Anisotropic static and dynamic moduli measured on shale plugs cut parallel and perpendicular to bedding or

Serendipity in the quest for C13

Doug Miller¹, <u>Richard Plumb²</u> and Greg Boitnott³

1st International Workshop on Rock Physics Denver, CO August 7-12, 2011

¹ MIT-E.A.P.S., ² Plumb Geomechanics & MIT-C.E.E., ³ New England Research

Serendipity

The faculty of finding valuable or agreeable things not sought for

Background/Motivation

- Exploration well-significant NPT due to wellbore instability in a thick shale formation
- No knowledge of the state of stress or rock mechanical properties

Nature of the problem

Serendipity Event#1

Found sample of the problem rock

Shale Sample of Opportunity

Bedding enhanced by erosion by water

Conchoidal-like fracture surface

1"

scale

Weak compositional layering

Serendipity Event#2

I shared the experimental data with Doug Miller

TI parameters from ultrasonics

Theory and Measurement

1.
$$V11^2 = C11/\rho$$

2.
$$V33^2 = C33/\rho$$

3.
$$V12^2 = C66/\rho$$

4.
$$V13^2 = V31^2 = V32^2 = C55/\rho$$

For TI symmetry: C12 + 2 C66 = C11.

Thus, ultrasonics determine C33, C55, C11, C12, C66 (but not C13)

TI parameters from load-unload cycles

Theory:

Perpendicular core:

- axial stress/axial strain = σ 33/ ϵ 33 = 1/S33 = E33
- axial stress/radial strain = σ 33/ ϵ 11 = 1/S13 = E33/ ν 33

Parallel core

- axial stress/axial strain = $\sigma 11/\epsilon 11 = 1/S11 = E11$
- axial stress/radial strain@45° = $2 \sigma 11/(\epsilon 33 + \epsilon 11) = 2/(s13 + s12)$

Observe in this case: 1/S12 = 2/(S13+S12), hence S12 = S13.

Statics determine S33, S13, S11, S12, & thence C33, C13, C11, C12, C66 (but not C55)

Combined Methods

- Elastostatics determine: C33, C13,C11,C12,C66 (but not C55)
- Ultrasonics determine:
 C33,C12,C55,C66 (but not C13)
- Doubly determined parameters are proportional:
 Dynamic=1.38 x Static
- Singly determined moduli can be predicted by rescaling.

Moduli	C11	C13	C33	C55	C66	C12
Ultrasonics	19.4	2.4	12.5	5.7	8.2	3.1
Elastostatics	14.2	1.7	8.9	4.2	5.8	2.4
Dynamic	19.5	2.4	12.2	5.7	8.0	3.3
Stat x 1.38						
Static	14.1	1.7	9.1	4.1	5.9	2.3

Conclusions

- The shale is anisotropic w.r.t. elastic moduli and compressive strength-consistent with TI symmetry
- Dynamic elastic moduli are systematically greater than the static moduli determined from small stress unloading cycles.
- There was a remarkably strong correlation between the static and dynamic moduli on this shale
- Consequently the two plug method enabled determination of static and dynamic values of all 5 TI parameters
- A fruitful research topic is understanding the physics governing the difference between the static/dynamic modulus of shale.

Acknowledgements

- Hunt Oil Dallas for permission to present this rock mechanics data
- New England research for conducting the laboratory measurements and preliminary rock characterization