. Only these regions then become the
feasible regions for optimization by imposing additional
inequality constraints in the objective space (Fig. 1(c)).
Each region has two additional constraints that are paral-
lel to each of the objective function axes. The constraints
are constructed such that their distances from the so-
lutions are δ1 and δ2 in the inward direction of J1 and
J2, respectively. A sub-optimization is solved in each of
the regions using the traditional weighted-sum technique,
and a new solution set is identified. Again, regions for fur-
ther refinement are selected by computing the distances
between two adjacent solutions (Fig. 1(d)). The proced-
ure is repeated until a termination criterion is met. The
maximum segment length along the entire Pareto front is
one measure for the convergence. The detailed procedure
is elaborated in the following section.

2.2
Detailed discussion

The adaptive weighted-sum method can effectively solve
multiobjective optimization problems whose Pareto front
has (i) convex regions with non-uniform curvature, (ii)
non-convex regions of non-dominated solutions, and (iii)
non-convex regions of dominated solutions. First, for
a multiobjective optimization problem of non-uniform
curvature Pareto front, most solutions obtained with the
usual weighted-sum method are concentrated in the re-
gion whose curvature is relatively high. Figure 2(a) shows
that very few solutions are obtained in the flat region
when the usual weighted-sum method is used. Because
the segment length between P111 and P222 is larger than
others, a feasible region for further refinement is es-
tablished in the segment, in the adaptive weighted-sum
method. An optimization is then conducted only within
this region, and more Pareto optimal solutions are ob-

Fig. 2 Adaptive weighted-sum method for convex Pareto
front: (a) solutions with weighted-sum method only, (b) addi-
tional refinement with AWS
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tained there. This makes the distribution of solutions
more uniform, as shown in Fig. 2(b).
In the second case of a non-convex region contain-

ing non-dominated solutions, there exist Pareto opti-
mal solutions in the region that the usual weighted-
sum approach cannot reach. In Fig. 3(a), no solutions
are obtained between P1 and P222 if the usual weighted-
sum method is used. On the other hand, the adaptive
weighted-sum method finds solutions because the opti-
mization is conducted only in the non-convex region, as
shown in Fig. 3(b). The region is explored by imposing
inequality constraints that are offset from P111 and P222 by
distances δ1 and δ2 in the direction of J1 and J2, respec-
tively. In this case, only two solutions are obtained at
the points where the Pareto front and the inequality con-
straints intersect.
In the third case of concave regions containing only

dominated solutions, there are no Pareto optimal solu-
tions in the region betweenP1 andP2, as shown in Fig. 4.
No solution must be identified between P1 and P2 in this
case. Indeed, the adaptive weighted-summethod does not
return solutions in this case, because there is no feasible
region within the imposed constraints, whereas the nor-
mal boundary intersection (NBI) method typically pro-
duces dominated solutions in this case.
In summary, the adaptive weighted-sum method pro-

duces evenly distributed solutions, finds Pareto optimal
solutions in non-convex regions, and neglects non-Pareto
optimal solutions in non-convex regions.

Fig. 3 Adaptive weighted-sum method for non-convex
Pareto regions of non-dominated solutions: (a) original solu-
tions, (b) additional solutions obtained with AWS

Fig. 4 Adaptive weighted-sum method for non-convex
Pareto regions of dominated solutions: (a) original solutions,
(b) no additional solutions found

3
Adaptive weighted-sum method: procedures

In this section, the detailed procedure for implementing
the adaptive weighted-sum method is described. The de-
scription is valid for the bi-objective case.
Step 1: Normalize the objective functions in the ob-

jective space. When xi∗ is the optimal solution vector
for the single-objective optimization of Ji, the normalized
objective function J̄i is obtained as,

J̄i =
Ji−JUi
JNi −J

U
i

(4)

where JU is the utopia point, defined as

JU =
[
J1
(
x1∗
)
J2
(
x2∗
)]
, (5)

and JN is the nadir point, defined as

JNi =max
[
Ji
(
x1∗
)
Ji
(
x2∗
)]
. (6)

Step 2: Perform multiobjective optimization using
the usual weighted-sum approach with a small number of
divisions, ninitial. The uniform step size of the weighting
factor λ is determined by the number of divisions:

∆λ=
1

ninitial
(7)

By using a large step size of the weighting factor, ∆λ,
a small number of solutions is obtained.
Step 3:Compute the lengths of the segments between

all the neighboring solutions. Delete nearly overlapping
solutions. It occurs often that several nearly identical so-
lutions are obtained when the weighted-sum method is
used. The Euclidian distances between these solutions are
nearly zero, and among these, only one solution is needed
to represent the Pareto front. In the computer imple-
mentation, if the distance among solutions is less than
a prescribed distance (ε), then all solutions except one are
deleted.
Step 4: Determine the number of further refinements

in each of the regions. The longer the segment is, the more
it needs to be refined. The refinement is determined based
on the relative length of the segment:

ni = round

(
C
li

lavg

)
for the ith segment (8)

where ni is the number of further refinements for the ith
segment, li is the length of the ith segment, lavg is the
average length of all the segments, and C is a constant
of the algorithm. The function ‘round ’ rounds off to the
nearest integer.
Step 5: If ni is less than or equal to one, no further re-

finement is conducted in the segment. For other segments
whose number of further refinements is greater than one,
go to the following step.
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Fig. 5 Determining the offset distances, δ1 and δ2, based on δJ

Step 6: Determine the offset distances from the two
end points of each segment. First, a piecewise linearized
secant line is made by connecting the end points, P1 and
P2, see Fig. 5(a). Then, the user selects the offset dis-
tance along the piecewise linearized Pareto front, δJ . The
distance δJ determines the final density of the Pareto
solution distribution, because it becomes the maximum
segment length during the last phase of the algorithm.
In order to find the offset distances parallel to the ob-

jective axes, the angle θ in Fig. 5(b) is computed as

θ = tan−1
(
−
P y1 −P

y
2

P x1 −P
x
2

)
(9)

where P xi and P
y
i are the x (J1) and y (J2) positions of the

end points, P1 and P222, respectively.
Then, δ1 and δ2 are determined with δJ and θ as fol-

lows,

δ1 = δJ cos θ and δ2 = δJ sin θ (10)

Step 7: Impose additional inequality constraints and
conduct sub-optimization with the weighted-summethod
in each of the feasible regions. As shown in Fig. 5(b), the
feasible region is offset fromP1 andPPP222 by the distance of
δ1 and δ2 in the direction of J1 and J2. Performing sub-
optimization in this region, the problem is stated as

min λ
J1(x)

sf1,0(x)
+ (1−λ)

J2(x)

sf2,0(x)

s.t.

J1(x)≤ P
x
1 − δ1

J2(x)≤ P
y
2 − δ2

h(x) = 0 , g(x)≤ 0 , λ ∈ [0, 1] (11)

where δ1 and δ2 are the offset distances obtained in
Step 6, P xi and P

y
i are the x and y position of the end

points, and sf1,0 and sf2,0 are scaling factors. The uni-
form step size of the weighting factor λi for each feasible
region is determined by the number of refinements, ni,
obtained in Step 4:

∆λi =
1

ni
(12)

The segments in which no converged optimum solutions
are obtained are removed from the segment set for further
refinement, because in this case these regions are non-
convex and do not contain Pareto optimal solutions.
Step 8: Compute the length of the segments be-

tween all the neighboring solutions. Delete nearly over-
lapping solutions. If all the segment lengths are less than
a prescribed maximum length, δJ , terminate the opti-
mization procedure. If there are segments whose lengths
are greater than the maximum length, go to Step 4 and
iterate.

4
Numerical examples

Three numerical examples are presented in this section
to demonstrate the performance of the adaptive weighted
sum method. All optimizations were performed with the
the Sequential Quadratic Programming (SQP) method in
MATLAB.

4.1
Example 1: convex Pareto front

The first example is a multiobjective optimization prob-
lem that was investigated in the context of the NBI
method development by Das and Dennis (1998). The
problem statement is

minimize

[
J1 = x

2
1+x

2
2+x

2
3+x

2
4+x

2
5

J2 = 3x1+2x2−
x3
3 +0.01(x4−x5)

3

]

subject to x1+2x2−x3−0.5x4+x5 = 2 ,

4x1−2x2+0.8x3+0.6x4+0.5x
2
5 = 0 ,

x21+x
2
2+x

2
3+x

2
4+x

2
5 ≤ 10 (13)

The Pareto front of this problem is convex, but the cur-
vature is not uniform. Figure 6(a) shows the optimal so-
lution obtained by the usual weighted-sum method. The
number of solutions on the Pareto front is 17, but most
of the solutions are concentrated in the left upper re-
gion. The NBI method gives a very good approximation
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Fig. 6 Results for multiobjective optimization with a convex
Pareto front (Example 1)

of the Pareto front by obtaining evenly distributed solu-
tions, as shown in Fig. 6(b). The adaptive weighted-sum
method converges in five iterations, obtaining fairly well-
distributed solutions (Fig. 6(c)).
The offset distance selected on the Pareto front, δJ ,

is 0.1; and the offset distances, δ1 and δ2, are calculated
by (10). Table 1 provides a quantitative comparison of so-
lutions in terms of computational cost (CPU time) and
variance of segment lengths. The weighted-sum method,
the NBI method, and the adaptive-weighed sum (AWS)
method are compared for the case of 17 solutions on the
Pareto front.
Although the weighted-sum method is fast, its vari-

ance is very large. The NBI method has better perform-
ance both in terms of CPU time and secant length vari-
ance compared to the adaptive weighted-sum method in
this example. At this point it is not obvious why one
might further pursue the adaptive weighted-summethod.
It has been observed that the NBI method usually per-

Table 1 Comparison of the results for Example 1

WS NBI AWS

No. of solutions 17 17 17
CPU time (sec) 1.71 2.43 3.83

Length variance (×10−4) 266 0.23 2.3

forms better in the cases of well-conditioned multiobjec-
tive optimization problems with a convex Pareto front.
However, the uniformity of the solutions obtained by
the adaptive weighted-summethod is satisfactory accord-
ing to the maximum length criterion, and the adaptive
weighted-sum method shows better performance in more
complex problems, as demonstrated in the following ex-
ample. The relatively heavy computational cost of the
adaptive weighted-sum approach is due to additional cal-
culations, such as obtaining the distances between adja-
cent solutions and selecting segments for further refine-
ment. This overhead will be less significant for large prob-
lems, where the cost of objective function evaluations typ-
ically dominates.

4.2
Example 2: non-convex Pareto front

In the previous example, the Pareto front was convex, and
the problem associated with the usual weighted-sum ap-
proach was only that the solution distribution was not
uniform. However, if the Pareto front is not convex, the
weighted-sum approach does not find concave parts, re-
gardless of step size. In this example, a multiobjective
optimization problem that has a partially non-convex
Pareto front and that is not well conditioned is consid-
ered. The problem statement is:

max [J1 J2]
T

J1 = 3 (1−x1)
2
e−x

2
1−(x2+1)

2
−10

(x1
5
−x31−x

5
2

)
×

e−x
2
1−x

2
2−3e−(x1+2)

2−x22+0.5 (2x1+x2)

J2 = 3 (1+x2)
2
e−x

2
2−(1−x1)

2
−10

(
−
x2

5
+x32+x

5
1

)
×

e−x
2
2−x

2
1−3e−(2−x2)

2−x21

subject to −3≤ xi ≤ 3 , i= 1, 2 (14)

The solutions obtained by the usual weighted-sum
method are shown in Fig. 7. This figure shows the efficient
designs in the design space on the left and the Pareto op-
timal solutions in the objective space on the right. The
entire range in the objective space is obtained by a full
combinatorial analysis. The difficulty in performing opti-
mization for this non-linear problem is that the conver-
gence to an optimal solution is highly dependent on an
initial starting point and determining the starting point
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Fig. 7 Usual weighted-sum method for multiobjective opti-
mization with a non-convex Pareto front: Example 2

is not straightforward. The solution dependence on the
initial starting point is even more severe in the case of
the NBI method and the adaptive weighted-sum method
than the usual weighted-summethod. This is because the
two methods use additional constraints and so it is diffi-
cult to find feasible regions that satisfy all the constraints.
In the usual weighted-summethod, three points ([1.5 0],
[1 1] and [0 2]) are used as a starting point, and the
best among the solutions is selected. As shown in Fig. 7,
trying these three initial starting points always yields the
optimum solutions for the usual weighted-sum method.
However, the solutions cluster around three small regions.
The vast area of the two concave regions is not revealed by
the traditional weighted-summethod, which confirms the
second drawback of the method mentioned in Sect. 1.
The NBI method and adaptive weighted-sum method

successfully find solutions in the non-convex regions.
However, the solution dependence on the initial starting
point is a serious concern for these methods. So, full com-
binatorial trials of initial starting points were conducted
to better understand this issue. The domain is discretized
into grids of size, ∆x1 and ∆x2, and the optimization is
started from the grid points. The best solution is then
selected from among all the solutions obtained. Four dif-
ferent cases of starting grid resolution were tested for the
NBI method and the AWS method:

– Case 1: ∆x1 =∆x2 = 2.0
– Case 2: ∆x1 =∆x2 = 1.5
– Case 3: ∆x1 =∆x2 = 1.0
– Case 4: ∆x1 =∆x2 = 0.5

The solutions obtained from the NBI method for each
of all four cases are shown in Fig. 8. In all four cases, one
non-Pareto solution is obtained, which is dominated by
its two neighboring solutions. Because of this problem,
a Pareto filter needs to be applied a posteriori for all re-
sults obtained with the NBI method. In addition, some
sub-optimal solutions are obtained: three suboptimal so-
lutions for Case 1 and one suboptimal solution for Case 3.
These solutions are dominated and have apparently con-
verged to local maxima, despite the abundance of starting
points across the domain.

Fig. 8 Results from the NBI method for multiobjective opti-
mization with a non-convex Pareto front: Example 2

When the adaptive weighted-sum method is used, on
the other hand, all the solutions obtained are truly Pareto
optimal, as shown in Fig. 9. Only one case is represented
in the figure because the solutions are identical for all
four cases. The offset distance on the Pareto front, δJ , is
0.1. Note that non-Pareto optimum or suboptimal solu-
tions are not obtained with the adaptive weighted-sum
method, as it should be. The reason for the method’s ro-
bustness in finding Pareto optimal solutions is that it uses
inequality constraints rather than equality constraints,
which makes it easier to find feasible solutions during
optimization.
This example demonstrates the advantages of the

adaptive weighted-sum method: (i) it finds solutions of
even distribution; (ii) it can find solutions on non-convex
regions; (iii) non-Pareto solutions in non-convex regions
are not considered as optimal, because they are not in
the feasible region bounded by the additional constraints.
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Table 2 Comparison of the results for Example 2

WS NBI AWS
Initial starting point case Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

No. of solutions 15 15 15 15 15 15 15 15 15
CPU time (sec) 0.4 17.8 24.5 52.9 165.6 28.1 44.0 87.6 289.2

Length variance (×10−4) 632 11 3.6 8.8 3.6 4.3 4.3 4.3 4.3
No. of suboptimal solutions 0 3 0 1 0 0 0 0 0
No. of non-Pareto solutions 0 1 1 1 1 0 0 0 0

Fig. 9 Results obtained with AWS for multiobjective opti-
mization with a non-convex Pareto front: Example 2. Case 1,
Case 2, Case 3 and Case 4 give the same results

AWS is potentially more robust in finding optimum solu-
tions than other methods that use equality constraints.
The solution comparison for each method for this ex-
ample is provided in Table 2.

4.3
Example 3: three-bar truss problem

Finally, the adaptive weighted-sum method is applied
to the three-bar truss problem first presented by Koski
(1985). Figure 10 illustrates the problem and shows the

Fig. 10 The three-bar truss problem

Fig. 11 Optimization history of the adaptive weighted-sum
method for Example 3 with δJ = 0.1. It converges in three
phases

values of the parameters used. A horizontal load and
a vertical load are applied at point P, and the objective
functions are the total volume of the truss and the dis-
placement of point P.
The mathematical problem statement is:

minimize

[
volume (A)

∆(A)

]



157

subject to σ lower limit ≤ σi ≤ σ upper limit i= 1, 2, 3

A lower limit ≤Ai ≤A upper limit i= 1, 2, 3

where ∆= 0.25δ1+0.75δ2

and A= [A1 A2 A3] (15)

The Pareto front for this example is non-convex, and the
Pareto line is separated into two regions by a segment
of dominated solutions, as shown in Fig. 11. The adap-
tive weighted-sum method with an offset of δJ = 0.1 is
used. The optimization history is shown in the figure.
The adaptive weighted-sum method converged in three
phases, and the solutions are quite evenly distributed.
Note that no solution is obtained in the non-Pareto

region, without using a Pareto filter. If one changes the
value of the offset distance, δJ , the density of final solu-
tions changes. Figure 12 shows the two results when 0.2
and 0.05 are used as the offset distance, δJ . The adaptive
weighted-sum method gives 8 and 32 evenly distributed

Fig. 12 Solutions for different offset distances in Example 3

Fig. 13 Degenerate case of a Pareto front with a weakly
dominated region

Pareto solutions for each case. Again in this example,
the distribution is nearly uniform; the Pareto optimal so-
lutions on the non-convex region are identified; and the
non-Pareto optimal solutions are ignored. The parame-
ter δJ is used to tune the desired density of Pareto points
generated by the algorithm.

5
Discussion

The adaptive weighted-sum (AWS) method effectively
approximates a Pareto front by gradually increasing the
number of solutions on the front. In that sense it grad-
ually “learns” the shape of the Pareto front and concen-
trates computational effort where new information can be
gainedmost effectively. This is in contrast to other Pareto
generation methods such as traditional weighted-sum or
NBI, which generally explore the Pareto front in a prede-
termined fashion. Because it adaptively determines where
to refine further, the adaptive weighted-summethod pro-
duces well-distributed solutions. In addition, performing
optimization only in feasible regions by imposing addi-
tional inequality constraints enables the method to find
Pareto solutions in non-convex regions. Because the feas-
ible region includes only the regions of non-dominated
solutions, it automatically neglects non-Pareto optimal
solutions. It is potentially more robust in finding optimal
solutions than other methods where equality constraints
are applied.
There are four important parameters that the user

must set: the offset distance (δJ); the Euclidean distance
for determination of overlapping solutions (ε) used in
Step 3 and Step 8; the constant for further refinement (C)
used in Step 4; and the number of the Pareto front seg-
ments in the initial iteration (ninitial).
The offset distance, δJ , determines the final solution

distribution density and can be chosen independently of
other parameters. Values between 0.05 and 0.2 in the nor-
malized objective space are recommended. The smaller
δJ is, the denser the final solution distribution becomes.
The overlapping solution distance εmust be smaller than
δJ . In this paper, ε is 50% of the magnitude of δJ , and
well-distributed solutions are obtained. The multiplier C
must be chosen carefully. If it is too small, no further re-
finement will be conducted in subsequent iterations, and
the optimization will terminate prematurely. If it is ex-
cessively large, many overlapping solutions will be gener-
ated, and the computational cost will increase. It is our
experience that the optimization progresses well with rea-
sonable computing time when C is between 1 and 2. The
initial number of Pareto front divisions, ninitial, must be
selected in the same way. A small ninitial will not lead
the optimization to subsequent iterations of further re-
finement, but on the other hand, the computational cost
will become too expensive with a large value of ninitial.
A proper range, found in several examples here, is be-
tween three and ten. It is noted that the optimization
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behavior depends on the parameter selection to some ex-
tent. Currently the parameters can be chosen only heuris-
tically, and more study is needed to investigate this is-
sue. In particular, ninitial and C should be selected in
consideration of each other. For example, when a small
ninitial is used, a large C would help prevent premature
convergence.
It is found that the adaptive weighted-sum (AWS)

method cannot handle a degenerate problem of a Pareto
front that has a weakly dominated region, as shown
in Fig. 13. In this special case, the horizontal and vertical
lines are weakly dominated, and they are not included in
the feasible region for further optimizations regardless of
the size of δ1 or δ2. Such an extreme case, however, is not
likely to be experienced in practice.
This article does not claim superiority of the adap-

tive weighted-sum method over other methods such as
NBI in all cases. Rather the method presents itself as
a potential addition to the growing suite of Pareto gener-
ators, with potential advantages for ill-conditioned prob-
lems. Further work is needed to understand the nature
of this advantage in terms of starting points, imposition
of inequality constraints versus equality constraints and
computational cost. It must also be said that while the
traditional weighted-sum method has known limitations,
it remains the method offering greatest transparency to
non-expert users. The adaptive weighted-sum approach
is an effective extension of traditional weighted-sum op-
timization, but some of the transparency is invariably
hidden from the user due to the adaptive scheme. In
addition, the adaptive weighted-sum method needs to
be applied to multidimensional multiobjective optimiza-
tion problems where there are more than two objective
functions. Some multiobjective optimization algorithms
perform well for bivariate problems, but scale poorly to
multiple objectives. It remains to be seen how well adap-
tive weighted-sum (AWS) optimization can be scaled to
problems of higher dimensionality. Practical applications
of increased complexity will also be solved by the adaptive
weighted-sum method.
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