
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2005; 63:681–708
Published online 9 March 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.1294

Fast time-domain simulation for large-order linear
time-invariant state space systems

Kin Cheong Sou and Olivier L. de Weck∗,†,‡,§

Department of Aeronautics and Astronautics, Engineering Systems Division, MIT,

Cambridge, MA 02139, U.S.A.

SUMMARY

Time-domain simulation is essential for both analysis and design of complex systems. Unfortunately,
high model fidelity leads to large system size and bandwidths, often causing excessive computation
and memory saturation. In response we develop an efficient scheme for large-order linear time-invariant
systems. First, the A matrix is block diagonalized. Then, subsystems of manageable dimensions and
bandwidth are formed, allowing multiple sampling rates. Each subsystem is then discretized using a
O(ns) scheme, where ns is the number of states. Subsequently, a sparse matrix O(ns) discrete-time
system solver is employed to compute the history of the state and output. Finally, the response of the
original system is obtained by superposition. In practical engineering applications, closing feedback
loops and cascading filters can hinder the efficient use of the simulation scheme. Solutions to these
problems are addressed in the paper. The simulation scheme, implemented as a MATLAB function
fastlsim, is benchmarked against the standard LTI system simulator lsim and is shown to be
superior for medium to large systems. The algorithm scales close to O(n2

s) for a set of benchmarked
systems. Simulation of a high-fidelity model (ns ≈ 2200) of the Space Interferometry Mission spacecraft
illustrates real world application of the method. Copyright � 2005 John Wiley & Sons, Ltd.

KEY WORDS: time-domain simulation; LTI systems; multiple-sampling rates; discretization; down-
sampling; lifting

1. INTRODUCTION

1.1. Background

Simulation is an essential tool for the design and analysis of complex engineering sys-
tems. Computational challenges arise as the models of these systems become more and more
complex. For linear time-invariant systems complexity manifests itself both as model size (order

∗Correspondence to: O. L. de Weck, MIT, 77 Massachusetts Ave, 33-410, Cambridge, MA 02139, U.S.A.
†E-mail: deweck@mit.edu
‡Assistant Professor.
§Senior member AIAA.

Contract/grant sponsor: NASA Jet Propulsion Laboratory; contract/grant number: 91123

Received 3 September 2003
Revised 19 May 2004

Copyright � 2005 John Wiley & Sons, Ltd. Accepted 1 December 2004

682 K. C. SOU AND O. L. DE WECK

10
0

10
2

10
4

106 10
8

1

10

100

1000

10000

normalized dynamic bandwidth

nu
m

be
r

of
 s

ta
te

 v
ar

ia
bl

es
 n

s

SIM

single DOF
oscillator

NGST

Starlight

MACE

NEXUS

Origins
Testbed

region of
interest

dr=max(ω)n min(ω)n

2

5

20

50

200

500

2000

5000

medium
order

systems

small
order

systems

large
order

systems

large
dynamic range

small
dynamic range

3-mass
model

SIM: Space Interferometry Mission (planned 2009)
NGST: Next Generation Space Telescope (planned 2011)
NEXUS: Precursor Mission NGST (cancelled)
MACE: Middeck Active Control Experiment (1993-1996)
Starlight: USAF multiaperture telescope system
Origins: MIT Testbed for electro-opto-mechanical systems
3-mass model: Simple three DOF model of a dynamic system
1-DOF: simplest, single DOF model of an oscillator

ωn: natural frequency [rad/s]
dr: dynamic range
ns: number of states in state vector x

small dynamic range systems: 1-10,000 dynamic range
large dynamic range systems: dynamic range > 10,000

small order systems: 1<ns<100
medium order systems: 100<ns<500
large order systems: 500<ns

Figure 1. Classification of LTI systems according to size and bandwidth.

pre-filter plant - system post-filter
d(t) w(t)Ad Bd

Cd Dd

Ao Bo
Co Do

Ak Bk
Ck Dk

Azw Bzw
Czw Dzw

z'(t) z(t)

y(t)
u(t)

controlactuators
sensors

z(t)

time
t

Root-Mean-Square
σz

Three methods for system simulation:
- Time-domain simulation
- Frequency-domain analysis
- Lyapunov analysis

white
noise

performance

Figure 2. Typical dynamic system simulation, resulting in an estimate of z(t).

of the system or number of states, ns) as well as model dynamic range (ratio �n,max/�n,min).
Figure 1 shows some sample systems positioned in terms of model dynamic range and model
size. Dynamic range (‘bandwidth’) is defined as the ratio of the highest to lowest natural
frequency of the system.

Generally, we are interested in modelling the behaviour of these systems in terms of their
performance outputs, z(t), subject to disturbance inputs w(t), control inputs, u(t) and sensor
measurements, y(t), see Figure 2. We assume that the state space matrices A, B, C, D are
known.

A popular measure of performance of a dynamic system is the root-mean-square (RMS)

statistic, �z =
[
1/T

∫ T

0 z2(t) dt
]1/2

. This is valid under the assumption of stationary distur-

bance sources, w(t), and time-invariant system dynamics (A, B, C, D). We have previously
identified three methods for estimating �z: time-domain simulation, frequency-domain analysis
and Lyapunov analysis. These three approaches are briefly summarized in Appendix A.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

FAST TIME-DOMAIN SIMULATION FOR LARGE-ORDER LTI SYSTEMS 683

1.2. Motivation and previous work

Previous work has been conducted on comparing both the accuracy and computational ex-
pense of the three approaches [1–3]. This work also suggested improvements for speed-up
of frequency-domain and Lyapunov analysis, respectively. These were based in part on using
balanced model reduction (see Reference [4] for balanced reduction with a priori error bounds).
However, the problem of computational expense for time-domain simulation remained unsolved.
While frequency-domain analyses and Lyapunov analysis can provide critical performance met-
rics such as steady-state RMS values of performances, they cannot provide information on
the transient response of the system, which is sometimes required (e.g. in designing control
systems). Also, while model reduction can result in reduced systems with high accuracy, the
method suffers from the fact that a priori decisions must be made as to the level of the
reduction. Model reduction is being pursued in a variety of fields, see Willcox et al. [5] and
Beran [6], but is fundamentally different from the divide-and-conquer approach advocated here.
The focus of this paper is on mitigating problems with time-domain simulation for large LTI
systems.

We shall first conduct a small numerical experiment to estimate the increase in computational
cost for all three methods, as a function of system size, ns , and dynamic range dr . We first
generate random SISO state space systems (A, B, C, D) with natural frequencies uniformly,
but randomly, distributed between 1 Hz and dr Hz. The damping ratio of the system modes
shall be uniformly distributed between 10−2<�i<1. Further, let the system be represented in
second-order modal form: A = [0 I ; −�2 − 2�Z] with � = diag(�i) and Z = diag(�i). The
structure of the A-matrix and time- and frequency-domain simulation results for the baseline
case with ns = 100 and dr = 100 are shown in Figure 3 and Table I.

0 10 20 30 40 50 60 70 80 90 100

0
10
20
30
40
50
60
70
80
90

100

nz = 228

Sparsity plot of state space system (lyap)

S =
A B
C D

(a)
0 1 2 3 4 5 6 7 8 9 10

-150

-100

-50

0

50

100

150
Linear Simulation Results (lsim)

Time (sec)

A
m

pl
itu

de

(b)

150
140
130
120
110
100

90
80
70
60

M
ag

ni
tu

de
 (

-d
B

)

100 101 102 103
-540

-360

-180

0

180

Ph
as

e
(d

eg
)

Bode Diagram of z(ω) (freq)

Frequency (rad/sec)(c)

Figure 3. (a) State space system sparsity matrix, non-zero entries are shown; (b) z(t) from time
simulation using MATLAB’s lsim function; and (c) z(�) in frequency domain.

Table I. Baseline experiment with ns = dr = 100.

Method TCPU (ms) �z, 10−3 Error (%)

time 661 2.312 1.59
freq 371 2.289 0.61
lyap 300 2.326 0

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

684 K. C. SOU AND O. L. DE WECK

Table II. Numerical experiment with random state space systems, TCPU [s].

dr 10 20 50 100 200 500 1000 2000

time 0.13 0.11 0.26 0.33 0.66 1.70 3.39 77.9
freq 0.10 0.09 0.18 0.34 0.69 1.74 5.02 10.69
lyap 0.33 0.28 0.28 0.28 0.28 0.28 0.28 0.99

ns 10 20 50 100 200 500 1000

time 0.36 0.08 0.19 0.40 1.27 35.8 191.5
freq 0.02 0.08 0.018 0.35 0.91 6.32 45.49
lyap 0.03 0.03 0.050 0.29 2.00 41.85 549.6

Table I shows that the prediction error for �z relative to the Lyapunov method is small (<2%)

and that the computation times are also small (<1 s) and similar for all three approaches.
Next, we repeat the experiment and scale both the dynamic range (dr) as well as the system

size (ns) with results shown in Table II. The computer used throughout this research is a 32-bit
Pentium 4 with a 1.8 GHz processor and 256 MB of RAM.

We clearly see that TCPU scales linearly with dynamic range, dr above ns = 20 for both the
time- and frequency-domain methods. This is due to the fact that the time horizon T and time
step, �t are chosen as

T = 10

[
2�

min (�n)

]
and �t = 1

10

[
2�

max (�n)

]
(1)

Note, also that the cost of the Lyapunov method is independent of dr . The linear scaling
ceases to hold true once RAM memory is saturated (dr = 2000, TCPU = 77.9) for the time-
domain method. Once swapping and access to virtual memory are required simulation becomes
very inefficient.

The issue of scaling is more serious in the case of increasing system size ns . Table II shows
that the cost of all three methods increases proportional to ∝ n3

s . This is shown more clearly
in Figure 4(a). Model size, ns , is a delicate issue in system simulation because of the tradeoff
between model fidelity and the number of design solutions or disturbance scenarios explored
within a limited computational time budget. The dilemma is shown in Figure 4(b). On the one
hand, one may choose high model fidelity (ns large), but only be able to explore a limited
number of scenarios. On the other hand, one may choose a small model (ns small) and carry
out many simulations, but be left wondering about the validity of the results.

It is clear from Figure 4(b) that the more efficient a simulation is, for a given model size
and bandwidth, the more scenarios can be evaluated. The two curves in the figure should

represent the same amount of total time budget: Ttotal = N × TCPU = N × (� × n
�
s

)
. The curves

scale roughly as 1/n3
s . An improvement in � or � (dashed line) could increase the product of

N × ns , thus providing better simulation capability. This assumes that time-domain simulation
accuracy is not sacrificed. The upper right corner is the ultimate desire. In addition, efficient
simulation can facilitate the performance evaluation step of multidisciplinary design optimization
(MDO), whose prospects and significance have been reported by Giesing et al. [7], Sobieski
et al. [8] and Anderson [9] among others.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

FAST TIME-DOMAIN SIMULATION FOR LARGE-ORDER LTI SYSTEMS 685

Number of designs explored N (# of simulations)

Are there better designs?

Are the results
believable?

Utopia

Goal is to push the tradeoff
curve further towards Utopia

current
state of the art

Fixed total time budet:
Ttot= N*Tcpu

101 102 10
310

-2

10
-1

10
0

10
1

10
2

10
3

number of states ns

co
m

pu
ta

tio
n

tim
e

T
cp

u
[s

ec
]

Computational effort scaling with system size Goal of efficient time-domain simulation

Time-domain simulation

Frequency-domain analysis
Lyapunov analysis

nu
m

be
r

of
 s

ta
te

s
n s

(a) (b)

Figure 4. (a) TCPU scaling with model size ns and method; and (b) tradeoff curve between
number of simulations (N) and model fidelity (ns).

The proposed simulation algorithm, fastlsim, first decouples the original dynamical system
by implementing a block diagonalization¶ of the A matrix. Then, it forms fictitious subsystems
with lower, and thus manageable dimensions and narrower bandwidths. After that, the subsys-
tems are discretized so that efficient computation of state transition can be realized. Finally,
the responses of the subsystems are superposed to form the response of the original large-order
system.

The organization of the paper is as follows: In Section 2 the technical time-domain simulation
problem will be discussed. Then, in Section 3 the flow chart and some important implementation
details of fastlsim are presented. After describing the algorithm, Section 4 studies the
simulation problems and solutions with various kinds of control loops. Then, in Section 5
simulation results are found for randomly generated systems and for a high-fidelity model of
the Space Interferometry Mission (SIM) spacecraft. These are compared with those obtained by
the standard MATLAB LTI systems simulator, lsim. Conclusions are summarized in Section 6.

2. TIME-DOMAIN SIMULATION PROBLEM

The time-domain simulation problem of a generic LTI system can be defined as follows: Given
is the system in (2)

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2)

¶For a diagonalizable matrix, the transformed matrix can be strictly diagonal but the result is usually complex,
which is not very useful in practice. However, for a real diagonalizable matrix, the complex diagonal matrix
can be converted into a real block diagonal one. Also, whenever the word ‘diagonal’ is used in this paper, it
means real block diagonal, unless noted otherwise.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

686 K. C. SOU AND O. L. DE WECK

LTI plant
continuous

time

ode45
1. ODE IVP routines like Runge Kutta

2. Discretization and propagation of state

w(t) z(t)

LTI plant
continuous

timew(t) z(t)
HS

w[n]
S

z[n]

LTI plant
discretized

S
w(t) w[n] z[n]

lsim

(a) (b)

Figure 5. (a) Initial Value ODE solvers (e.g. ode45); and (b) state transition method (e.g. lsim).
upper: true implementation, lower: discrete time equivalent. H=holder, S=sampler.

where x(t) is the state, u(t) is the input, y(t) is the output and the matrices are of appropriate
dimensions: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. The solution to this problem is the
unique y(t), given an external input u(t) and initial conditions x(t0). There are at least two
ways to solve the problem: (1) Standard ordinary differential equation (ODE) solvers like
Runge–Kutta, and (2) The state transition method, see Figure 5.

Figure 5(a) shows the standard use of ODE solvers like Runge–Kutta. The meaning is
straightforward: Given a system, external input and IC, the solver returns the response output.
Although in a computer simulation w(t) and z(t) are not really continuous-time, these signals
are still treated as continuous-time for the current purpose. The ode45 solver in MATLAB
belongs to the family of Runge–Kutta methods, in this case the Dormand–Prince [10] pair.
Runge–Kutta is very versatile but it is more than needed for LTI systems. It computes five
derivatives (number of matrix–vector products is doubled) for each time step and we will soon
see that this is not necessary.

2.1. State propagation method

The second approach, which is the method proposed here, makes use of the known form of
the solution to LTI systems, see Equation (3)

x(t) = eA(t−t0)x(t0)︸ ︷︷ ︸
xH

+
∫ t

t0

eA(t−�)Bu(�) d�︸ ︷︷ ︸
xp

(3)

where t0 denotes the initial time instant, � is a dummy variable, eA(t−�) is the matrix exponential
of the matrix A(t − �) and u(t) is the external input to the system, xH and xP denote
the homogenous and particular solutions, respectively. This method includes discretizing a
continuous time LTI system to its discrete-time counterpart using techniques like zero-order
hold (ZOH) or first-order hold (FOH) and then computes the state transition through time using
the discrete-time state equation, which is a recursive formula. This is equivalent to transforming
the original problem (2) into its discretized version in (4), provided that a further assumption
is made on u(t) (e.g. ZOH).

x[n + 1] = Adx[n] + Bdu[n]
y[n] = Cx[n] + Du[n]

(4)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

FAST TIME-DOMAIN SIMULATION FOR LARGE-ORDER LTI SYSTEMS 687

where

Ad = eAT

Bd =
∫ (K+1)T

KT

eA(KT +T −�)B d� =
∫ T

0
eA�B d�

and T is the sampling period and n ∈ Z.
This method has the obvious advantage over ode45 in that it requires only two matrix–

vector products, namely the state transition matrix times the state vector and the input matrix
times the input vector for each time step. In fact, MATLAB’s lsim uses the method described
here [11].

However, lsim is not without its own problems. Problems are encountered when simulating
large-order systems like the full SIM model presented in Section 5. The first problem comes
when one tries to discretize the original continuous time system. This requires computation of
the matrix exponential eAT . MATLAB calls the c2d function to do this (using ZOH, FOH
or Tustin approximation). However, the computational time for c2d is not linear in ns as
it increases sharply with the order of the model. Also, c2d is general purpose and does not
recognize or take advantage of special matrix structures like block diagonal matrices, which can
accelerate the computational process. The second problem is even more severe. Simulators like
lsim require a very large matrix to store the history of the state xn. For instance, simulating
the full SIM model with measured Magellan spacecraft reaction wheel assembly (RWA) distur-
bances, w(t)-six channels sampled at 4096 Hz for 210 s-requires 8 × 2184 × 210 × 4096 ≈ 15 GB
of memory, but 32-bit MATLAB on Windows only has 1.5 GB of memory available, including
swap space. This means that standard simulators like lsim are still far from satisfactory for
time-domain simulation of large LTI systems.

3. SIMULATION SCHEME: fastlsim

This section will address implementation issues of the proposed simulation scheme. Before
the details are discussed, an overview of the algorithm is given in the flowchart of Figure 6.
In this flow chart, the circles correspond to input or output data such as the original system
A, B, C, D matrices, the external input u(t) and computed output y(t). Each block represents
an operation or process with the corresponding MATLAB implementation labelled next to it.‖

The state transition method serves the current problem better in that it requires less com-
putation and it maps left half s-plane poles to inside the unit circle in the z-plane, no matter
how large the discretization time step, �t , is. Nevertheless, the benefits of the state transition
method do not come for free in that the following problems must be addressed: The first
problem is the computational expense of eAT in (4). The cost of this operation is O(n3

s) [12].
The second problem is memory saturation, if the computation requires the whole history of
states before the history of the output can be computed (see lsim for such an algorithm [13]),
then the simulation might halt because of memory saturation. Solutions to these problems will
be proposed in the following subsections.

‖The name of the corresponding m-file is in italic font.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

688 K. C. SOU AND O. L. DE WECK

Diagonalization

Subsystem
Planner

Discretization Downsampling

DT LTI
System Solver

Superposition

Original System

Modal System

Subsystems

Subsystem Bandwidth

DT Subsystems

Original Input

Downsampled Input

Subsystem Responses

Final Response

(md.m)

(seg_plan_x.m)

(build_mutirate
_sys.m)

(st_sim.m)

(summation & interp.m)

 A, B, C, D

u(t)

y(t)

Figure 6. Flow chart of the fastlsim time-domain simulation algorithm.

3.1. Assumptions

Assumptions are vital in all scientific and engineering reasoning. In developing fastlsim
and arguing its merits we make the following assumptions:

• The state matrix A is diagonizable, i.e. A = V ĀV −1, where Ā is block diagonal and real,
and V is a matrix composed of columnwise eigenvectors.

• The sampling rate of the external input u(t) is high enough.
• The analysis is carried out off-line.
• Performance measures are given as CPU time rather than FLOPS.
• Test machine specifications: Pentium 4, 1.8 GHz, 256 Mb RAM, Windows XP, IBM.

Since diagonalization is important in this method, the state matrix A is assumed to be
diagonizable. Non-diagonizable matrices do exist but they are rare in practice. Some systems
have repeated eigenvalues but this does not necessarily mean that they are defective since most
of the time their eigenvectors still form a basis of the space of interest.

The highest frequency of the time-domain simulation is assumed to be the input sample
rate, which is the reciprocal of the input time step. This is not necessarily the main limitation
for further refinement of the method but is assumed here only for convenience. This defines
the upper bound of the multiple sample rates to be used in fastlsim. Namely, it affects the
way the subsystem planner is implemented.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

FAST TIME-DOMAIN SIMULATION FOR LARGE-ORDER LTI SYSTEMS 689

Performance efficiency is given as CPU time. This is not the whole story since it is machine
dependent. This is the only readily available tool for performance analysis in MATLAB 6 since
a FLOPS count is no longer available with the incorporation of LAPACK in this version.

3.2. Diagonalization

Diagonalization is the similarity transform of the original system into a system that has a block
diagonal A matrix. That is

A = S�S−1 (5)

where S is an invertible similarity transform matrix and � is a real block diagonal matrix. This
similarity transform can be an eigenvalue decomposition or state variable reordering, which is
less expensive. Additionally, the corresponding subroutine of the presented simulation scheme
(md) sorts the modes of the diagonalized system in ascending natural frequencies (i.e. the
square root of the sum of squares of the real and imaginary parts of the eigenvalues). This
diagonalization step is a necessary step to enable the following implementations:

• Decoupling the dynamics and forming fictitious subsystems. This can relieve the problem
of memory saturation since the original large problem is divided into smaller subproblems.
Also, this gives rise to the potential for parallel computation.

• Applying multiple sampling rates. The reason for this implementation is twofold. First,
simulation can be facilitated by the application of multiple sampling rates. Secondly and
more importantly, this can pave the way to solving multiple time scale dynamics problems,
see Reich [14] for such a problem.

• Exploiting the sparsity resulting from the diagonal structure of the A matrix. The number
of non-zero entries of an ordinary dense matrix A ∈ Rn×n is n2, but the number of non-
zero entries in the diagonalized matrix is typically only O(2n). An example is the baseline
system (ns = 100) in Figure 3(a), where there are 2.28 × ns non-zero entries, even though
the system is not block diagonal. This sparsity is important in the matrix–vector product
computation to be discussed later.

3.3. Subsystem planning

The subsystem planning subroutine is the key decision element in the algorithm. The objective
of this function (seg_plan_x) is to form fictitious subsystems and to assign them appropriate
sampling rates. The assumption in this subsection is that the plant is already block diagonal
and that the modes are sorted (i.e. after the preceding diagonalization step). There are two
considerations for subsystem planning.

The first issue is the size (in terms of number of state variables) of each subsystem. In
terms of FLOPS, the size of the subsystems is not important because the number of FLOPS
of simulating discrete-time systems (after diagonalization) depends linearly on the number of
state variables. That is (see Reference [12], ignoring the FLOPS due to feedthrough)

FLOPS = 2 ×(2 + m + p)× ns × n (6)

where m is the number of input channels, p is the number of output channels, ns is the
number of state variables, and n is the number of time samples to be processed. Nevertheless,

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

690 K. C. SOU AND O. L. DE WECK

DSF init (max)
SM=1

EM = f(DSF)

EM > TM?

EM-SM + 1
>= BZ_min ?

Update DSF

EM - SM >
 BZ_max ?

EM=SM+BZ_max-1
or TM, SM=EM+1

EM = EM or TM
SM = EM + 1
DSF = DSF / 2 or 1

DSF =
DSF /2 or 1

Terminate

Y

N

Y

N

Y

N

Figure 7. Flow chart of the subsystem planning subroutine.

simulating subsystems that are too large and too small is not efficient because of memory
saturation and size independent overhead, respectively.

The other issue is the sampling rate associated with each subsystem. The minimum sampling
rate is given by Nyquist’s sampling theorem (e.g. see Reference [15]) but it is usually insufficient
for computer simulations. As a rule of thumb, the sampling rate should be four to ten times
the system bandwidth, see also Equation (1). The issue of appropriate sampling rate selection
has been extensively discussed by Franklin [16] and Åström [17] among others.

Taking into account of the aforementioned issues, the subsystem planning subroutine has the
following features:

• It automatically chooses appropriate subsystems block sizes by considering a lower bound,
upper bound and the effect of the number of input and output channels.

• It automatically suggests downsampling based on an estimate of the ratio between the
high-frequency components and low-frequency components of the output.

The flow chart given in Figure 7 explains how the above features are achieved, where DSF
denotes downsampling factor (the ratio between the original sampling rate and the reduced
sampling rate). SM is the starting mode of the subsystem. EM is the ending mode of the
subsystem. TM is the total number of modes of the original system and BZ is the currently
chosen block size of each subsystem.

Given the initial downsampling rate (maximum allowable downsampling rate) and the first
mode of the system, the block f (DSF) in Figure 7 computes the last mode of the subsystem

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

FAST TIME-DOMAIN SIMULATION FOR LARGE-ORDER LTI SYSTEMS 691

200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Flexible mode number

N
at

ur
al

 f
re

qu
en

cy
 [

H
z]

Subsystem planning result: SIM spacecraft model

DSF = 4 DSF = 4 DSF = 1 DSF = 1
(SS 1) (SS 2) (SS 3) (SS 4)

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Flexible mode number

N
at

ur
al

 f
re

qu
en

cy
 [

H
z]

Subsystem planning result: random SS system

DSF = 1
(SS 1)

DSF = 1
(SS 2)

0

(a) (b)

Figure 8. (a) Subsystem plan for random state space system with 500 modes and
10 kHz bandwidth; and (b) subsystems for SIM spacecraft model with 1092 modes

and an input sampling rate of 4096 Hz.

so that it can be simulated with the current downsampling rate with an acceptable level of
approximation, which is measured by the ratio between the power (or energy) of the outputs
of the original and downsampled subsystem. The power (or energy) estimates are computed by
fast Fourier transform (FFT). Since it is not straightforward to find in closed form the last mode
of the subsystem with a given downsampling rate, what the subsystem planner does is to guess
a subsystem size and then to evaluate its error. The guess is then sharpened iteratively using
the bisection method. Once the last mode of the subsystem is determined, it is checked against
the upper and lower bounds mentioned previously to adjust the subsystem size accordingly.
Once a subsystem is determined, the DSF is decreased (i.e. increasing sampling frequency)
and consideration of the next subsystem begins until all system modes have been assigned to
a subsystem.

Planning results for two different systems are shown in Figure 8. In Figure 8(a) a random state
space system was created with ns = 1000 and dr = 10 000 (same procedure as in Section 1.2).
The modal frequencies increase linearly and fastlsim breaks the system into two subsystems
(SS1: mode 1-400, SS2: mode 401-500), but downsampling is not used. In Figure 8(b) the
subsystem planning results for the SIM flexible spacecraft model (see Section 5) are shown.
The planner breaks the system into four chunks, two of which use a DSF = 4.

3.4. Discretization

As can be seen in Equation (4), the bottleneck of discretization is the matrix exponential eAT .
Fortunately, the diagonalization described in Section 3.2 relieves the problem. By exploiting the
sparsity of the block diagonal A matrix structure, a O(ns) matrix exponential algorithm can
be realized. This is obviously seen if the matrix exponential Ad in Equation (4) is expressed
as follows (see for example Reference [18]):

Ad = eAT = I + AT + A2T 2

2
+ A3T 3

3! + · · · (7)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

692 K. C. SOU AND O. L. DE WECK

Table III. Computation time of eigenvalues (eig) and matrix exponential
(expm) in seconds with test matrices of size n.

Size (n) 100 200 400 600 1000

eig 0.0310 0.2340 1.9850 6.4530 29.4530
expm 0.0310 0.3280 2.6250 9.0620 40.9530

By noticing the fact that

AnT n =

A1T 0 · · ·
0 A2T

. . .

...
. . .

. . .

n

=

An
1 0 · · ·

0 An
2

. . .

...
. . .

. . .

 T n (8)

where Ai ∈ R2×2 ∀i ∈ {1, 2, . . .} and applying (8) to (7), the following equality holds:

exp

A1T 0 · · ·
0 A2T

. . .

...
. . .

. . .

 =

eA1T 0 · · ·
0 eA2T

. . .

...
. . .

. . .

 (9)

Equation (9) is the basis of the O(ns) discretization scheme implemented here. As a result, a
generic procedure for the fast discretization can be given as

for i = 1 to total number of subsystems
index=location of subsystem ;
DT_system(index)=c2d(subsystem) ;

end

Here the size of each subsystem is not fixed and a theoretical optimal block size can be found.
Nevertheless, the optimality is not an important issue since the difference between optimal and
suboptimal strategies is not obvious here (this is in contrast to the case of the fast Lyapunov
solver discussed in de Weck et al. [2]). A comparison of the time required for computing the
matrix exponential between a 1000 × 1000 dense matrix (27.1 s) and a block diagonal matrix
(0.031 s) of the same dimensions reveals that the diagonal matrix exponential is 874 times
faster, yielding the same result.

Nevertheless, the advantage of fast discretization comes with the expense of the diagonal-
ization step, which is also O(n3). Fortunately, the computation of eigenvalues is usually more
efficient than that of the matrix exponential, as Table III shows.

3.5. Downsampling

Downsampling is required whenever the assigned sampling rate of a particular simulation is
lower than that of the input. There are two ways to implement downsampling (Figure 9).

The first way is to low-pass filter the input signal, thus removing its high-frequency com-
ponents. The straightforward way to achieve the goal is to low-pass filter the signal and then

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

FAST TIME-DOMAIN SIMULATION FOR LARGE-ORDER LTI SYSTEMS 693

D DT plantAA filter Iu[n] y[n]

1. Frequency domain perspective (Input downsampling):

LPF Downsampling SS Interpolation

(a)

IDT plantLu[n] y[n]

Lifting SS Interpolation

2. Time domain perspective (Output downsampling):

output (state) trajectory

small step
transition

large step transition

large step
transition

(DSF=4)
(b)

Figure 9. (a) Input downsampling; and (b) output downsampling.

downsample it (see for example Reference [15]). That is

xd [n] = x[Mn] (10)

where x[n] has been low-pass filtered and M is the DSF. This is essentially downsampling the
input to the system.

The second way is to reformulate the state transition formula so that all input instances affect
the state transition, but some intermediate states (not at major time step) are not explicitly
computed, thus saving computational effort. The time-domain downsampling scheme borrows
the idea from the more general scheme of lifting [27]. Recall the state transition formula (or
the state equations for the discretized system)

x[n + 1] = Adx[n] + Bdu[n]
y[n] = Cx[n] + Du[n]

(11)

The first equation in (11) is certainly satisfied at the n + 1 instant

x[n + 2] = Adx[n + 1] + Bdu[n + 1] (12)

If (11) is substituted into in (12), then the following results:

x[n + 2] = Ad {Adx[n] + Bdu[n]} + Bdu[n + 1]
= A2

dx[n] + AdBdu[n] + Bdu[n + 1] (13)

Equation (13) can be generalized for N steps,

x[n + N] = AN
d x[n] + AN−1

d Bdu[n] + · · · + Bdu[n + N − 1]
If the following new matrices are defined

u[n] = [u[n] · · · u[n + N − 1]]T
Ad = AN

d

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

694 K. C. SOU AND O. L. DE WECK

Bd = [AN−1
d Bd · · · Bd

]
C = C

D = [D 0 · · · 0
]

then the N -step propagation version of (11) is

x[n + N] = Adx[n] + Bdu[n]
y[n] = Cx[n] + Du[n] (14)

By employing a long time step state transition, the calculation of the unwanted intermediate
state and output can be avoided. This downsampling scheme essentially downsamples the output
instead of the input and the accuracy is much better than the first direct approach. However, the
efficiency gain achieved by the second method is less than that by the first method. Compare
the FLOPS for the direct downsampling (15) and those of the second method (16):

FLOPS = 2 × (2 + m + p)× ns × n

DSF
(15)

FLOPS = 2 × (2 + DSF × m + p)× ns × n

DSF
(16)

Here DSF � 1 is the downsampling factor. The meanings of other parameters in (15) and (16)
are referred back to Equation (6). In conclusion, the second downsampling method is less
efficient, but more conservative from an error management perspective and is the one used in
the fastlsim algorithm.

3.6. Simulation, interpolation and superposition

With the subsystems formed and discretized, the burden on the simulator (the actual code that
computes the states and outputs) is lighter and the original ODE problem now becomes a
much simpler problem of matrix–vector multiplication (cf. Equation (4)). Taking into account
the sparsity of the A matrix, the matrix–vector multiplication (state transition) can be realized
in O(nsn) (ns is the number of state variables and n is the number of samples to be simulated)
FLOPS. The required features of the simulator are summarized as follows:

• The simulator must be memory conscious. It cannot request any amount of memory (in
bytes) proportional to nsn or more.

• The simulator must be able to recognize the zero patterns of the A matrix, otherwise, the
advantage of the sparsity will be lost and the computational effort estimate in Equation (6)
will not be achieved.

Interpolation is needed whenever the output is downsampled. It should be pointed out that
the choice of interpolation scheme is a tradeoff between computation effort and accuracy. More
details can be found in Sou [12].

With the responses of the subsystems computed, it is finally possible to form the response
of the original system due to the original input. This is allowable because of the linearity
property of LTI systems which allows for superposition of the subsystem responses.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

FAST TIME-DOMAIN SIMULATION FOR LARGE-ORDER LTI SYSTEMS 695

4. CLOSED LOOP SYSTEMS ISSUES

In this section practical issues concerning the implementation of the fastlsim algorithm are
addressed. The main problem is due to closing a feedback loop (e.g. attitude control systems
for a satellite).

4.1. Simulation with feedback loops

The block diagram of the problem with feedback loops is given in Figure 2. Suppose the
open loop system is in modal form (i.e. the A matrix is block diagonal) and the state space
form is∗∗

 A Bw Bu

Cz Dzw Dzu

Cy Dyw 0

 (17)

The feedback controller has the following state space realization:[
Ak Bk

Ck Dk

]
(18)

where subscripts w and u denote quantities related to disturbance input and control input,
respectively. Subscripts z and y are related to performance output and measurement output,
and subscript k denotes quantities related to the controller. The closed loop system has the
state space form

 A + BuDkCy BuCk Bw + BuDkDyw

BkCy Ak BkDyw

Cz + DzuDkCy DzuCk Dzw + DzuDkDyw

 (19)

The off-diagonal blocks, BuCk and BkCy in the ‘A’ matrix of (19) are not expected to be
zero, otherwise there will be no control effect at all. Now the problem is: Even if the open
loop system is in modal form (i.e. the A matrix is block diagonal), the closed loop system
will not be so because of the dynamics coupling (off diagonal terms in ‘A’ in (19)). Another
problem arises if the feedback controller is a discrete-time system†† and this causes the closed
loop system to be hybrid.‡‡ For the problem of dynamics coupling, two solutions are proposed:

Rediagonalization by eigenvalue decomposition: An eigenvalue decomposition is applied to
the system in Equation (19). This is the most straightforward way but the computation can be
expensive if the systems considered are large-order, because of the eigenvalue problem involved.

Forced decoupling: This is a heuristic method in that some of the entries of Cy in
Equation (19) are set to zero. In other words, some of the measurements are regarded as

∗∗The Dyu is missing here to avoid an algebraic loop, i.e. the coexistence of feedthroughs in the plant and
the controller.

††In practical implementations, controllers are usually digital, which implies that the signals, as well time
instants, are discrete. The discrete-time assumption here is merely for ease of analysis.

‡‡Here the term ‘hybrid’ is used in the very specific sense that the system contains both continuous-time and
discrete-time states. There are no discrete states involved.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

696 K. C. SOU AND O. L. DE WECK

insensitive to some of the state variables. Suppose for simplicity that all D matrices are zero
and the state variables are reordered in such a way that the following equalities hold (A is
assumed to be block diagonal and Cy is partitioned into two blocks):

A =
[
A1 0
0 A2

]

Bu =
[
B1u

B2u

]

Bw =
[
B1w

B2w

]

Cy = [0 C2y

]
Cz = [C1z C2z

]
Then the state space representation of the closed loop system (19) is as follows:

A1 0 B1uCk B1w

0 A2 B2uCk B2w

0 BkC2y Ak 0
C1z C2z 0 0

 (20)

It can be verified that the system in (20) can be decomposed into two subsystems. The first
subsystem includes controller dynamics and is subject to disturbance input only

 A2 B2uCk B2w

BkC2y Ak 0
C2z 0 0

 (21)

and the second subsystem evolves in time with disturbance input and control input that is
determined by solving the first subsystem (as the output signal of the controller)[

A1 B1u B1w

C1z 0 0

]
(22)

It can be seen that if the dimension of A2 in (21) is much smaller than that of A1 in (22) and
if A1 is block diagonal, then the bottleneck of diagonalization can be avoided. The justification
of this method hinges upon the ability to find the state variables that are insensitive to sensor
measurements and the relative significance of the contributions of the ignored measurements
to the total measurements. The determination of the ‘important’ state variables can be quite
case specific. For example, in the study of a satellite structure with an attitude control system
(ACS), if the measurements are attitude angles, then it is natural that the rigid body modes
are far more important than other flexible modes (Section 5). In order to quantify the error
induced by the forced decoupling method, it is possible to compute the ratio

E = �1

�2
(23)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

FAST TIME-DOMAIN SIMULATION FOR LARGE-ORDER LTI SYSTEMS 697

Table IV. E: % of RMS attitude angles contributed
by flexible modes relative to rigid body subsystem.

�1 �2 �3

0.1021 0.2201 0.1950

where �1 and �2 are the open (feedback control) loop RMS values of the contributions of
the unimportant and important dynamics to the measurement. The computation of the ratio E

in (23) can be very efficient if the open loop system is already in modal form.
If E is smaller than some tolerance, then the block of the C matrix corresponding the

unimportant dynamics is small and the forced decoupling heuristic is promising. Otherwise,
rediagonalization by eigenvalue decomposition must be applied. As an example, consider the
2184 state variable SIM model (Section 5) with three unstable (or marginally stable) rotational
rigid body modes and assume the attitude angles (proportional to rigid body mode angles,
together with some additional contributions from other flexible modes) are measured directly.
The numeric values of E in (23) in this example are summarized in Table IV. The results in
Table IV show that E is small if the forced decoupling heuristic is used.

To verify the prediction, the actual results by the two methods are computed: The RMS values
of the performance outputs obtained by eigenvalue decomposition and by the forced decoupling
heuristic are 1.8275 × 10−5 and 1.8276 × 10−5, respectively. The difference is 1.8135 × 10−9,
which amounts to about 0.0099% of the performance given by eigenvalue decomposition method
(chosen as a reference here). In conclusion, the forced decoupling heuristic is not exact but
can be fairly accurate if properly applied.

The problem of ‘hybrid’ closed loop systems is addressed in Appendix B. The second
frequently encountered problem is due to a cascade connection between the plant and some other
filters (e.g. noise shaping filter and/or controller post-filter). Solutions to avoid rediagonalization
with cascading filters are provided in Sou [12].

5. SIMULATION RESULTS

In this section, fastlsim is applied to example problems to show its potential value. We
first apply the algorithm to randomly generated state space systems and try to quantify the
computational benefit. Next, we show that the scheme enables time-domain simulation for
larger order systems, such as the 2184 state SIM spacecraft model, that could not previously
be solved on single PC-class computers.

5.1. Simulation of random systems

The first example computes the RMS values of the outputs of randomly generated stable
SISO systems of different dimensions (ns) driven by randomly generated input signals. As in
Section 1 three methods are compared: time-domain simulation, frequency-domain analysis and
Lyapunov analysis. For the time-domain method, the input signal is 105 samples long and for
the frequency-domain method, 105 frequency points (single sided) are computed. The results
are summarized in Table V.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

698 K. C. SOU AND O. L. DE WECK

Table V. Comparison between time-domain, frequency-domain and Lyapunov methods
for randomly generated systems of different size.

ns Results freq lyap lsim fastlsim

50
TCPU[s]

�
0.2960

1.714E − 6
0.0780

1.713E − 6
1.3750

1.722E − 6
0.6880

1.722E − 6

100
TCPU[s]

�
0.6410

1.167E − 5
0.2340

1.159E − 5
4.5310

1.187E − 5
1.0150

1.187E − 5

200
TCPU[s]

�
2.0000

1.516E − 5
1.375

1.448E − 5
71.078

1.463E − 5
2.3900

1.463E − 5

500
TCPU[s]

�
15.3280

3.006E − 5
13.859

3.002E − 5
N/A
N/A

15.2030
3.061E − 5

1000
TCPU[s]

�
104.25

5.452E − 5
98.562

5.184E − 5
N/A
N/A

96.0320
5.228E − 5

1500
TCPU[s]

�
425.3

1.346E − 5
393.3

1.325E − 5
N/A
N/A

382.7
1.334E − 5

2000
TCPU[s]

�
1046.4

2.869E − 5
949.3

2.714E − 5
N/A
N/A

934.4
2.733E − 5

In this table, ns is the number of state variables. TCPU is the CPU time (in seconds) for each
computation and � is the RMS value of each output (the actual units are not of interest here).
While freq denotes the frequency-domain method, lyap denotes the Lyapunov method and
lsim is the standard time-domain simulation method provided by MATLAB. The time-domain
simulation algorithm presented in Section 3 is designated as fastlsim. Note that freq and
lyap are the fast implementations of the frequency-domain method and Lyapunov method,
respectively, see de Weck et al. [2]. Note also that the time shown for fastlsim includes
the time to diagonalize.

Since new data are generated in each case with a different ns , the RMS values of different ns

cases differ accordingly and should not be compared. The main point to illustrate here is that
the performance RMS values computed by the three different methods are quite close to each
other. As shown in Table V, time-domain methods are generally not as efficient as other
methods for small systems (ns<100). However, the situation changes when systems get larger
(ns>500). The reason for this trend is that size-independent overhead of the time-domain
method is more significant in small system cases. It should also be noted that the computation
times for the frequency-domain and time-domain methods vary with the number of samples
evaluated. Nevertheless, it is this computation that provides the additional information that the
Lyapunov method does not provide (i.e. time history and power spectral density). The reason
why the results from lsim are unavailable (N/A) is that the computer ran out of memory,
which proves that lsim is not suited for large-order systems simulation. The above example
shows that fastlsim can achieve efficiency similar to the fast implementations of other
methods (frequency-domain and Lyapunov methods) with acceptable accuracy when computing
RMS values.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

FAST TIME-DOMAIN SIMULATION FOR LARGE-ORDER LTI SYSTEMS 699

100 101 102 103
10-2

10-1

100

101

102

103

ns

C
PU

 ti
m

e
T

cp
u

[s
ec

]

lsim

fastlsim

crossover

small systems large systems

lsim

fastlsim

Figure 10. Plot of CPU times for lsim and fastlsim as a function of ns .

Main computation cost for lsim

Discretization State transitionOther Other Diagonalization State transitionOther Other

Main computation cost for fastlsim

Although diagonalization still takes O(ns
3) operations, it is generally faster than discretization.

State transition of lsim is O(ns
2n) but that of fastlsim is O(nsn).

17 5742 3. × ns 2 × + + × ×()n m p n ns s
27 8276 3. × ns 2 2× + + × ×()m p n ns

Figure 11. Computational cost budget for lsim and fastlsim.

Computing output RMS values does not exemplify the true advantage of fastlsim. A time-
domain simulation scheme should be compared with another time-domain simulation scheme.
Therefore the MATLAB simulator, lsim, is chosen as a reference in the following example.
In the example, a number of randomly generated systems with different sizes are simulated in
the time domain with lsim and fastlsim. The computation times for each simulation are
given in Figure 10.

A savings factor Tlsim/Tfastlsim of over 50 was shown before lsim ran out of memory.
Crossover occurs at around ns = 12 state variables, which means that even small to mid-sized
system are handled effectively by fastlsim.

Figure 11 gives a rudimentary operations count for lsim and fastlsim. All O(n3
s)

results are found empirically and the state transition operation count is straightforward (just
count the matrix–vector products and consider sparsity). It turns out that O(n3

s) computation is
inevitable, but computing eigenvalues is far more efficient than computing matrix exponentials
(there is a much greater body of research on the former problem). Also, state transition for
fastlsim is much faster than lsim, considering the value of n (number of time simulation
samples).

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

700 K. C. SOU AND O. L. DE WECK

precision support
structure (PSS)

kite

solar
panels

metrology
boom

backpacks

siderostat
bays

Reaction Wheel
Assembly

science
interferometer #1

Figure 12. Finite element model of SIM v2.2; approx. 20 000 DOF.

Table VI. SIM opto-mechanical performance requirements.

Performance zi Units Requirement

Starlight OPD #1 nm 10 (RMS)
Internal metrology OPD #1 nm 20 (RMS)
Starlight WFT #1 asec 0.210 (RSS)

An empirical fit of the equation TCPU = � × n
�
s reveals coefficients of � = 10−5 and � = 2.82

for lsim and coefficients of � = 5.2 × 10−6 and � = 2.35 for fastlsim. This again confirms
that we have achieved our goal of developing a fast time-domain simulator which scales closer
to O(n2

s) than O(n3
s) in the region of interest of large LTI systems (see also Figure 1). The

fastlsim method is found to be highly accurate with relative averaged point to point errors
below 0.5%; see Sou [12] for details on error analysis.

5.2. Application to SIM spacecraft model

The remaining example is concerned with simulation and control tuning for the Space Inter-
ferometry Mission (SIM) spacecraft [19], see Figure 12 for its finite element model. This task
was enabled by fastlsim and was previously not feasible due to memory saturation.

The SIM model presents significant challenges for time-domain simulation because of its
high dimensionality (2184 state variables) and wide dynamic range (�min/�max ≈ 4700).§§ Due
to its scientific mission, stringent design requirements are imposed on the performance out-
puts of the SIM model. For example, see Table VI for some requirements from Miller
et al. [20] and Laskin [21] for the optical pathlength difference (OPD) and wavefront tilt
(WFT) of science interferometer #1.

§§�min is the minimum flexible mode natural frequency. The zero natural frequency of the rigid body modes
is not counted.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

FAST TIME-DOMAIN SIMULATION FOR LARGE-ORDER LTI SYSTEMS 701

Figure 13. Time-domain simulation of SIM v2.2 (SISO case).

Opto-Structural Plant
SIM v2.2

2184 state variables

ACS

Optical control
disturbance input

control input

phasing (OPD)

rigid body angles

pointing (WFT)

Figure 14. Appended LTI system dynamics of SIM.

The main mechanical disturbances are generated by the reaction wheel assembly (RWA)
with three channels of force and three channels of torque. These vibrations travel through the
flexible structure to adversely impact the performance metrics shown in Table VI.

Figure 13 shows time-domain simulation results obtained by fastlsim for an open loop
SIM SISO model (RWA Fx force to OPD #1). The disturbances w(t) are obtained based
on laboratory measurements of the Magellan spacecraft reaction wheels, sampled at 4096 Hz.
The results presented in Figure 13 took 46.63 s to compute. Previous attempts using lsim
or ode45 were unsuccessful due to the aforementioned memory saturation problem. The full
MIMO time-domain simulation with six input channels and six output channels took 217.63 s
to compute.

In order for the SIM system to work properly, two control systems are needed. One is the
ACS and the other is the optical control system. The overall system configuration is given
in Figure 14. The ACS in Figure 14 stabilizes the open loop unstable rigid body modes of

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

702 K. C. SOU AND O. L. DE WECK

10-3 10-2 10-1 100 101 102 10310-12

10-10

10-8

10-6

10-4

10-2

100

102

104

Optical control cutoff frequency fo [Hz]

R
M

S
of

 z
 [

m
],

[a
se

c]

Starlight WFT

Starlight OPD

Int. Metrology

WFT requirement

OPD requirement

IM requirement

Figure 15. RMS and RSS of the performance outputs. Circle: Starlight OPD #1. Asterisk: Internal
Metrology OPD #1. Square: Starlight WFT #1.

the SIM model. It can be designed by classical methods like PID, lead-lag or modern control
techniques such as LQG. The optical control here is modelled as a second-order high-pass
filter and the transfer function of one channel is

Ko(s) = s2

s2 + 2�o�os + �2
o

(24)

where �o is the damping ratio of the controller which is set to 0.707 and �o is the corner
frequency, which is treated as a design parameter. This allows conducting a parameter study of
optical controller corner frequency �o [rad/s] (or fo [Hz]). The system consists of the open
loop SIM model (2184 state variables), an ACS designed by the standard LQG approach (e.g.
Reference [22]) and the optical controller as given in (24).

The ACS loop is closed by a rediagonalization by eigenvalue decomposition and the optical
control path is closed by the method described in Sou [12]. There are six input channels
(three forces and three torques), which are driven by the six channels of Magellan reac-
tion wheel assembly disturbance data (see Reference [23]). The outputs are starlight optical
path difference (OPD), internal metrology (IM) and starlight WFT. In the simulation runs,
different closed loop systems with different optical controller corner frequencies (fo) are
formed and the RMS values of the performance outputs are recorded. The result is shown in
Figure 15.

The result in Figure 15 is consistent with the intuition that the more optical control is applied,
the better the performances are. Nevertheless, it can be a problem of cost and implementation
if fo is too high. The results are obtained efficiently with fastlsim and reveal that minimum
optical control bandwidths of 1 Hz for WFT and 10 Hz for OPD and IM are necessary in order
for SIM to meet its scientific requirements.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

FAST TIME-DOMAIN SIMULATION FOR LARGE-ORDER LTI SYSTEMS 703

6. CONCLUSIONS

In this paper, a new time-domain simulation scheme, fastlsim, based on block diagonal-
ization is presented. The targeted systems are large-order, diagonalizable continuous-time LTI
systems. It has been found that diagonalization provides three benefits (dynamics decoupling,
fast discretization and multiple sampling rates) that facilitate the simulation. In conjunction
with the block diagonalization structure of the resultant A matrix, it has been shown that a
sparse matrix recognizable state transition must be employed in order to achieve the O(nsn)

state transition by taking advantage of the resultant sparsity. Problems with feedback and feed-
forward controllers are discussed and the corresponding solutions (e.g. forced decoupling and
rediagonalization without using an iterative eigenvalue solver) are proposed. It is shown, using
randomly generated stable state space systems, that fastlsim outperforms existing algorithms
such as lsim by factors up to 50, while avoiding memory saturation. Surprisingly, this scheme
can achieve the same efficiency as that of fast implementations of frequency-domain and Lya-
punov methods. Real world simulations of complex systems, such as the ≈ 2200-state closed
loop SIM spacecraft, have been enabled and demonstrated.

Future work includes further refinement of error analysis and error control, potential cou-
pling of fastlsim with model reduction, better ways of incorporating cascading filters and
controllers as well the extension of the algorithm on parallel processors and weakly non-linear
systems.

APPENDIX A: ANALYSIS METHODS TO COMPUTE SYSTEM RESPONSE �z

The starting point is a state space system of the form shown in Figure 2. This system can be
open loop or closed loop (i.e. non-zero Ak , Bk , Ck , Dk):

ẋ = Azwx(t) + Bzww(t)

z(t) = Czwx(t) + Dzww(t)
(A1)

Once such an ‘integrated’ model is available, one may want to assess the performance of the
system when its model is subjected to disturbances, w(t). The RMS H2-performance metric
according to Zhou [24] is given as follows:

�z = E[zTz]1/2 =
[

1

T

∫ T

0
z2(t) dt

]1/2

RMS (A2)

The RMS metric is typically used to describe the ‘on-average’ performance of a system. Three
analysis approaches are discussed below that are helpful in obtaining estimates of �z.

A.1. Time-domain simulation (time)

A linear time-invariant system is given in the form of Equation (A1), where x is the state
vector. Equivalently, the system can be described in the frequency-domain by the transfer

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

704 K. C. SOU AND O. L. DE WECK

function matrix

Gzw(�) = Czw

[
j�I − Azw

]−1
Bzw + Dzw (A3)

When measured or synthetically generated time histories of the disturbances w(t) exist, they
can be used for time integration of the state space equations (A1). Once the initial condition
on the state vector, x (t = 0), is specified, numerical integration of (A1) can then be performed
to obtain estimates of the performance time histories z(t). The standard difference method
technique approximates the continuous first-order equation (A1) with a difference equation
such as

(x)n+1 − (x)n

�t
= Azw(x)n + Bzwwn

zn = Czw(x)n + Dzwwn

(A4)

In the simplest approach the state vector (x)n+1 at the n + 1th time step can be found by the
forward Euler method as

(x)n+1 = [�tAzw + I
]
(x)n + �tBzwwn (A5)

This integration method is simple but can diverge easily when �t ��tcrit. Higher order ordinary
differential equation solvers such as ode45 according to Dormand and Prince [10] give better
results, but can be computationally more expensive. An advantage of the time-domain approach
is that transient effects can be observed.

A.2. Frequency-domain analysis (freq)

For linear systems in the time domain, the output can be expressed as a convolution of the
input with the impulse-response function of the system. In the frequency domain (i.e. Laplace
domain), the output is then equal to the input multiplied by the transfer function (matrix). The
disturbance spectral density matrix Sww(�) can be measured experimentally or obtained from
a shaping pre-filter as Sww(�) = Gd(�)GH

d (�). The performance spectral density matrix Szz

can be obtained from Reference [25] as

Szz(�) = Gzw(�)Sww(�)GH
zw(�) (A6)

where Sww is the disturbance spectral density matrix discussed above and Gzw is the open
or closed loop plant transfer function matrix from (A3). The covariance matrix of the perfor-
mances �z (for zero-mean processes) is obtained as

�z = 1

2�

∫ +∞

−∞
Szz(�) d� =

∫ +∞

−∞
Szz(f) df (A7)

The variance of the performance is therefore given by

�2
z = [�z

] = 1

2�

∫ +∞

−∞
[
Szz(�)

]
d�

=
∫ +∞

−∞
[
Szz(f)

]
df = 2

∫ +∞

0

[
Szz(f)

]
df (A8)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

FAST TIME-DOMAIN SIMULATION FOR LARGE-ORDER LTI SYSTEMS 705

Taking the square root of �2
z produces the RMS value. It is important to specify whether a PSD

is one or two sided and given in Hz or rad/s [25]. In practice the upper and lower frequency
integration limits are fmin and fmax, respectively.

�2
z ≈ 2

∫ fmax

fmin

[
Szz(f)

]
df (A9)

It is important to ensure that the frequency range that contributes most to the RMS value is
sufficiently captured within these limits. One way to verify this is by computing the cumulative
RMS function �z,c (fo) as

�z,c (fo) =
[

2
∫ fo

fmin

[
Szz(f)

]
df

]1/2

(A10)

where fo ∈ [fmin . . . fmax]. If most of the energy lies in this range, then �z,c (fmax) should be
very close to the true value of �z. The method requires high-frequency resolution near lightly
damped modes in order to arrive at correct RMS values. Also the frequency-domain method
is not well suited to assess the transient performance of a linear time-invariant system.

A.3. Lyapunov analysis (lyap)

The third type of disturbance analysis can be conducted if the disturbances w are modelled as
the outputs of a pre-shaping filter (Ad , Bd , Cd , Dd) as shown in Figure 2. In order to keep the
disturbance w from having infinite energy, the feedthrough matrix Dd should be zero. If the
system is asymptotically stable, the state covariance matrix obeys the Lyapunov equation [26].

Azd�x + �xA
T
zd + BzdBT

zd = �̇x (A11)

In order to do time integration of the above dynamics, the initial state covariance, �xo , would
have to be specified. Since the white noise disturbance processes, d, are assumed to be station-
ary, the statistics of the state vector are also stationary and �̇x = 0. One may then solve the
steady-state Lyapunov equation of order ns for the state covariance matrix �x of the system.

Azd�x + �xA
T
zd + BzdBT

zd = 0 (A12)

One can pre- and post-multiply with the entire Czd matrix to obtain the performance covariance
matrix �z.

�z = E
[
zzT]= E

[
CzdxxTCT

zd

]= CzdE
[
xxT]CT

zd = Czd�xC
T
zd (A13)

The variances of the individual performances (RMS squared) are then contained on the diagonal
of �z, where �z is of the form

�z =

�z2
1

�z1z2 · · · �z1zn

�z2z1 �2
z2

· · · �z2zn

...
...

. . .
...

�znz1 �znz2 · · · �2
zn

 (A14)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

706 K. C. SOU AND O. L. DE WECK

Thus, the Lyapunov method provides a relatively direct way of arriving at the RMS estimates
(in the sense of statistical steady state) by solving one matrix equation (A12) and computing
a matrix triple product (A13). The main drawback of the Lyapunov approach is that it does
not provide insight into the frequency content of the outputs. The main advantage is that the
answers provided are immune to the frequency resolution (�f) and time step (�t) issues
associated with the other two methods.

APPENDIX B: DEALING WITH HYBRID CLOSED LOOP SYSTEMS

We suggest two options to deal with hybrid closed loop systems:

Continuous-time approximation: If the sampling rate of the control is high enough, then the
digital controller can actually be approximated by a continuous-time system using techniques
like ZOH or bilinear (Tustin) transform. The accuracy of this approximation can be found in
any common digital (or computer) control literature.

Lifting: This is a useful approach to deal with sampled-data control systems analysis prob-
lems. For example, see Chen [27] and Yamamoto [28]. Suppose a discrete-time signal v[n] is
defined as

v = {v[0], v[1], v[2], . . .}
The lifted version of the signal v can be expressed as

v =

v[0]
v[1]

...

v[n − 1]

 ,

v[n]
v[n + 1]

...

v[2n − 1]

 , . . .

where n ∈ Z. If an LTI system is represented as[
A B

C D

]

then its lifted version is defined such that the original inputs and outputs signals are lifted.
That is

An An−1B An−2B · · · B

C D 0 · · · 0

CA CB D
.. . 0

...
...

...
. . .

...

CAn−1 CAn−2B CAn−3B · · · D

 (B1)

The lifting procedure in (B1) basically reduces sampling rate at the expense of an increase
in input and output dimensions. Equivalently, this procedure can be viewed as one of the
applications of the state augmentation technique. The main application of this method in

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

FAST TIME-DOMAIN SIMULATION FOR LARGE-ORDER LTI SYSTEMS 707

the paper is to convert a multiple sampling rates¶¶ system into a single rate (slow rate) LTI
system without losing the effect of fast dynamics. The drawback of this method is the high
resulting dimensionality. Nevertheless, this method can work well in conjunction with the forced
decoupling method discussed previously if the subsystem coupled with the controller is of low
dimension.

ACKNOWLEDGEMENTS

This research was funded by the NASA Jet Propulsion Laboratory under Grant No. JPL 91123 and
was monitored by Dr. Ipek Basdogan. The authors thank Prof. Wallace Vander Velde of MIT for his
helpful comments. The fastlsim simulation package, including source code, a user manual and
examples are available from the corresponding author.

REFERENCES

1. Gutierrez H. Performance assessment and enhancement of precision controlled structures during conceptual
design. Ph.D. Thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics,
1999.

2. de Weck O, Uebelhart S, Gutierrez H, Miller D. Performance and sensitivity analysis for large order
linear time-invariant systems. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
September, 2002, Atlanta, GA, USA.

3. de Weck O. Multivariable isoperformance methodology for precision opto-mechanical systems. Ph.D. Thesis,
Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, September, 2001.

4. Mallory G, Miller D. Increasing the numerical robustness of balanced model reduction. Journal of Guidance,
Control, and Dynamics 2002; 25(3):596–598 (Engineering notes).

5. Willcox K, Peraire J. Balanced model reduction via the proper orthogonal decomposition. 15th AIAA
Computational Fluid Dynamics Conference, June, 2001, Anaheim, CA, USA.

6. Beran P, Silva W. Reduced-order modelling: new approaches for computational physics. 39th Aerospace
Sciences Meeting and Exhibit, January, 2001, Reno, NV, USA.

7. Giesing J, Barthelemy J-F. A summary of industry MDO applications and needs. 7th AIAA/USAF/NASA/

ISSMO Symposium on Multidisciplinary Optimization and Analysis, AIAA Paper No. 98-4737, September,
1998, St. Louis, MO, USA.

8. Sobieszczanski-Sobieski J, Haftka R. Multidisciplinary aerospace design optimization—survey of recent
developments. AIAA 34th Aerospace Sciences Meeting and Exhibit, January, 1996, Reno, NV, USA.

9. Anderson M, Mason W. An MDO approach to control-configured-vehicle design. The 6th AIAA, NASA, and
ISSMO, Symposium on Multidisciplinary Analysis and Optimization, September, 1996, Bellevue, WA, USA.

10. Dormand JR, Prince PJ. A family of embedded Runge–Kutta formulae. Journal of Computational and Applied
Mathematics 1980; 6:19–26.

11. The Mathworks Inc. MATLAB, Control Systems Toolbox, Version 6.5.1, Release 13, August 2003.
12. Sou KC. Fast time domain simulation for large order hybrid systems. Master Thesis, Massachusetts Institute

of Technology, Department of Aeronautics and Astronautics, May, 2002.
13. Andrew G. Control System Toolbox User’s Guide. The MathWorks, Inc.: Natick, MA, 1996.
14. Reich S. Multiple time scales in classical and quantum classical molecular dynamics. Journal of Computational

Physics 1997; 151(1):49–73.
15. Oppenheim A, Schafer R, Buck J. Discrete-time Signal Processing (2nd edn). Prentice-Hall: Englewood

Cliffs, NJ, 1999.
16. Franklin G, Powell J, Workman M. Digital Control of Dynamic Systems (2nd edn). Addison-Wesley: Reading,

MA, 1990.

¶¶Sometimes the sampling rate of the plant is much higher than that of the controller, in order to represent
the plant dynamics accurately, see Chen [27] for more details. Note also that a multiple sampling rate system
is time-variant.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

708 K. C. SOU AND O. L. DE WECK

17. Åström K, Wittenmark B. Computer-Controlled Systems: Theory and Design. Prentice-Hall, Inc.: Englewood
Cliffs, NJ, 1997.

18. Chen C. Linear System Theory and Design. Oxford University Press: Oxford, 1999.
19. NASA Jet Propulsion Laboratory. Internet link: http://sim.jpl.nasa.gov/.
20. Miller D, de Weck O, Uebelhart S. Integrated dynamics and controls modeling for the space interferometry

mission (SIM). IEEE Aerospace Conference, March, 2001, Big Sky, MT, USA.
21. Laskin R. SIM dynamics and control requirement flowdown process. Presentation at the SIM Project

Preliminary Instrument System Requirements Review, JPL, March, 1998; 17–18.
22. Bélanger P. Control Engineering: A Modern Approach. Saunders College Publishing: Fort Worth, 1995.
23. Elias L. A Structurally Coupled Disturbance Analysis Method Using Dynamic Mass Measurement Techniques,

with Application to Spacecraft—Reaction Wheel Systems. Massachusetts Institute of Technology, Department
of Aeronautics and Astronautics, March, 2001.

24. Zhou K, Doyle JC, Glover K. Robust and Optimal Control. Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1996.
25. Wirsching PH, Paez TL, Ortiz H. Random Vibrations: Theory and Practice. Wiley: New York, 1995.
26. Gelb A. Applied Optimal Estimation. The MIT Press: Cambridge, MA, 1974.
27. Chen TW, Francis B. Optimal Sampled-Data Control Systems. Communications and Control Engineering

Series. Springer: London, 1995.
28. Yamamoto Y. A function space approach to sampled data control systems and tracking problems. IEEE

Transactions on Automatic Control 1994; 39(4):703–713.
29. Golub G, Van Loan C. Matrix Computations (3rd edn). The Johns Hopkins University Press: Baltimore,

MD, 1996.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:681–708

