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ABSTRACT
This paper reports measurements of static and dynamic elastic properties plus com-
pressive strength performed on a block of calcareous mudstone retrieved from an
exploration well. Measurements of mechanical properties indicate that the mudstone
is anisotropic with respect to all three properties. A detailed analysis of the elas-
tic moduli computed using small unload reload cycles and simultaneous ultrasonic
wave velocities shows both strong anisotropy and strong anelasticity. Surprisingly,
the measurements are consistent with a mathematical description of a special type of
anisotropic linear viscoelastic medium that is obtained by adding a set of compliant
elements (e.g., contacts between clay particles, kerogen lenses, or micro-fractures)
to an isotropic viscoelastic solid. This medium is fully characterized by density plus
four parameters defining the viscoelastic solid and the excess normal compliance
associated with the compliant elements. The mathematical model predicts a full set
of parameters characterizing a transversely isotropic medium with a vertical axis of
symmetry (a ‘tiv’ medium) for both low- and high-strain rate behaviour.
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INTRODUCTION

This study describes and analyses measurements made on a
block of mudstone recovered from the top-hole section of a
difficult-to-drill exploration well during a hole cleaning oper-
ation. Wellbore instability in shale and mudstone is not news.
But, it is unusual that large samples of the problem forma-
tion are retrieved from an exploration well. When a driller
is faced with wellbore instability, the first thing he wants to
know is what mud weight should be used to stop it. Answer-
ing this question requires information about the mechanical
properties and the state of stress in the problem formations,
or at least a reasonable approximation of them. For the case
in question, there were no logs or cores from anywhere on

∗E-mail: demiller@mit.edu; demiller@millerappliedscience.com;
rplumb@plumbgeomechanics.com; boitnott@ner.com

the structure. So our rock sample provided the first opportu-
nity to characterize the mechanical properties of the problem
formation.

It is widely accepted that fine-grained argillaceous rocks
are anisotropic with respect to elastic moduli and compres-
sive strength. Moreover, elastic moduli measured in standard
triaxial compression tests are commonly found to be signif-
icantly smaller than those computed from bulk density and
elastic wave velocities measured on the same rock either in
the lab or in the field.

Most observations of shales, including ours, are consis-
tent with the hypothesis that the medium is symmetric un-
der rotation around an axis perpendicular to the horizon-
tal bedding. Such media are generally termed ‘transversely
isotropic’ (Amadei, Swolfs and Savage 1987; Jaeger, Cook and
Zimmerman 2007) and often referred to as ‘TIV’ or ‘VTI’, the
‘V’ indicating that the symmetry axis is vertical. Crystals with
hexagonal symmetry exhibit TIV elastic behaviour.
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There is a rich literature analysing shales as anisotropic elas-
tic media (e.g., Hornby et al. 1995; Amadei 1996; Hornby
1998; Sayers 2005; Suarez-Rivera et al. 2006). There is also
substantial literature documenting the need to go beyond pure
elasticity when comparing elastic measurements made at dif-
ferent temporal frequencies (e.g., Cheng and Johnson 1981;
Spencer 1981; Jackson 1993; Lakes 1998; Shearer 2009).
There is relatively little work combining the two contexts.
Biot (1954) described the essential theoretical framework and
applied it to isotropic and cubic media. A number of papers
report measurements of VTI moduli from ultrasonic measure-
ments made under varying loads (Lo, Coyner and Toksöz
1986; Hornby 1998; Dewhurst and Siggins 2006). Sarout and
Gueguen (2008a, b) reported on ultrasonic measurements un-
der various loading conditions and fitted a micromechanical
model to the measurements but they evidently did not per-
form unload-reload cycles or analyse the quasi-static elastic
behaviour of their stress-strain curves. Sone (2012) reported
both quasi-static and ultrasonic measurements made on a va-
riety of shale samples but did not convert the quasi-static
measurements to moduli suitable for comparison with the ul-
trasonic moduli. Hofmann (2006) described both reload cycle
measurements of quasi-static moduli as a function of cycle
rate and ultrasonic measurements on the same pair of shale
samples. Both sets of measurements were converted to com-
parable forms and ‘significant dispersion effects between the
low frequency and ultrasonic frequency range’ were reported.

Our observations will be presented in a form that is as in-
dependent of theory and prior expectation as we can make it.
However, discussion of the observations will be carried out
in the context of linear viscoelasticity (e.g., Biot 1954; Lakes
1998; Carcione 2001; Shearer 2009). For pure linear elasticity,
the coefficients in Hooke’s law, which defines a linear rela-
tionship between stress and strains, are real and independent
of the strain rate. Linear viscoelasticity admits anelasticity of a
particularly tractable form: a linear viscoelastic medium satis-
fies a rate-dependent form of Hooke’s law that can be thought
of as a family of rate-dependent, complex-valued elastic
tensors.

A key observable for all linearly viscoelastic materials is
that stiffness is an increasing function of strain rate. Hofmann
(2006) included a thorough survey of the literature related
to anelastic properties of shales and analysed measurements
on a pair of shale samples in a way that is similar to what
we do here. Our study presents data on a mudstone with
distinctly different composition and texture than those stud-
ied by Hofmann (2006). We also include some discussion,
absent in Hofmann (2006), of possible mathematical regular-

ities connected to microstructural models. The observational
parts of the present paper require little from viscoelasticity
beyond the notion that elastic measurements of the same ma-
terial at different strain rates may give different answers that
reflect the same underlying morphological symmetry (e.g.,
VTI). Additional details will be reviewed in the discussion
section.

Another seemingly important observation from our present
study is that the slope of the cross-plot between axial stress
and radial strain for reload cycles is, to experimental accu-
racy, identical when measured on plugs cut normal and par-
allel to bedding. This translates to an observation that there
are only four independent VTI moduli (at the given strain
rate) and that the material responds as an isotropic material
to which horizontally aligned excess compliances have been
added. Not all shales exhibit such behaviour. For example,
Miller, Horne and Walsh (2012) described a complete set of
sonic log measurements from a gas-shale formation that is, to
experimental accuracy, inconsistent with this type of simpli-
fication. The simplification is, however, an important special
case. For example, Sayers (2008) assumed this simplification
when developing a theory of microstructural behaviour and
applied this theory to a set of measurements of a muscovite
sample by Alexandrov and Ryzhova (1961).

In the following sections we describe the rock, laboratory
tests performed on it and an analysis of those measurements.
Results of the mechanical testing are presented in two parts.
The first part discusses the test protocol and basic observations
concerning the static moduli and strengths as a function of
confining pressure. Observations made within this context
illustrate the interrelationships of key mechanical properties
needed to build a geomechanical model for this material.

The second part of the paper makes a detailed analysis of
measurements performed on one pair of plugs, comparing
elastic properties estimated from unload-reload cycles with
those estimated from ultrasonic tests. We find that the data
for this particular pair exhibit both strong anisotropy and
strong anelasticity. Both measurements detect that the mate-
rial is stiffer in the plane of the bedding than in planes normal
to bedding and the ultrasonics observe a stiffer medium than
the quasi-static unload-reload cycles. The surprising obser-
vation is that the two phenomena appear to be linked: the
ratio between the ultrasonic and quasi-static stiffnesses is the
same as the ratio between the horizontal and vertical shear
stiffnesses measured either way. Our observation is consistent
with a physical model in which horizontally aligned excess
compliances are added to a particular type of isotropic vis-
coelastic medium.
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Figure 1 Sample of the mudstone recovered from the exploration well.
Marks indicate the location of the 20 mm plug samples cut parallel
and perpendicular to the bedding.

The paper is by no means a comprehensive survey of
strength, anisotropy and anelasticity in shales. In fact it is the
opposite: it is a terse but reasonably complete examination of
one particular mudstone. Figures show the sample as a whole,
the locations where the plugs were cut, the data extracted from
the plugs, as well as the fit of a model that has surprising but
clearly observable regularity in its anelastic properties. Given
the small number of measurements, we found it practical to
display all the data used in the detailed analysis and to anno-
tate them with extracted slopes, time picks and precisions. We
invite the reader to directly compare the observed regularities,
fits and misfits in order to judge their significance.

ROCK CHARA C T E R I Z A T I ON

The rock described in this paper is a calcareous mudstone re-
trieved from the top-hole section of an exploration well during
a hole cleaning operation (Fig. 1). Several blocks of rock like
the one shown in Fig. 1 comprise two textures: a calcareous
mudstone and fine-grained calcareous grainstone. The focus
of this paper is the mudstone as it was responsible for the
majority of the wellbore instability problems. Two mudstone
blocks (denoted ‘1a’ and ‘1b’) were processed to obtain three
20 mm diameter plugs from each. Figure 1 shows block 1b
with markings indicating the locations where plugs 1bv1 (per-
pendicular to the bedding) and 1bh1a (parallel to the bedding)
were obtained. In order to orient the plugs properly, pieces
were trimmed from the samples, hand polished and examined
by a scanning electron microscope. Hand polishing with a
small amount of water was found to enhance the exposure

of the grain-scale fabric of the mudstone. This observation
ensured that the plugs were cut parallel and normal to the de-
positional fabric (bedding). After preparation, these two plugs
were respectively 34.5 mm and 42.3 mm long.

Figure 2 shows backscattered electron microscope images of
the mudstone taken at three different magnifications. Bedding,
visible in all three images, is defined by pyrite nodules (bright
components).

Modal mineralogy, expressed as per cent by weight, was
measured using a scanning energy dispersive X-ray system.
The mineral assemblages obtained for the mudstone samples
cut parallel and perpendicular to bedding were similar to each
other whereas those of the mudstone and the grainstone were
distinctly different (Table 1).

Figure 3 shows a mineral map of a 4 cm × 9 cm section
of the mudstone. The map demonstrates that smectite clay
minerals form the continuous, load-bearing solid phase in the
mudstone (olive green). Floating in the clay are grains of ser-
pentine (brown), calcite and dolomite (blues). There is little
illite and no significant cementation.

The porosity estimated for the mudstone is approximately
9%. Porosity was computed from measurements of grain
density and bulk density. Plug ends were used to obtain a
measure of grain density. They were crushed, pulverized
and then vacuum oven dried at 110◦C prior to testing in a
helium pycnometer. These density porosities may be slightly
underestimated because they neglect effects of adsorbed
water in the plug samples (room dry condition).

MECHANICAL TESTING

The primary objective of the laboratory testing was to mea-
sure the parameters required by standard geomechanics soft-
ware: Young modulus, Poisson ratio, unconfined compressive
strength and friction angle. Toward this end, axial compres-
sion tests to failure were run at confining pressures of 0 MPa,
20 MPa and 40 MPa according to ISRM standards (Brown
1981). One vertical and one horizontal plug were processed at
each confining stress. The plugs indicated in Fig. 1 were tested
at 0 MPa confining pressure. Compression tests to failure were
performed on room dry samples.

Tests were conducted using a New England Research Au-
tolab 1500 system. Figure 4 shows some of the details of the
system, which is designed to acquire axial ultrasonic mea-
surements while monitoring stress and strain under servo-
controlled confining pressure and axial differential loading.
Axial loading at fixed confining pressure was controlled in
displacement feedback. Results from a similar system were
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Table 1 Mineralogy determined by a scanning energy dispersive X-
ray system. All reported values are per cent by weight.

Mineral Calcareous Mudstone Carbonate Grainstone

parallel perpendicular parallel perpendicular

Quartz 2.6 2.6 8.5 8.3
Calcite 12.8 15.3 36.2 40.7
Dolomite 1.2 1.4 4.1 4.0
Albite 0.7 0.8 1.6 1.7
K-feldspar 2.9 1.5 5.0 3.8
Illite 1.8 0.9 0.8 0.7
Smectite 60.0 59.3 22.2 19.7
Serpentine 14.7 14.7 17.3 16.9
Chlorite 1.7 1.7 2.5 2.6
Pyrite 1.0 1.2 0.6 0.5
Rutile 0.3 0.4 0.2 0.2
Chromite 0.0 0.0 0.4 0.4
Fe-oxides 0.0 0.0 0.4 0.3
Others 0.3 0.2 0.2 0.2
Total 100 100 100 100

reported by Sone (2012). Hofmann (2006, section 3.2.2) de-
scribed and analyzed similar measurements made on a pair
of shales of similar composition but dissimilar porosity (25%
and 7.5%). The 9% porosity of our mudstone lies between
these values. Hofmann’s shales are mineralogically quite dif-
ferent from our mudstone, having significant amounts of
quartz, kaolinite and illite and insignificant amounts of calcite
and smectite.

Sample deformation was measured using strain gauges
bonded directly to the plug sample. In the case of the un-
confined compression tests, samples were instrumented with
two axial and two radial strain gauges, each diametrically
opposite the other similarly oriented gauge (Fig. 4). For
tests at elevated confining pressure, only one radial gauge
was used. For the horizontal plugs, radial gauges were ori-
ented at 45◦ to the bedding to provide an average radial
response. The active area of each gauge was 0.25”× 0.25”
(6.35 mm × 6.35 mm). 22 mm diameter ultrasonic transduc-
ers were connected to tapered titanium endcaps to enable axial

Figure 2 Backscattered Scanning Electron Microscope images of the
mudstone sample: (a) 50× magnification showing homogeneous tex-
ture and traces of bedding; (b) 312× magnification showing bedding
defined by organic matter (dark) and pyrite nodules (bright) but no
cementation; (c) 1250× magnification showing a high-volume frac-
tion of clay minerals. Some of the porosity, visible at the boundaries
between different mineral phases, may be artefacts of unloading.
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Figure 4 Photograph of a sample stack (left), a close-up photograph of a gauged sample (centre) and a diagram of sample instrumentation for
a horizontal sample (right). For vertical samples, the gauge pattern was similar but placement was with respect to an arbitrary direction.

compressional and orthogonally polarized shear propagation
speed measurements.

A similar test protocol was carried out on each plug.
Figure 5 shows the stress-strain cross-plot for the protocol
as run on the pair tested at zero-confining pressure. Periodic
small amplitude (5 MPa) unload-reload cycles were performed
to obtain a measure of reloading moduli as a function of de-
formation. Ultrasonic velocities were measured prior to each
unloading cycle, providing a comparison of dynamic moduli,
calculated from ultrasonic data, with the quasi-static loading
and reloading moduli. The duration of the run was about 1
hour. Unload-reload cycles were of about 4 minutes duration.

Relative to the reload cycle measurements, the ultra-
sonic measurements have significantly lower strain ampli-
tudes (roughly 3E-7 for ultrasonics, 2E-4 for reload cycles)

Figure 5 Example of stress versus strain results for a typical pair of
tests. Tick marks on the vertical axis indicate the differential axial
strain levels where ultrasonic recordings and unloading cycles were
performed. Black dashed and dotted curves are from individual strain
gauges. Coloured curves show the average response of each of the
redundant pair of gauges.

but significantly higher strain rates (roughly 100 s−1 for ul-
trasonics, 4E-6 s−1 for reload cycles). A detailed discussion of
the ultrasonic and reload-cycle data will be given in the next
section.

Compressive strengths were measured by manually identi-
fying the maximum differential axial stress attained during
the test. Samples were taken at various stages of post failure
depending on particular circumstances of the test.

Strength results are summarized graphically in Fig. 6.
Strengths plotted in Mohr-Coulomb space yield two linear
and parallel failure envelopes, with a suggestion of downward
curvature in the horizontal plugs at the highest stresses. The
slope of the envelopes, known in rock mechanics literature as
the ‘angle of internal friction’, (e.g., Jaeger et al. 2007, section
4.5) is 22 degrees.

Figure 6 Measured strengths (shear stress at failure) as a function of
normal stress.

C© 2013 European Association of Geoscientists & Engineers, Geophysical Prospecting, 61, 315–328
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Table 2 Summary of test results. Plugs labelled 1*v* are cut perpendicular to the bedding. Plugs labelled 1*h* are cut parallel to the bedding.

Plug Confining Compressive Load Unload-Reload
Pressure (MPa) Strength (MPa)

Young Poisson Young Poisson
Modulus (GPa) Ratio Modulus (GPa) Ratio

1bv1 0 31 4.6 0.06 9.1 0.09
1av1 20 76 4.9 0.12 13.4 0.18
1av2 40 119 4.9 0.11 14.3 0.22
1bh1a 0 53 9.1 0.19 15.3 0.17
1ah1 20 97 8.9 0.06 16.7 0.17
1bh1b 40 124 7.6 0.07 15.4 0.15

A summary of the conventional rock mechanical parame-
ters derived from the tests is shown in Table 2. The results
exhibit the expected anisotropy with respect to loading direc-
tion, with the horizontal plugs yielding systematically greater
Young moduli and compressive strengths than the vertical
plugs. Note that the tabulated Young moduli and Poisson ra-
tios were calculated directly from slopes of the load or reload
cross-plots and, while they need to be properly interpreted,
no assumption of isotropy was used in this calculation.

In summary we find for the mudstone:
� The compressive strength is greater measured parallel to

bedding than perpendicular to it.
� All measured elastic moduli are greater measured parallel

to bedding than perpendicular to it.
� Both the Young modulus and Poisson ratio are greater when

measured on unload-reload cycles than when measured by
the tangent to the initial load curve.

� There is a strong dependence of compressive strength on
confining pressure whereas the dependence of elastic mod-
uli on confining pressure is relatively weak.

� The magnitude of anisotropy in the unload-reload Young
modulus decreases with increasing confining pressure.
In the next section, we will focus on the constitutive proper-

ties of the mudstone as measured at zero-confining pressure.

CALCULATION OF ANISOTROPIC ELASTIC
M O D U L I

In this section we will make a detailed comparative analysis of
the elastic behaviour of the pair of plugs 1bv1 (perpendicular
to the bedding) and 1bh1a (parallel to the bedding) as tested
at about 15 MPa differential axial load and zero radial load.
It is the pair with the most complete set of measurements and
with the closest match between the locations where the plugs
were cut. We will first attempt to summarize the observations

on this pair of plugs in a way that is as neutral as possible
with respect to prior expectations. Next we will identify a
simple mathematical model (with four free parameters) that
is consistent with the observed data.

Observations

Figure 7(a) shows the reloading cycles closest to 17 MPa
differential stress from the data shown in Fig. 5. Note that
whereas the overall load curves are concave downwards and
show significant variability between the redundant pairs of
gauges, the reloading cycles are remarkably linear and con-
sistent. There are eight cycles plotted in Fig. 7(a). They are
difficult to distinguish because the redundant pairs match re-
markably well and because the radial cycles for the two plugs
match each other.

Slopes in reload-cycle measurements on axial plugs under
constant confining pressure are simply related to elastic com-
pliances. Hofmann (2006) discussed general relations between
gauge readings and components of a compliance tensor. For
our simple set-up, the slopes labelled ‘VA’, ‘VR’ and ‘HA’ in
our Fig. 7 correspond directly to S33, and S11. The radial mea-
surement ‘HR’ that was made at 45◦ to the bedding on the
horizontal plug is slightly more complicated (Hofmann 2006,
Table 3.2): it corresponds to the average of S13 with S12. Thus,
the observed match between the radial cycles for the two plugs
leads to a conclusion that S12 = (S12 + S13)/2 and hence that
S12 = S13.

Table 3 summarizes the compliance values determined from
the slopes shown in Fig. 7. Precision estimates in Table 3
match the width of the zones indicated by dotted lines in
Fig. 7.

Figure 8 shows axial ultrasonic data recorded closest to
the reloading cycles shown in Fig. 7. Since the recordings are
made with plugs sandwiched between metal connection heads,

C© 2013 European Association of Geoscientists & Engineers, Geophysical Prospecting, 61, 315–328
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Figure 7 (a) Reloading cycles nearest to 17 MPa for six strain gauges.
VA1 and VA2 are axial gauges on the vertical plug. VR1 and VR2
are the radial gauges on the vertical plug, etc. (b) Root mean square
(RMS) misfit as a function of the slope �ε/�σ of lines approximating
the reloading cycles shown in (a). Coloured dashed lines indicate best
fit. Black dashed lines in both figures mark lines with the RMS misfit
equal to twice that of the best fit.

Table 3 Observed compliances and estimated precisions from the
reload cycle data shown in Fig. 7.

Compliance Horizontal Plug Vertical Plug Units

S11 S12 S66 S33 S13

73.1 −12.1 170.5 120.1 −12.1 1/MPa
±8 ±3.5 ±7 ±22 ±3.5

the zero-time reference is established by picking time-breaks
on waveforms (shown in brown and labelled ‘S0’, and ‘P0’)
recorded with the heads in contact. For each plug and mode
of propagation shown in Fig. 7, the associated amplitude-
normalized waveform is plotted as a function of normalized
propagation time – each time sample has been scaled by the
reciprocal of the plug length. Thus, the apparent delay is ex-

actly proportional the reciprocal of the propagation speed
(slowness) for the given mode and plug. For each plug and
mode, three waveforms are plotted, the central waveform be-
ing the one recorded just before the reload cycle closest to
17 MPa. The adjacent waveforms were recorded just before
the preceding and following reload cycles. The first index on
the trace labels indicates plug orientation, the second index
labels polarization. Thus, ‘11’ labels the compressional mea-
surement on the horizontal plug, ‘13’ is the vertically polarized
shear on the horizontal plug, etc.

The dotted lines give the conservative estimates of the pre-
cision of the estimated velocities. Note that three sets of wave-
forms, labelled ‘13’, ‘31’, and ‘32’, which are respectively the
vertically polarized shear on the horizontal plug and the two
orthogonally polarized shears on the vertical plug, all have
essentially the same wave speed. The match of 31 with 32 is
clear evidence for transverse isotropy. The roughly 4% mis-
match between the slow shear on the horizontal plug and both
shears on the vertical plug is likely to be the combined result of
sample heterogeneity and the different effect of axial loading
on the two plugs. In view of the apparent stress sensitivity of
the shear on the vertical plug and lack thereof on the horizon-
tal plug, the response to loading appears to be the stronger
effect.

Ultrasonic measurements are simply related to elastic mod-
uli. The diagonal elements of the stiffness matrix Cij are related
to the squared speeds for wave propagation in the vertical
and horizontal directions. For velocities, we use the conven-
tion that the first subscript indicates the direction of prop-
agation and the second subscript indicates the direction of
polarization. V11 = √

C11/ρ is the wave speed for horizon-
tally propagating compressional vibration; V12 = √

C66/ρ, the
wave speed for horizontally propagating shear vibration with
horizontal polarization; V31 = V13 = √

C55/ρ, the wave speed
for vertically propagating shear vibration, as well as for hor-
izontally propagating shear vibration with vertical polariza-
tion; V33 = √

C33/ρ, the wave speed for vertically propagating
compressional vibration.

Table 4 summarizes the velocities estimated from the wave-
forms in Fig. 8, together with precision estimates and the
computed moduli. Precision estimates in Table 4 match the
width of the zones indicated by the dotted lines in Fig. 8.

COMPLIANCES AND M ODULI

This section examines relationships between the compliances
determined from the reload cycles and the velocities measured
from the ultrasonic data. Using Voigt notation (Voigt 1928;

C© 2013 European Association of Geoscientists & Engineers, Geophysical Prospecting, 61, 315–328
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Figure 8 Ultrasonic data. The central waveform in each group was recorded just before a reload cycle at 17 MPa, shown in Fig. 7. The 1st index
on the trace labels (left of the plot) indicates plug orientation and the 2nd index labels polarization.

Table 4 Observed velocities, estimated precisions and calculated moduli from the ultrasonic data shown in Fig. 8.

Velocity Horizontal Plug Vertical Plug Units

V11 V12 V13 V33 V31 V32

2.852 ± 0.03 1.849 ± 0.04 1.519 ± .06 2.248 ± 0.03 1.580 ± 0.06 1.576 ± 0.06 km/s

Modulus C11 C66 C55 C33 C55 C44

19.4 8.14 5.49 12.0 5.94 5.91 GPa

Jaeger et al. 2007) as above, Hooke’s law can be written either
in terms of a stiffness matrix C giving stresses as a function of
strains:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ13

σ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13

C12 C22 C23

C13 C23 C33

C44

C55

C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

or in terms of a compliance matrix S giving strains as a func-
tion of stresses

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13

S12 S22 S23

S13 S23 S33

S44

S55

S66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ13

σ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The above expressions are the general form for a medium
in which each coordinate plane is a plane of mirror symme-
try (an ‘orthotropic medium’). When the medium is VTI, the
additional relations:

C44 = C55, C11 = C22, C13 = C23,

C11 = C12 + 2C66,

S44 = S55, S11 = S22, S13 = S23,

S11 = S12 + S66/2,

(3)

are satisfied and the nine independent parameters are reduced
to five. Some of them have names and common abbreviations
in engineering literature (e.g., Amadei et al. 1987). 1/S11, com-
monly abbreviated to E, is the ‘Young modulus in the plane
of isotropy’. 1/S33, commonly abbreviated to E′, is the ‘Young
modulus normal to the plane of isotropy’. −S13/S33, commonly
abbreviated to ν ′, is the ‘Poisson ratio normal to the plane of
isotropy.’ C66, commonly abbreviated to G or μ, is the ‘shear
modulus in the plane of isotropy’, etc. We will use the terms
‘modulus’ and ‘stiffness’ as synonyms and we will refer to the
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3 × 3 upper left block of C or S as the ‘compressional block’
and the diagonal 3 × 3 lower right block as the ‘shear block’.

When written as in equations (1) and (2), the modulus and
compliance tensors are matrix inverses to one another:

[Si j ] = [Ci j ]−1. (4)

Because the shear block of each matrix is diagonal, the shear
moduli and shear compliances are reciprocals of one another:

S44 = C−1
44 , S55 = C−1

55 , S66 = C−1
66 . (5)

The equations for compressional moduli in terms of com-
pressional compliances are more complicated but can be
simply derived from the expression for the matrix inverse
from the compressional block of equation (2), combined
with simplifications resulting from the VTI symmetries equa-
tion (3). They are (Jaeger et al. 2007; Lubarda 2008,
section 5.10):

C11 = S11 − S2
13/S33

S11 − S12
C, (6)

C12 = − S12 − S2
13/S33

S11 − S12
C, (7)

C13 = − S13

S33
C, (8)

C33 = S11 + S12

S33
C, (9)

where

C = 1
S11 + S12 − 2S2

13/S33
. (10)

The above equations are for calculating moduli from given
compliances. To calculate compliances from moduli, one sim-
ply interchanges the letters ‘C’ and ‘S’ in all expressions. We
will refer to these dual equations as (S6)–(S10).

Using these equations, the compliances measured by the
reload cycles can be converted to moduli for comparison with
those derived from the ultrasonic data. Table 5 summarizes
this comparison (units are GPa).

The comparison is both striking and puzzling. There is a
highly significant mismatch between the values that are com-
puted twice, i.e., from both reload cycles and ultrasonics.
While it is not surprising that the ultrasonics observe a stiffer
medium than the reload cycles, the ratio between the reload
and ultrasonic moduli is remarkably consistent and is quite
close to the ratio C66: C55 of shear moduli estimated from the
ultrasonic data.

Table 5 Comparison of moduli calculated from
reload cycles and from the ultrasonic data. Boldface
values are cross-plotted as red dots in Fig. 9.

C11 C66 C33 C13 C55

Reload 14.4 5.87 8.67 1.72
Ultrasonic 19.4 8.14 12.0 5.70
Ratio 1.35 1.39 1.38

Moduli from Table 5 are plotted in Fig. 9. The straight line
fit to the moduli corresponds to a strict linear relationship:

CU
i j = φ CR

i j , (11)

with a value φ = 1.40. The three red dots are a cross-plot of
the moduli {C11, C66, C33} from the first two rows of Table 5.

Table 6 summarizes the calculations for the moduli indi-
cated by black symbols in Fig. 9. It enforces the relationship
(11) plus the relationship:

φ = CU
66

/
CU

55 . (12)

Our value for φ was determined using a simple Matlab rou-
tine (lsqnonlin) to minimize the squared difference between
the boldface measurements in Tables 3 and 4 and the cor-
responding values calculated from the moduli derived from
equation (11) and listed in boldface in Table 6. Rows labelled
‘R’ fit the reload cycle measurements. Rows labelled ‘U’ fit
the ultrasonic data. The calculated ratio (1.40) applies to all
columns, as well as to the ratio C66/C55 in either row. Calcu-
lated slownesses are included for comparison with Fig. 8. Note
that the 1st subscript on the velocities indicates plug orienta-
tion, the 2nd subscript labels polarization whereas subscripts
on moduli and compliances follow Voigt convention. Thus
for example, V12 corresponds to C66 and V13 corresponds to
C55.

Figure 9 Cross-plot of measured reload and ultrasonic moduli. Red
dots correspond to boldface moduli from Table 5.
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Table 6 Best-fit proportional moduli with compliances and velocities calculated from those moduli. Note that the first subscript on the velocities
indicates plug orientation and the second subscript labels polarization whereas subscripts on moduli and compliances follow Voigt’s convention.

Moduli C11 C12 C13 C33 C55 C66 Units

R 13.85 2.280 1.496 8.577 4.125 5.785 GPa
U 19.42 3.198 2.099 12.03 5.785 8.113 GPa
Ratio 1.402

Compliance S11 S12 S13 S33 S55 S66

R 75.25 −11.12 −11.12 120.5 242.4 172.9 1/MPa
Velocity V11 V12 V13 V33 V31 V32

U 2.857 1.846 1.559 2.248 1.559 1.559 km/s
Slowness 1/V11 1/V12 1/V13 1/V33 1/V31 1/V32

U 350.0 541.7 641.4 444.8 641.4 641.4 μs/m

FRACTURED V I SC OE LA ST I C MODELS

The foregoing was as purely observational (in contrast to the-
oretical) as the authors could make it. All of the data are
shown in Figs. 7 and 8. All of the observations can be sum-
marized by the statement that the coloured dotted lines in the
two figures fit the data. Both the fit and the precision of the
fit can be evaluated by inspection of the figures.

A simple physical model that is consistent with these mea-
surements can be found in the domain of linear viscoelasticity.

The theory of linear viscoelasticity is well-established (e.g.,
Biot 1954; Lakes 1998; Carcione 2001; Shearer 2009). A
linear viscoelastic medium satisfies a rate-dependent form
of Hooke’s law that can be thought of as a family of rate-
dependent, complex-valued elastic tensors. A key observable
for all linearly viscoelastic materials is that stiffness is an in-
creasing function of strain rate.

While the theory was developed in full anisotropic gener-
ality, most of the literature has been directed at man-made
isotropic materials. Hofmann (2006) and Sone (2012) are the
only experimental studies of shales aimed at an anisotropic
viscoelastic description that we know of.

A mathematically simple form of viscoelasticity that has
been studied in connection with solid earth seismology (e.g.,
Shearer 2009 section 6.6.4) is the standard linear solid, which
adds rate-dependent terms to Hooke’s law and is character-
ized by a pair of relaxation time constants whose ratio (the
relaxation ratio) is equal to the ratio between unrelaxed and
relaxed moduli.

MU = MR

(
τε

τσ

)
. (13)

In its simplest mathematical form, a single relaxation ratio
suffices for all moduli (shear, Young, bulk, etc.) though this

is not required by a physical theory. More general viscoelastic
physical models can be constructed as superpositions of simple
mechanisms in order to fit measured dispersion properties. In
all cases, the behaviour has limiting form equation (13). Biot
(1954) described a general version of the theory and treated
the special case of cubic (but not transversely isotropic) media.

Comparison of equation (13) with equation (11) shows that
our observed linear relationship is interpretable as a statement
that {C11, C66, C33} share a single relaxation ratio φ. These
three moduli, together with C13, are recognized as the moduli
occurring in the compressional block of the Hooke tensor.

A key observation from the reload cycles is the match be-
tween S12 and S13. Hofmann (2006, Fig. 3.20) showed mea-
surements of compliance as a decreasing function of frequency
from 3 Hz to 800 kHz for his two shale samples. Data shown
in his figure show a match between S12 and S13 similar to what
we observe but he did not comment on this feature of the data.

When the condition

S12 = S13, (14)

is satisfied in a VTI medium, the compliance tensor S can
be written as S = Sb + D where Sb is the compliance matrix
of a background isotropic medium with Young modulus S11

and Poisson ratio S12/S33 and D a diagonal matrix with three
non-zero entries defined by

D33 = BN = S33 − S11, D44 = D55 = BT = S55 − S66,

(15)

where BN and BT are excess normal and tangential compli-
ances. Under these circumstances, the number of independent
moduli is reduced from five to four. It is a consequence of
equations (6)–(10) that equation (14) is equivalent to:

(C13 + C33)(C13 + 2C66) = C33(C13 + C11). (16)
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If any three of the four quantities {C11, C66, C33, C13} are
specified, the fourth can be determined by enforcing equa-
tion (16).

Sayers (2008) and Sayers and Kachonov (1995) described a
physical theory that associates these excess compliances with
tensorial averages of excess compliances from a distribution of
small, low aspect-ratio cracks. Schoenberg and Douma (1988)
described an equivalent formulation that associated the excess
compliances with fractures interpreted as the zero-thickness
limit of thin compliant layers in an effective medium theory.
We find it convenient to define the dimensionless ‘excess nor-
mal and tangential compliance ratios’

χN = S33/S11 χT = S55/S66. (17)

These satisfy χN = EN + 1 = BN/S11 and χT = ET + 1 =
BT/S66 where EN and EN are Schoenberg’s dimensionless ex-
cess compliances and BN and BT are excess normal and tan-
gential compliances as defined by Sayers and Kachanov. We
will refer to VTI media that satisfy the extra relation (14) as
‘fractured isotropic’ media. However, it is important to recog-
nize that the excess compliance could come from a variety of
physical mechanisms such as contacts between clay particles,
kerogen lenses, or micro-fractures.

The above discussion applies, without need for modifica-
tion, to linear viscoelastic media. If we make the reasonable
speculation that condition (14), which we observed in our
reload cycles, is a general property of the medium, our ob-
served linear relationships (11) and (12) can consequently be
accounted for as two additional constraints limiting the num-
ber of free parameters needed to determine the medium. Our
common relaxation ratio is recognized as the relaxation ratio
for the Young modulus in a background isotropic viscoelastic
solid and equation (11) is equivalent to the statement that the
excess compliance ratios are the same in relaxed and unre-
laxed states:

χU
N = χ R

N χU
T = χ R

T , (18)

while equation (12) is equivalent to the statement that the
unrelaxed excess tangential compliance ratio is equal to the
relaxation ratio:

χU
T = φ. (19)

Note that the first equality in equation (18) constrains the
relationship between all the moduli occurring in the com-
pressional block while the second equality in equation (18)
constrains C55. Our observations summarized in Table 5 only
contain redundant measurements for the moduli in the com-
pressional block and therefore should be regarded as evidence

for the first equality. The second is consistent with our data
but is not tested or confirmed by any of our measurements.
To the authors knowledge there is no better reference than
Biot (1954) who precisely related anisotropic viscoelastic re-
laxation processes to experimental observables. It is beyond
the scope of the present paper to delve further into the alge-
braic details relating our observations to relaxation operators
as defined by Biot. Koppelmann (1958) showed measurements
on plexiglass (M33) that were fitted using a single relaxation
constant.

Note also that condition equation (11) has the form of a
change in physical units and implies that all dimensionless
ratios between elastic constants (Poisson ratio, Thomsen pa-
rameters, velocity ratios between modes, etc) will be the same
whether measured in relaxed or unrelaxed states. For exam-
ple, assuming (11) and calculating the Poisson ratio:

νU = −SU
12

SU
11

=
CU

12 − CU
13CU

13

/
CU

33

CU
11 − CU

13CU
13

/
CU

33

= φCR
12 − (

φCR
13

) (
φCR

13/φCR
33

)
φCR

11 − (
φCR

13

) (
φCR

13/φCR
33

)

=
CR

12 − CR
13CR

13

/
CR

33

CR
11 − CR

13CR
13

/
CR

33

= νR.

Coining the phrase ‘special fractured viscoelastic solid’ for
a linear viscoelastic medium in which both the unrelaxed and
relaxed states are fractured isotropic (i.e., satisfy relations (3)
and (14)) and for which the extra symmetry conditions (18)
and (19) are also satisfied, we find that the density plus four
independent parameters suffice to determine a complete de-
scription of the relaxed and unrelaxed elastic tensors.

One could, for example, start with axial ultrasonic veloc-
ities plus density to determine the four unrelaxed moduli
{CU

11, CU
66, CU

33, CU
55}. Then CU

13 can be calculated using equa-
tion (16). Unrelaxed compliances can be calculated using
equations (6)–(10). The relaxation ratio φ can be calculated
using equations (19) and (17). The relaxed moduli can be cal-
culated using equation (11). The relaxed compliances can be
calculated using equations (6)–(10).

Alternatively, one could start with an unrelaxed Young
modulus and three dimensionless parameters such as the
Poisson ratio, normal and tangential compliance ratios. From
these one obtains the unrelaxed compliance matrix and the
relaxation ratio using equations (17) and (19). The relaxed
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Figure 10 Conceptual geomechanical model of mudstone.

compliances and moduli can be obtained from their unrelaxed
counterparts upon division by the relaxation ratio.

It is beyond the scope of the present paper to investi-
gate these relations further. We conjecture that the Say-
ers/Kachanov theory, combined with a theory relating micro-
friction to excess micro-compliance and the careful formalism
of Biot, will be a good place to start.

D I S C U S S I O N

Our mudstone is a transversely isotropic rock that evidently
responds in a linear viscoelastic manner to small load cycles
but is inelastic when subjected to high-differential stress. A
conceptual model of the mudstone and its response to stress is
illustrated in Fig. 10. Figure 10(a) shows a macroscopic view
of the rock including the mechanical properties of the layered
VTI medium; Fig. 10(b) is a schematic of the microstructure;
Fig. 10(c) is a schematic stress strain curve illustrating the
mudstones response to the three loading protocols. Macro-
scopic layering is primarily responsible for the directional
dependence on compressive strength and elastic properties.
Elements governing the excess compliance comprise horizon-
tal contacts between clay particles and horizontally aligned
lenses of kerogen. At the microscopic scale, deformation is
viscoelastic so long as induced shear stresses do not exceed
the inter-particle frictional strength. Since smectite clay min-
erals are the continuous load-bearing mineral, plastic defor-
mation should occur when the frictional strength of smectite is
exceeded. When this happens the particles move past one an-
other resulting in a low Young modulus and a non-recoverable
plastic strain (Table 2).

Systematic errors in geomechanical models of mudstone are
to be expected when the VTI and viscoelastic nature of the
rock is not honoured. Predictions of earth stress, rock strength
and wellbore stability will all be affected. Errors in wellbore

stability are compounded since earth stress and rock strength
are inputs to wellbore stability models. Finally the viscoelastic
nature of the mudstone affects inversion of elastic parameters
from geophysical log data and the application of them in earth
stress and wellbore stability models. We have seen here that
the moduli for the mudstone depend on strain rate and stress
level. Today these complexities are handled by calibrating geo-
physical logs to core measurements. A better understanding
of the intrinsic rock properties that govern the mechanical
properties of mudrocks will improve detection of anisotropic
strata and will improve the inversion of geophysical data for
rock mechanical properties and the geomechanical calcula-
tions that depend upon them (Amadei et al. 1897; Thiercelin
and Plumb 1994).

S U M M A R Y

This paper has characterized the mechanical properties of a
calcareous mudstone. We presented measurements of com-
pressive strength and static and dynamic elastic properties on
a block rock retrieved from an exploration well. Measure-
ments of mechanical properties indicate that the mudstone is
anisotropic with respect to all three properties and that the
magnitude of anisotropy decreases with increasing confining
stress. A detailed analysis of the elastic moduli computed using
small unload reload cycles and simultaneous ultrasonic wave
velocities shows both strong anisotropy and strong anelas-
ticity. Surprisingly, the measurements are consistent with a
mathematical description of a special type of anisotropic lin-
ear viscoelastic medium that is obtained by adding aligned
excess compliance to an isotropic viscoelastic solid. Such a
material is determined by density plus four parameters defin-
ing the viscoelastic solid and the excess normal compliance
associated with the cracks. The model predicts a full set of
VTI parameters for both low-and high-strain rate behaviour.

The task of properly relating the statistical viscoelastic prop-
erties of a compliant microstructure to bulk observations such
as ours, seems to require both a careful theory and careful ex-
perimentation. We hope our contribution moves the process
forward.
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