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ABSTRACT

Dipole sonic log data recorded in a vertical pilot well and
the associated production well are analyzed over a
200 × 1100-ft section of a North American gas shale forma-
tion. The combination of these two wells enables angular
sampling in the vertical direction and over a range of incli-
nation angles from 54° to 90°. Dipole sonic logs from these
wells show that the formation’s average properties are, to a
very good approximation, explained by a transversely iso-
tropic medium with a vertical symmetry axis and with elastic
parameters satisfying C13 ¼ C12, but inconsistent with the
additional ANNIE relation (C13 ¼ C33 − 2C55). More
importantly, these data clearly show that, at least for fast
anisotropic formations such as this gas shale, sonic logs
measure group slownesses for propagation with the group
angle equal to the borehole inclination angle. Conversely,
the data are inconsistent with an interpretation that they mea-
sure phase slownesses for propagation with the phase angle
equal to the borehole inclination angle.

INTRODUCTION

With increased interest in gas production from shale formations,
there has been a corresponding increase in the need to make accu-
rate geophysical measurements of these formations for use in plan-
ning and interpreting formation treatments. Because these shale
formations are largely composed of microscopically aligned plate-
lets that are also significantly laminated at a macroscale, they are

often morphologically anisotropic, with rotational symmetry about
a symmetry axis perpendicular to bedding, typically a vertical axis.
In such transversely isotropic (VTI) media, small perturbations of
stress or strain, with respect to a stable reference state, are linearly
related via an elastic tensor with five free parameters.
Using the Voigt notation (C11 for C1111, C13 for C1133, C55 for

C1313, etc.) for elastic moduli, and identifying the symmetry axis
as the (vertical) 3-axis, the density-normalized moduli Cij∕ρ have
units of velocity squared. Only five elastic moduli are required to
define VTI anisotropy: C11, C33, C55, C66, and C13. The first four of
these five moduli are related to the squared speeds for wave pro-
pagation in the vertical and horizontal directions. The wavespeed
for horizontally propagating compressional vibration is V11 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
C11∕ρ

p
, the wavespeed for horizontally propagating shear vibra-

tion with horizontal polarization is V12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C66∕ρ

p
, the wavespeed

for vertically propagating shear vibration and for horizontally
propagating shear vibration with vertical polarization is V31 ¼
V13 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
C55∕ρ

p
, and the wavespeed for vertically propagating

compressional vibration is V33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C33∕ρ

p
(Table 1 in a later

section summarizes these values for our field data).
The remaining parameter, C13, cannot be estimated directly and

cannot be estimated at all without either making off-axis measure-
ments or invoking a physical or heuristic model with fewer than five
parameters. Nevertheless, accurate measurements of C13 are essen-
tial for interpreting the results of small-scale hydraulic fracturing
tests (Thiercelin and Plumb, 1991), for calibrating the relation
between sonic measurements and other reservoir characterization
measurements (Vernik, 2008), for geomechanical studies (Amadei,
1996; Suarez-Rivera et al., 2006), and for accurate location of hy-
drofracture-induced microseismicity (e.g., Warpinski et al., 2009).
Dipole sonic logs recorded in deviated wells have been used for

the determination of elastic parameters in several studies (e.g.,
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Hornby et al., 1995; Walsh et al., 2007). Somewhat surprisingly,
there has been a lack of consensus on how the logged sonic wave-
speeds are related to the elastic parameters in deviated wells. One
important intention of this paper is to resolve this situation based on
an argument from fundamental principles and to confirm that
understanding using field and synthetic data.

PHASE AND GROUP VELOCITIES

Wavefronts (surfaces of constant traveltime) generated by a point
source in a homogeneous anisotropic elastic medium are not in
general spherical, leading to two natural notions of “propagation
direction” and “propagation speed”. The direction connecting the
source to a point on the wavefront is the group (or ray) direction
and the apparent speed in this direction is the group (or ray) velo-
city. The direction normal to the wavefront is the phase (or plane-
wave) direction and the apparent speed in this direction is phase
velocity.
Mathematically, the relationship between phase and group

velocities for VTI anisotropy can be written as

vG2ðθÞ ¼ vP2ðθÞ þ
�
∂vP
∂θ

�
2

; (1)

where θ, the phase angle, is the angle of the wavefront normal
relative to the symmetry axis; vP is the plane wave (phase) velocity;
and vGðθÞ is the group velocity associated with phase angle θ. Note
that this equation defines only the magnitude of the group velocity
and that the group velocity vector is not aligned to the phase velo-
city vector. The group angle, ϕ ¼ ϕGðθÞ, is the angle of the group
velocity vector, relative to the symmetry axis. The two angles
satisfy

tanðθ − ϕGðθÞÞ ¼

�
∂vP
∂θ

�

vPðθÞ
. (2)

It is of critical importance to distinguish the function vG, which
gives group velocity as a function of phase angle, from the related
function vg, which gives group velocity as a function of group
angle. The function vg is typically computed indirectly by using
equations 1 and 2, or their equivalents, to calculate vG and ϕG

as functions of phase angle and then to iteratively solve or
interpolate the equation

vgðϕGðθÞÞ ¼ vGðθÞ (3)

to determine vg at arbitrary group angles ϕ.
This is illustrated in Figure 1. In the upper plot, a point source is

located at the origin in a homogeneous anisotropic medium with
elastic parameters that fit our field data (Table 2). Successive posi-
tions of the quasi-compressional wavefront excited by the point
source are indicated by the dotted and solid red curves. Note that
the noncircular appearance of the wavefront is indicative of aniso-
tropic wave propagation. The lower figure is a closeup with some
added features. The dotted and solid curves, respectively, represent
wavefronts after 0.9 and 1 ms of propagation time. Because the pro-
pagation time for the solid red curve is T ¼ 1 ms, it can be
regarded as a polar plot of group velocity as a function of group
angle in units of m/ms.

Table 1. Velocities and corresponding elastic constants
measured in the vertical pilot well and the horizontal section
of the production well. The first two Thomsen parameters
have units km/sec; the others are dimensionless.

Vertical well Horizontal well Units

Velocity V33 V31 V11 V13 V12

Mean 3.39 2.03 4.76 2.03 2.77 km/sec

RMS variation 0.13 0.07 0.11 0.03 0.05 km/sec

Modulus C33 C55 C11 C66

29.0 10.4 57.0 19.3 GPa

Thomsen α0 β0 ϵ γ

3.39 2.03 0.48 0.43

Figure 1. Construction of group and phase velocity surfaces from
quasi-P (qP) wavefronts for the medium with parameters from
Table 2. The dotted and solid curves, respectively represent wave-
fronts after 0.9 and 1 ms of propagation time. The dotted line at 72°
is aligned to the group direction at point a. The solid line at 55° is
aligned to the phase direction at point a. As described in the text,
when the curves are normalized by division by the propagation
time, the red curve has the shape of a polar plot of group velocity
as a function of group angle, whereas the cyan curve has the shape
of a polar plot of the phase velocity as a function of phase angle.

B198 Miller et al.

Downloaded 18 Jul 2012 to 76.19.23.159. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



The point on the wavefront tangent that has minimum distance
from the origin is P. As the point of tangency, G, varies over the
wavefront surface, the set of all such points forms a polar plot of the
phase velocity as a function of phase angle, again in units of m/ms.
This surface is indicated in cyan on the lower part of Figure 1. This
is the familiar geometric construction of a phase velocity surface as
the τ-p transform of a wavefront surface. It may be found, for
example, in Postma (1955). Dellinger (1991) cites McGullagh
(1837) as a possible first reference.
It is a consequence of the definitions that triangle OPG is a right

triangle with hypoteneuse OG and sides OP and PG. Equations 1
and 2 are consequences of the fact that the length jGPj of the seg-
ment GP is equal to ½∂vP∂θ �. It is evident from this relationship that for
all phase directions θ, and all modes in all anisotropic media

vGðθÞ ≥ vPðθÞ (4)

with equality occurring only when phase and group directions
coincide.
Note that the phase velocity surface lies outside the wavefront

surface. That is because the wavefront surface is convex, and a tan-
gent to a convex surface intersects the surface only at the point of
tangency. It is a property of all anisotropic media that the group and
phase surfaces for the fastest mode are convex (e.g., Chapman,
2004). For VTI media, this is also true for the horizontally polarized
shear (SH) mode in which case the wavefront surface is an ellipsoid.
Thus, for the fastest mode in arbitrary anisotropic media and for the
SH mode in VTI media, for any angle ψ ,

vPðψÞ ≥ vgðψÞ (5)

with equality occurring only when phase and group directions
coincide.
The dotted line at 72° in Figure 1 is aligned to the group direction

at point a. The solid line at 55° is aligned to the phase direction at
point a. Thus, for phase angle θ ¼ 55°, ϕGðθÞ ¼ 72°. Traveltime
between the dotted and solid red curves is dT ¼ 0.1 ms.

vPð55°Þ ¼ jOPj∕T ¼ jbaj∕dT

vGð55°Þ ¼ jOGj∕T ¼ jGaj∕dT ¼ vgðϕGð55°ÞÞ ¼ vgð72°Þ

vgð55°Þ ¼ jOgj∕T ¼ jgcj∕dT

A small array at a aligned with the wavefront normal ab would
see an apparent propagation speed equal to the phase velocity
vPð55°Þ ¼ 4.31 m∕ms. An array at a aligned with the direction
aG would see an apparent propagation speed equal to the group
velocity vGð55°Þ ¼ vgð72°Þ ¼ 4.51 m∕ms. An array aligned along
OP would see an apparent propagation speed equal to the group
velocity vgð55°Þ ¼ 4.08 m∕ms. A long array at a aligned to ab
would see a nonlinear apparent velocity that starts at vPð55°Þ
and asymptotically approaches vgð55°Þ.
It is also important to distinguish the angular dispersion

equation 1 from the temporal dispersion equation

VGðωÞ ¼
∂ω
∂k

¼ VPðωÞ þ k
∂VP

∂k
; (6)

which arises, for example, in solving for boundary-coupled propa-
gation in fluid-filled boreholes. Here, VPðωÞ ¼ ω∕k is the temporal
phase velocity. For this temporal dispersion, it is the frequency
dependence of the wave velocities that gives rise to a difference
between the temporal phase velocity VP and the temporal group
velocity, VG. It is our belief that this overloaded meaning of phase
and group velocities has led to some of the confusion in the
literature.
Finally, it seems that one cannot discuss sonic logging without

speaking about slownesses. As scalars, they are the reciprocals of
the corresponding velocities. As vectors, they are aligned to the cor-
responding velocities, but with reciprocal magnitude. We use sub-
scripted s to denote the reciprocal of the corresponding velocity.
Thus, for example, in Figure 1, the phase slowness vector at 55°
is OP

jOPj2 and has magnitude sPð55°Þ ¼ 0.232 ms∕m.
To recover elastic parameters from sonic data, one needs a

correspondence rule relating velocities VlðψbhÞ extracted from
sonic waveforms in a borehole with inclination angle ψbh to the
underlying elastic moduli.
Hornby et al. (2003a) argued that logged compressional speeds

were group velocities and found good agreement with field data.
Hornby et al. (2003b) reported synthetic tests confirming this cor-
respondence rule, concluding “we are measuring the group velocity
for all wave modes excited by the dipole sonic tool.”
Sinha et al. (2004) disclosed a variety of ways to derive elastic

moduli from logged wavespeeds, based on a weak anisotropy
assumption that logged speeds are phase velocities for propagation
with phase direction aligned to the borehole axis. Sinha et al. (2006)
reported synthetic tests apparently confirming this correspondence
rule, concluding “Processing of synthetic waveforms in deviated
wellbores using a conventional STC algorithm or a modified matrix
pencil algorithm yields phase slownesses of the compressional and
shear waves propagating in the nonprincipal directions of anisotro-
pic formations.”
Thus, there appear to be two conflicting correspondence rules

reported in the literature. However, because the borehole inclination

Table 2. Elastic constants (top) and corresponding Thomsen
parameters (bottom) measured using the vertical pilot well
and the horizontal production well dipole sonic log data.
Elastic moduli are reported in GPa, α0 and β0 are P and S
velocities along the vertical direction and are reported in
km/s. The parameters ϵ, δ, and γ are dimensionless.

Modulus C11 C13 C33 C55 C66

Raw 57.0 16.4 29.0 10.4 19.3

Corrected 58.1 16.6 29.6 10.6 19.7

�2.5 �1.5 �2.0 �0.3 �0.7

Thomsen α0 β0 ϵ δ γ

Raw 3.39 2.03 0.48 0.35 0.43

Corrected 3.43 2.05 0.48 0.35 0.43

�0.11 �0.05 �0.05 �:025 �:015

Density ρ kg∕m3

2520� 50
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can be matched either to group or phase angle, there are three. For
synthetics created with a borehole inclination angle ψbh, Hornby et
al. (2003b) compared vPðψbhÞwith vgðψbhÞ and determined that the
latter gave a better match to VlðψbhÞ. Under similar circumstances,
Sinha et al. (2006) compared vPðψbhÞwith vGðψbhÞ and determined
that the former gave a better match to VlðψbhÞ.
In view of equations 4 and 5, these observations are not incon-

sistent with one another. Moreover, for the qP and SH modes, they
are consequences of equations 4 and 5 and the fundamental prin-
cipal that no energy can propagate in any direction faster than the
group velocity in that direction. The introduction of a fluid-filled
borehole or other heterogenetity that only supports propagation
at slower velocity can only lower the propagation speed. That is,

VlðψbhÞ ≤ vgðψbhÞ ≤ vPðψbhÞ ≤ vGðψbhÞ. (7)

When vgðψbhÞ and vPðψbhÞ are distinct, the logged velocity must be
a better approximation to the former than the latter. Both rules con-
sidered by Sinha et al. (2006) are inconsistent with propagation in
strongly anisotropic media. Their conclusion that the phase velocity
agrees better with synthetic data than the group velocity is due to the
use of vGðψbhÞ rather than vgðψbhÞ. Figures 2 and 10 of Sinha et al.
(2006) show horizontal axes labeled “Propagation direction θð°Þ”
with no distinction made between group and phase angles. For
qP and qSV, the group curves are faster than the phase curves
and are evidently plots of vGðθÞ. For SH, the group curves are
slower and are evidently plots of vgðθÞ. The conclusion seems to
be drawn from qP results shown in their Figures 6 and 7, where
values from processing the synthetic data are compared with
sPð60Þ and sGð60Þ. The group slowness at group angle 60°,
sgð60Þ ¼ 341.1 μs∕m, is slower than either of these and would
fit better than either to their synthetic log result.
In weakly anisotropic media, the distinction between vPðψbhÞ,

vGðψbhÞ with vgðψbhÞ has no practical significance. However,
for shales or other strongly anisotropic media, the difference can
lead to extreme differences in estimated elastic parameters, particu-
larly for C13. Horne et al. (2012) described a two-well field example
from a gas shale formation where data were fit to high accuracy
assuming the group correspondence rule Vl ¼ vgðψbhÞ. In the
remainder of this paper, we review that example, showing that
for this case, this group correspondence rule is uniquely correct.
Using the phase rule (Vl ¼ vPðψbhÞ), the SH data cannot be fit
at all, and the qP and qSV data cannot be consistently interpreted.
If only qP data are interpreted, the phase rule leads to an unrealistic
value for C13.

SONIC LOG DATA

The vertical pilot well and the horizontal production well were
drilled from the same pad into a North American gas shale forma-
tion as shown in Figure 2. The pilot well encounters a 60-m (200-ft)
interval in the gas shale. The horizontal production well, drilled
from the same surface location, encounters the gas shale at the same
depths as the vertical pilot well, implying near horizontal layering,
at offsets from the pilot well of about 115 m (380 ft) to 350 m
(1150 ft), the last 120 m (400 ft) horizontal. The build section
of the horizontal production well had a build-radius of 120 m,
or equivalently, a build-rate of 8°∕100 ft.
The sonic log data were conventionally acquired using the

Schlumberger Sonic Scanner (Mark of Schlumberger). tool and pro-
cessed using a standard slowness time coherence algorithm to pro-
vide compressional, fast and slow shear slownesses at each depth in
each well, as shown in Figure 3. The velocity data from the build
section of the horizontal well are plotted at VlðsinðψbhÞ; cosðψbhÞÞ,
where Vl is the logged velocity and ψbh is the borehole inclination
angle. Compressional is red; fast shear (horizontally polarized, SH)
and slow (sagitally polarized, qSV) shear are cyan and green, re-
spectively. The logged values in the vertical and horizontal sections
are remarkably consistent and are summarized by histograms
plotted left of and below the axes, respectively.
Only one shear speed is observed in the vertical well and that

speed matches remarkably well with the slow shear speed
(2.03 km/s) observed in the horizontal section. The lack of shear
splitting in the vertical well, together with the consistency of the
slow shear speed over the vertical section and the match between
vertical and slow horizontal shear, is strong evidence that the

Figure 2. (Upper) Vertical section showing the geometry of the two
wells. Vertical depth is measured relative to the top of the gas shale
formation, indicated by the yellow dotted line. The section of the
well marked in green corresponds to the build section of the hor-
izontal production well. (Lower) Lithology of the build section.
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medium is, within measurement accuracy, transversely isotropic
with a vertical axis of symmetry (VTI). The five observed axial
wavespeeds, together with the observed density (2520 kg∕m3)
yield a precise estimation for the four axial VTI parameters, as
summarized in Table 1. Mean variation is about 2.5%. From these
vertical and horizontal velocities, two of the Thomsen anisotropy
parameters (Thomsen, 1986) can be readily computed: Thomsen’s
ϵ ¼ C11−C33

2C33
¼ 0.48 and Thomsen’s γ ¼ C66−C55

2C55
¼ 0.43.

Horizontally polarized shear mode: SH

For VTI media, the group and phase velocity surfaces for the
horizontally polarized shear-wave mode (SH) are completely deter-
mined by the axial shear velocities V55 and V66, which are equal toffiffiffiffiffiffiffiffiffiffiffiffi
C55∕ρ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffi
C66∕ρ

p
, respectively. As noted previously, the group

velocity surface is an ellipsoid; the phase velocity surface is not.
The phase velocity, vPðθÞ, is systematically faster than the group
velocity, vgðϕÞ, when θ ¼ ϕ.
Figure 4 shows the fast shear data from Figure 3, overlain

by the SH group and phase surfaces determined by the measured
C55 and C66. It is clearly evident that the group velocities
are a better fit to the log data than the phase velocities. This
can be quantified by referring to the root mean square (rms)

misfits defined as χg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðVlðψbhÞ − vgðψbhÞÞ2∕N

q
and

χP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðVlðψbhÞ − vPðψbhÞÞ2∕N

p
, the sums of length N being

taken over all data for the given mode in the build section of the
well. The rms misfit for the group surface is χg ¼ 0.029 km∕s,
which is significantly smaller that the phase surface rms misfit,
χP ¼ 0.082 km∕s.
It is remarkable that the two shear speeds, measured in the hor-

izontal well, accurately predict the logged values for the vertical and
deviated sections, hundreds of feet away, through significant
changes in inclination and logged wavespeed.

Modes with polarization in the vertical
plane: qP and qSV

Four of the five VTI parameters are fixed by the axial data
obtained from the vertical pilot well and the horizontal section
of the production well. The remaining elastic parameter C13 can
be determined using qP and qSV log data recorded over the build
section of the production well. Thus, the determination of C13 be-
comes a one-parameter inversion problem. Because qP and qSV
data must be fit at each inclination angle, the problem is very well
conditioned.
Root mean square misfit as a function of C13 for both correspon-

dence rules and qSV and qP modes is shown in Figure 5. A C13

value of 16.4 GPa (Thomsen’s δ ¼ 0.35) minimizes rms misfit
for both modes under the group correspondence rule. Using the
phase correspondence rule, the same C13 value minimizes rms
qSV misfit to the slow shear data; however, the compressional data
are significantly misfit by the qP phase velocity surface. The qP
misfit under the phase rule decreases with decreasing C13 until
the value becomes significantly negative and the corresponding
medium becomes significantly unrealistic.
Figure 6 shows log data for all the modes overlain with phase and

group velocity surfaces using the best-fit value for C13. The group
surface fits remarkably well. The phase surface fits only the qSV
data. Evidently, for the qSV mode in this medium, the phase

and group velocity surfaces are nearly coincident, the difference
being less than 0.5% of the mean for all angles sampled.
Figure 7 shows log data for all the modes overlain with phase and

group velocity surfaces using C13 ¼ −5.0 GPa. With this value, the
qP phase surface is a fair match to the logged compressional data,
but the SV data are in stark disagreement with the modeled SV
phase surface. Note, in particular, that this model predicts that
the two shear speeds should match (with a crossover) at phase angle
near 55°, whereas the measured data at this inclination angle differ
by more than 0.5% and both are slower than the modeled speed at
crossover.

Figure 3. Dipole sonic log data. Logged values from the vertical
pilot well and horizontal sections from the production well are sum-
marized by the histograms plotted to the left and below the axes,
respectively.

Figure 4. Sonic log data overlain with phase and group surfaces for
SH mode.
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Conclusion from sonic log data

It is clear that the group velocity correspondence rule is the
correct rule for this data. Using this rule, it is possible to fit all
the data from all modes, both wells, and all angles with a single

VTI medium description. The phase velocity correspondence rule
is demonstrably false. Using that rule, the SH data cannot be fit at all
and there is no value for C13 that comes at all close to fitting qP and
qSV. Worst of all, if only P data are used, the phase correspondence
rule yields a reasonable fit using a best-fit value for C13 (or equiva-

lently, Thomsen δ ¼ ðC13þC55Þ2−ðC33−C55Þ2
2C33ðC33−C55Þ ), which is far from the

correct value and has the wrong sign.
The near-perfect fit of the logged data using the group correspon-

dence rule does not guarantee that the rule is universally valid, but it
is certainly strong evidence for wide applicability. As a further aid
to understanding, we have performed full-waveform synthetic
modeling which will be described in the next section.

SYNTHETIC MODELING

Using a 3D finite-difference code developed at the MIT Earth
Resources Laboratoy (Cheng, 1994), we created a full-waveform
synthetic similar to those used by (Hornby et al., 2003b) and
(Sinha et al., 2006), but based on parameters from our gas shale
model. The elastic parameters for the modeled formation are the
same as those derived from our inversion (see Table 2, “raw”)
and the formation density is 2520 kg∕m3. The borehole has a dia-
meter of 0.20 m (8 in.), is inclined 55° from vertical, and is filled
with a liquid having a velocity of 1500 m/s and density of
1000 kg∕m3. A simulated monopole source was placed at the origin
and driven with an 8 kHz Ricker wavelet.
Figure 8 shows a pressure snapshot at time 1.080 ms (540 time-

steps) from the start of the simulation. Overlain are the geometry of
the experiment, together with two copies of the analytic wavefront
surface for the modeled formation, scaled to represent travelimes of
0.813 and 0.693 ms. Away from the borehole, the shape of the fi-
nite-diference wavefront matches the analytic surface, an indication
that the source radiates into the solid as an approximate point-
source. Near the borehole there is a small distortion of the wavefront

Figure 5. The rms misfit to log data as a function of C13 for qP (top)
and qSV (bottom) modes.

Figure 6. Sonic log data overlain with phase and group surfaces for
qP and qSV modes using C13 ¼ 16.4 GPa (Thomsen’s δ ¼ 0.35).
This is the best-fit estimate of C13. The group velocity surface is a
good fit for all modes. The qSV phase and group surfaces are nearly
coincident, hence the model is also a good fit to the qSV phase sur-
face, but the qP phase surface is inconsistent with the logged com-
pressional data.

Figure 7. Sonic log data overlain with phase surfaces for qP and
qSV modes using C13 ¼ −5.0 GPa (Thomsen δ ¼ −0.29). This
model fits the qP phase surface to the logged compressional data
but is inconsistent with the logged qSV data and is physically
implausible.
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shape and a loss of energy to the somewhat complicated reverberant
signal in the borehole. In successive snapshots, the pattern moves
outward, but does not change, an indication that the coupling is at
the axial slowness associated with the wavefront in the direction
aligned to the borehole. That is, it is at the group slowness asso-
ciated with a group angle equal to the borehole inclination angle.
Careful observers will note a plane wave connecting a bright spot on
the borehole wall between the red curves to a point at about 2 m
along the horizontal axis. That is a quasi-shear wave whose phase
slowness, projected onto the borehole axis, matches the group
slowness of the qP signal and borehole pressure signal to which
it is coupled. There is also some evident direct qSV signal above
and below the borehole at about x ¼ 1.4 m, z ¼ 1 m. A bright
Stoneley wave in the borehole is evident starting at about
x ¼ 1 m, z ¼ 0.7 m.
Figure 9 shows synthetic waveform from 13 centered monopole

pressure receivers at the locations indicated by gray squares in
Figure 8. These are spaced to match the tool used to collect our
field data. Overlain are two red parallel lines with slope equal to
4.08 m/ms, the group velocity for the modeled formation at group
angle equal to 55°. Also shown are two blue dotted lines with slopes
equal to 4.31 m/ms, the phase velocity for the modeled formation at
the phase angle equal to 55°. It is evident that the signal is aligned to
the group velocity and that, although it has an extended signature, it
exhibits no significant temporal dispersion. Sonic modelers will
recognize this as a Partially Transmitted (PT) compressional signal.
The field logs were processed using the conventional processing

technique described by Kimball and Marzetta (1984), known as
slowness time coherence to quantify the velocity of the compres-
sional arrival. Because our synthetic is, a priori, windowed in time,
it can be analyzed with a simplified semblance calculation which
uses a fixed time window.
Given a window function wðtÞ, an array of N waveforms Dðt; riÞ

as in Figure 9, and a slowness, s, we can form a shifted, muted array

Dsðt; rnÞ ¼ wðtÞDðtþ ðrn − r1Þs; rnÞ (8)

and calculate semblance

sembðsÞ ¼
P

tð
P

nDsðt; rnÞÞ2
N
P
t

P
n
Dsðt; rnÞ2

. (9)

Figure 10 plots semblance of waveforms from Figure 9 as a function
of slowness, using a 2.6 ms rectangular window function, centered
on 1.3 ms, with a 1 ms raised cosine taper at each end. The peak
semblance occurs at s ¼ Smax ¼ 0.248 ms∕m. Solid vertical
lines indicate slownesses sPð55°Þ ¼ 0.232 ms∕m, and sgð55°Þ ¼
0.245 ms∕m. The dotted black line in Figure 10 shows sGð55°Þ ¼
0.222 ms∕m. It is clear that the group rule gives an excellent match
and the phase rule does not.
The small difference between the semblance peak and the forma-

tion group slowness is consistent with our equation 7 and similar to
the small bias observed in synthetic studies of isotropic media (e.g.
Paillet and Cheng, 1991, pp. 164–167). To confirm this observation,
we made an otherwise identically created and processed synthetic
substituting an isotropic model with Vp and Vs matched to the gas
shale group velocities (4.073 km/sec and 2.108 km/sec, respec-
tively). The isotropic synthetic gave a similar small bias with respect
to the 0.245 ms/m medium slowness, with a semblance peak at
0.251 ms/m.

Figure 8. Snapshot of the wavefield at 1.080 ms, overlain by
experimental geometry and wavefronts corresponding to the phase
(blue dotted line) and group (red continuous line) velocities. The red
arrow indicates the coupled qS wave described in the main text.

Figure 9. Waveforms overlain by parallel lines corresponding to the
phase (blue dotted lines) and group (red continuous lines) velocities
from Figure 8.

Figure 10. Semblance of the waveforms from Figure 9. Vertical
lines indicate slownesses sGð55°Þ, sPð55°Þ, and sgð55°Þ.
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The source of the bias can be analyzed by performing a temporal
dispersion analysis. Semblance, as defined by equation 9, can be
decomposed as an energy-weighted average of semblance as a
function of temporal frequency

sembðsÞ ¼
X
f

sembð f; sÞÊð fÞ; (10)

where

sembð f; sÞ ¼ ðPnDsðf; rnÞÞ2
N
P
n
Dsðf; rnÞ2

(11)

and

Êð fÞ ¼
P

nDsðf; rnÞ2P
f

P
n
Dsðf; rnÞ2

(12)

with Dsð f; rnÞ denoting the temporal Fourier transform of
Dsðt; rnÞ. The function Smaxð fÞ defined as the slowness that

maximizes sembð f; sÞ provides an estimation of temporal phase
slowness as a function of frequency that is similar to what would
be obtained with the variation of Prony’s method used by Sinha et
al. (2004) (Lang et al., 1987; Ekstrom, 1995).
Figure 11 plots Smaxð fÞ for the waveforms from Figure 9. The

bar graph at the bottom of the figure shows a scaled plot of Êð fÞ.
Note that the estimated slownesses lie at or above sgð55°Þ. That is,
they are at axial wavenumbers that correspond to evanescent qP and
oblique outgoing qSVor SH in the solid. This is as expected for PT
signal. The decay and small dispersion result from the partial
conversion of energy into the transmitted shear modes each time
the signal reflects from the fluid/solid boundary. The energy-
weighted average Ŝmax ¼

P
fðSmaxð fÞÊð fÞÞ agrees with Smax to

four significant digits.
Evidently, the inversion for elastic parameters and analysis of

synthetic forward models could be iterated (at substantial computa-
tional cost) to account for the small bias that results from using the
logged semblance maxima SmaxðψbhÞ as proxies for vgðψbhÞ. We
have not done this. However, it should be noted that a uniform
1% overestimation of all slownesses would result in a uniform
2% underestimation of all moduli. That is, a rescaling without
change of shape of the anisotropy would have the same effect as
would result from a 2% underestimation of density.
Similar results were also obtained with an SH synthetic using the

gas shale model with the borehole and source-receiver geometry as
previously detailed. The semblance peak Smax ¼ 0.414 ms∕m was
1% slower than the group rule prediction of 0.409 ms/m, and 6%
slower than the phase rule prediction of 0.392 ms/m.
Using the same elastic model, we made monopole as well as hor-

izontal and vertical dipole synthetics at the nine borehole inclination
angles indicated in Figure 12. Processing all these synthetics, we
found the close agreement between the semblance maxima and
sgðψbhÞ∕1.01, evaluated at all modes and angles. As noted pre-
viously, these are exactly the values of sgðψbhÞ associated with a
model in which all the moduli are 2% larger than our synthetic mod-
el. This is the “bias-corrected” model shown in Table 2 and is our
best estimate of the true elastic moduli to fit the field data. The error
estimates are derived from the rms misfits of the data to the raw
group slownesses.

COMPARISON WITH SHALE MODELS

There have been a variety of suggested methods for predicting
one or more of the elastic moduli in shales from measured values
of the remaining parameters (e.g., Schoenberg et al., 1996; Suarez-
Rivera and Bratton, 2009). In particular, the ANNIE approximation
of Schoenberg et al. (1996) proposes two extra constraints

C13 ¼ C33 − 2C55 (13)

and

C13 ¼ C11 − 2C66. (14)

The first constraint is equivalent to Thomsen δ ¼ 0. The second
constraint is equivalent to C13 ¼ C12. Together, they are inconsis-
tent with the axial measurements reported herein because the mea-
sured C33 − 2C55 is less than half of the measured C11 − 2C66. Our
measured value for C13 is far from satisfying the first constraint but

Figure 11. Temporal phase slownesses of the waveforms from
Figure 9. Horizontal lines indicate slownesses sGð55°Þ, sPð55°Þ,
and sgð55°Þ.

Figure 12. Semblance peaks for processed synthetic data. Dots in-
dicate sp and sg, evaluated at the borehole inclination angles and
uniformly increased by 1%.
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is within statistical error of satisfying the second constraint (our
best-fit value satisfies C13 ¼ 0.89C12).
Another approximation that constrains the five elastic parameters

is the fractured isotropic model described by Schoenberg and
Douma (1988), which is determined by isotropic moduli λ and μ
plus normalized normal and tangential fracture excess compliances
EN and ET . (Sayers (2008) fit an equivalent four-parameter model
to measurements of muscovite. Sayers’ ratio of excess compliances
BN∕BT is equivalent to the ratio EN∕ET of Schoenberg and Douma
(1988) multiplied by μ∕ðλþ 2μÞ.) This type of medium satisfies the
extra constraint

ðC13 þ C33ÞðC13 þ 2C66Þ ¼ C33ðC13 þ C11Þ; (15)

which entails

C13 ¼ −C66 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
66 þ ðC11 − 2C66ÞC33

q
. (16)

For our gas shale medium, the right side above evaluates to
10.8 GPa, which is significantly smaller that the measured value
of 16.4 GPa. Thus, the gas shale medium cannot be approximated
by a fractured isotropic medium.
In fact, a somewhat stronger statement can be made. Backus

(1962) defined quantities S and T by

S ¼ C2
13 þ 2C66C33 − C12C33

4C33

(17)

and

T ¼ C33 − C13

2C33

; (18)

and showed that any transversely isotropic medium that is equiva-
lent to a stack of thin isotropic layers must satisfy

�
3

4
− T

�
2

<

�
3

4C55

−
1

C33

��
3C66

4
− S

�
. (19)

For our gas shale, the left side of equation 19 evaluates to 0.284
whereas the right side evaluates to 0.267. It follows that the best-fit
estimated gas shale cannot be constructed by an effective medium
formed from thin interbedded isotropic layers. Note, however, that
the inequality of equation 16 would be satisfied if the value of C13

were 15.8 GPa or lower, so the possibility of a three-isotropic-
constituents equivalent medium is within experimental error. The
value of C13 given by equation 14 is inconsistent with any layered
isotropic approximation. The value given by equation 16 is the
upper bound for values of C13 consistent with a two-isotropic-
constituents approximation.

CONCLUSIONS

This gas shale formation, as sampled by this pair of boreholes and
logged with a sonic tool, shows strong anisotropy and remarkable
homogenetity. The formation’s average properties are, to a very
good approximation, explained by a transversely isotropic medium
with a vertical symmetry axis and with elastic parameters
approximately satisfying C13 ¼ C12, but inconsistent with any

representation by a fractured isotropic medium. More importantly,
these data clearly show that, at least for fast anisotropic formations
such as this gas shale, sonic logs measure group slowness for pro-
pagation with the group angle equal to the borehole inclination
angle. The dipole sonic data, taken as a whole, are inconsistent with
the assumption that they represent phase slownesses for propagation
with phase angle equal to borehole inclination angle.
In this example, the shear speeds are significantly higher than the

fluid speeds, so caution should be used in interpreting logged shear
data in slow anisotropic formations. The uniform velocity-bias cor-
rection should also be checked using carefully made synthetics
based on matching models when used in contexts where precise
values of elastic moduli are required.
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