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0.1.1. Overview

“RADAR” is an acronym for “RAdio Detection And
Ranging”. In free space and in air (to a good ap-
proximtion), radio waves propagate at the speed of
light—299,792,458 m/s or about .3 m/ns—and scat-
ter from objects such as airplanes, ships, and clouds.
By sending out pulses or bursts of radio waves from
transmitting antennas and by detecting and timing
the echoes returning to receiving antennas, we can
accomplish the task escribed by the acronym. When
the echoes come mainly from distant objects, i.e.,
from objects many wavelengths removed from the
radar system, the same physical antenna can be used
as both transmitter and receiver. Most radars oper-
ate at frequencies that lie in the RF and microwave
bands, which cover the electromagnetic (EM) spec-
trum from roughly 300 kHz to 300 GHz. At these fre-
quencies, the wavelength of EM waves in free space
ranges from about 1 km to 1 mm, and the choice of
operating frequency depends mainly on the size of
the objects to be detected. Conventional radar has
a vast literature: Skolnik (1980) is a standard tech-
nical reference; Buderi (1996) recounts the history of
radar during the years leading into World War II.
“Ground probing radar” refers to the use of radio

waves to detect and locate buried objects. Also called
“ground-penetrating radar” or “GPR”, directing ra-
dio waves into the ground is becoming a powerful way
of mapping the shallow suburface in civil engineer-
ing, environmental studies, forensics, and archaeol-
ogy. Versatile GPR systems (“GPRs”), consisting
essentially of pairs of transmitting and receiver an-
tennas with control electronics, are available from
several commercial manufacturers; many more re-
search systems have been developed for special uses,

e.g., locating unexploded ordnance (UXO).

Figure 1 shows data obtained by scanning a GPR
across a concrete floor with steel reinforcement that
overlies an iron pipe. The horizontal scale is distance
in meters giving the location of the radar antennas
along a scan line on the floor. The vertical axis is
recording time in nanoseconds. The echoes from the
pipe for different positions of the antennas lie along
the red line superimposed on the raw data. The lo-
cus of echoes has a hyperbolic shape characteristic
of returns from small objects in homogeneous media.
Because the speed of propagation is approximately
.125 m/ns and the pipe is at approximately .5 m be-
low the surface, the apex of the hyperbola occurs at
approximately 8 ns.

Figure 1 Example of GPR data
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Figure 2 Example of 3D GPR image

By moving the surface antennas over a regularly
spaced grid of scan lines and processing the data with
an imaging operator to be described below, it is pos-
sible to go beyond detection and ranging to make
3-D images similar to those made in X-ray tomog-
raphy, magnetic-resonance imaging, medical ultra-
sound, and seismic exploration. Figure 2 shows a
3-D radar image of the pipe beneath the floor made
from a dense set of scans which includes the one in
Figure 1. It is natural to call this technique “ground-
penetrating imaging radar” or “GPiR”.
The sections that follow start with a conceptual

and mathematical description of GPR, including the
most useful analytical models of radar propagation

in the ground and a simple, but rigorous, model of
radar scattering which leads to a consistent formal-
ism for 3D imaging. The article concludes with a
brief description of practical GPR systems and ex-
amples of applications.

0.1.2. Conceptual Description

An Idealized GPR System

Figure 3 shows an idealized GPR system. It con-
sists of one or more (polarized) transmitting anten-
nas for broadcasting a short pulse of EM energy and
one or more (polarized) receiving antennas for de-
tecting the broadcast signals and their echoes. Con-
trol electronics generates the current pulse which ex-
cites the transmitting antenna and then samples and
records the voltages at the receiving antennas. The
EM wave from the transmitter propagates both in
the air (direct wave) and in the earth, where it re-
flects off geological structures such as changes in soil
layers or man-made objects before returning to the
surface. The time of arrival of the echos is the prin-
cipal source of information about buried structures.
Two features distinguish GPR from other radars.

First, the antennas for transmitting and receiving
GPR are roughly the same size as the spatial wave-
lengths of the propagating waves. Such antennas can
be only weakly directional; therefore, precise loca-
tion of a buried object with GPR requires synthetic-
aperture focussing. Second, the speed of propaga-
tion in the ground is significantly different from the
speed of light in free space and is not known a pri-
ori. Moreover, because most soils have finite con-
ductivity when wet, the wavespeed is usually com-

Figure 3 Idealized GPR system
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Figure 4 Electrical properties as a function of frequency for clay loams of Puerto Rico type with 2.5%, 5%, and 10% moisture content by
weight (Hipp, 1974). Solid curves are experimental data; dotted curves are fits with a two-term Debye relaxation model (Wang and Oristaglio,
2000).
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plex and varies moderately with frequency (Figure
4). A complex wavespeed (or propagation constant)
means that the wave decays exponentially along its
path of propagation; this limits severely the depth of
penetration of radar signals in the ground.

Mathematical Description

GPRs generate and detect classical EM fields that
are described by Maxwell’s equations. To develop
solutions relevant to GPR, we will use Cartesian co-
ordinates with position vector r = xx̂ + yŷ + zẑ,
where {x̂, ŷ, ẑ} are unit vectors in the coordinate di-
rections; R = |r| =

√
x2 + y2 + z2; and r̂ = r/R.

For fields varying harmonically in time as
exp(−iωt), where ω is angular frequency, t is time,
and i =

√−1, Maxwell’s equations for the electric
field E and magnetic field H are

∇ × E = iωµH, (1)

∇ × H = −iωεE + σE + Js. (2)

where the source of the EM fields is represented by
the impressed current density Js (currents on the
transmitting antenna), and the medium’s EM prop-
erties are its permittivity ε, conductivity σ, and per-
meability µ. In the most general anisotropic medium,
these properties are all tensor functions of frequency
and position (r, ω). We will assume for simplicity
that electrical anisotropy is negligible and, morevoer,
that µ assumes its free-space value µ0 = 4π × 10−7

H/m, which holds for many sandy and clay soils.
The important material properties for GPR are

therefore the permittivity ε and conductivity σ,
which determine the relative size of induced conduc-
tion (σE) and displacement (−iωεE) currents in the
ground. These secondary currents—and their varia-
tions caused by changes in soil or its pore fluids and
by buried objects such as metallic pipe—generate the

scattered EM fields that are detected by GPR. When
both conduction and displacement currents are sig-
nificant, it is convenient to combine them into a total
(induced) current density,

JT = −iωεE + σE = −iω(ε+ iσ/ω)E (3)

and define the quantity in parenthesis as the complex
permittivity,

ε̄(ω) = ε(ω) + iσ(ω)/ω. (4)

There is no loss of generality in then assuming that
ε and σ are (strictly) real functions, linked by the
requirement that

ε̄(t) =
1

2π

∫ ∞

−∞
ε̄(ω) exp(−iωt)dω

be a causal function of time. One convenience of this
representation is that nearly all formulas derived for
lossless media (σ ≡ 0) are extended to lossy media
by the simple substitution ε → ε̄.
Finally is also conventional to write ε = ε0εr,

where ε0 = 8.85 × 10−12 F/m is the permittivity
of free-space and εr is the medium’s relative permit-
tivity, usually called its “dielectric constant”. With
these conventions, the speed of radio waves in the
ground (at the operating frequencies of GPR) is de-
termined mainly by n =

√
εr, the index of refraction,

while the attenuation is determined by both σ and
n.

Propagation, Decay, and Dispersion Maxwell’s
equations (1) and (2) combine to give the vector wave
equation,

∇ × ∇ × E − k2(ω)E = iωµJs, (5)

where k2 = ω2µε̄(ω). In regions outside the source,
equation (5) has plane wave solutions of the form,

E(r, ω) ∼ Eo e
ik·r, (6)
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where k is a complex propagation vector and Eo is a
complex amplitude vector, subject to

k · k = k2 = ω2µε̄(ω) ; Eo · k = 0. (7)

To simplify, assume the wave propagates along the
z-axis, and is polarized along the y-direction; then

Ey(z, ω) = Eoe
ikz (8)

where

k = kR + ikI = ω
√
µε

(
1 + i

σ

ωε

)1/2
(9)

is the wave’s complex propagation constant and Eo

is its (real) amplitude at the surface z = 0. In gen-
eral, solution (8) describes a wave which propagates
at phase velocity ω/kR and decays at the rate kI

in the positive z-direction (when kR, kI , ω > 0 and
time-dependence e−iωt is restored). Solving for the
complex square root shows that both the speed and
attenuation depend on frequency, so that radar prop-
agation in conductive soil is inherently dispersive,
even if ε and σ are constant with frequency.
Dispersion can significantly complicate “detection

and ranging” since it changes the shapes and loca-
tions of echoes. But its effects in GPR are not nec-
essarily severe. Most GPRs operate at frequencies
where displacement currents dominate, σ/(ωε) 	 1,
and the propagation constant simplifies considerably

k ≈ ω√
µε

(
1 + i

σ

2ωε

)
= ω/c+ iα, (10)

with

c =
1√
µε

=
c0

n
and α =

σ

2

√
µ

ε
=
η0σ

2n
, (11)

where co = (µ0ε0)−1/2 is the speed of light in free-
space, n =

√
εr is the index of refraction, and

η0 = (µ0/ε0)1/2 ≈ 377 Ω is the impedance of free-
space. In this regime, the wavespeed and the attenu-
ation rate are independent of frequency if ε and σ are
constant. Pulses in this regime retain their shapes,
but are attenuated exponentially along the path of
propagation at a rate that is constant with frequency.
Thus, when σ/(ωε)	 1, a lower frequency GPR does
not necessarily have increased depth of penetration.
In practice, however, water in the soil does cause
some variation of both ε and σ at frequencies in the
bandwidth of GPR (Figure 4). The examples below
show that this dispersion has only subtle effects on
echoes from buried objects. But the higher attenua-
tion caused by higher σ at higher frequencies can be
significant.
Most soils have dielectric constants in the range

2-16, which means that speed of propagation in the

ground is as much as four times slower than in air,
and there is significant refraction of radio waves at
the earth-air interface. Conductivity varies from
nearly zero in dry sandy soils to about .1 S/m in
wet clays. Both of these properties are influenced
strongly by the amount of (salt) water saturation.
(Values of conductivity are often given in terms of
their inverse, the resistivity, ρ = 1/σ. Most soils
have resistivities in the range 10–10 000 Ω-m.)

Antennas and Sources The most popular com-
mercial GPRs use either linear or bow-tie antennas
(Figure 5) backed by a metal cavity containing a
radar-absorbing dielectric material. Modeling these
in detail is complicated (Nishioka, et al., 1999), but
their radiated fields are approximated well by that
of an ideal (broadband) electric dipole. The induced
secondary currents on a small isolated object also ra-
diate, to good approximation, as an equivalent elec-
tric dipole (in the limit of an ideal point scatterer,
this equivalence is exact).

Figure 5 GPR bow-tie antennas

Thus, the solution of the vector wave equation
in a homogeneous medium where the source is a
point electric dipole in an arbitary direction—i.e.,
Js = δ(r)û—is probably the most important model
in GPR.
We can obtain this solution from the Green’s

dyadic for the vector wave equation, which satisfies

∇ × ∇ × G̃o(r, r′, ω) − ω2µε̄G̃o(r, r′, ω) = Ĩ δ(r − r′). (12)

where Ĩ = x̂x̂+ŷŷ+ẑẑ is the identity dyadic. Green’s
dyadic plays the role of Green’s function for problems
with vector fields and sources. If û is a arbitrary unit
vector, then

iωµG̃o(r, r′, ω) · û (13)
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is the vector electric field at position r caused by a
point electric dipole with unit strength and direction
û at position r′. In Cartesian coordinates, Green’s
dyadic can be represented as a 3 × 3 matrix whose
columns are (proportional to) the vector electric field
caused, respectively, by electric dipoles in the coor-
dinate directions x̂, ŷ, and ẑ. A dyadic (matrix)
Green’s function is needed because the field vector is
not necessarily parallel to the source vector.
Green’s dyadic for a homogeneous medium has

a simple explicit form, that splits neatly into two
terms,

G̃(r, r′, ω) = (̃I + k−2∇∇)
eikR

4πR

= (̃I − R̂R̂)
eikR

4πR

+
(
i

kR
− 1
k2R2

)
(̃I − 3R̂R̂)

eikR

4πR
, (14)

where R = |r − r′|, R̂ = (r − r′)/R, and k = ω
√
µε̄.

Positive real and imaginary parts are chosen for the
square root to give an outgoing and decaying spheri-
cal wave, with exp(−iωt) time-dependence. The first
term, which dominates at large distances compared
to a wavelength (|kR| = 2πR/λ � 1) is the radiation
or far field. The dyadic factor in this term guarantees
that its electric field is polarized perpendicular to the
direction of propagation (the radial vector from the
source). The radiation field thus locally resembles
an EM plane wave. The polarization of the near-
field (second) term is the same as that of a static
electric dipole.
The transient field of the dipole is, from (13) and

(14),

E(r, t) = Re

{
µ

π

∫ ∞

0

iωG̃(r, r′, ω) · J(r′, ω)e−iωtdω

}
. (15)

In conductive media, the integral must be evalu-
ated numerically, but it simplifies considerably when
σ = 0. If I(ω) is the dipole’s current moment (in
units of amp-m) so that J = I(ω)δ(r − r′)û, then
in the far field, the transient electric field is just
the time-derivative of the current waveform with the
propagation delay R/c,

E(r, t) ≈ (̃I − R̂R̂) · û µ

4πR
I′(t−R/c), (R → ∞) (16)

where I ′ = dI/dt. The time-dependence of the near-
field term includes a combination of the source cur-
rent and its integral.
In conductive soil, the wave is attenuated and

distorted significantly as it propagates, but in soils
where ωε/σ � 1 in the effective bandwidth of the
source current, the main effect in the far field is an
exponential attenuation,

E(r, t) ≈ (̃I − R̂R̂) · ûµe
−αR

4πR
I′(t−R/c), (R → ∞) (17)

where α = σµc/2 = ση0/(2n).
Figure 6 shows the evolution from the near to far

field in a wholespace with relative dielectric εr = 9, a
typical value for sandy soils, corresponding to a speed
of light of .1 m/ns. Waveforms are shown for soils in
which the conductivity increases from 0 to .05 S/m (a
relatively conductive soil). The source current is the
first derivative of a gaussian function with a central
frequency of about 200 MHz. The wavelength in the
non-conductive soil at the central frequency of the
source is about 0.5 m. At a distance of 1.5 m from the
source—or 3 wavelengths at the central frequency—
the far field approximation is already accurate to a
few per cent.

Earth-Air Interface Presence of the interface be-
tween earth and air is another obvious difference
between GPR and conventional radar. Sommerfeld
(1912) began the study of radio waves near the in-
terface by constructing his famous integral, and ex-
ploration of its subtleties remains an area of active
research (e.g., to determine where cellular phones will
work). Fortunately, when GPR antennas are placed
close to the ground—within a quarter wavelength or
less, as in most surveys—most of these subtleties can
be ignored. The main effect of the interface on scat-
tering by buried objects is a change in the radia-
tion and receiving patterns of the antennas. This
effect is accurately modeled by asymptotic formulas
for Green’s dyadic in a halfspace. For GPR surveys
with horizontal antennas on the ground, the relevant
components of Green’s dyadic—the first 2 columns,
corresponding to the (vector) electric fields in the
halfspace caused by x- and y-directed dipoles at the
interface—can be obtained from the formulas for the
field of a horizontal dipole at the interface (Engheta
et al., 1982). The solution is conviently written with
the dipole at the origin in spherical coordinates,

G̃(r, r′ = 0) ∼ e−σµcR

4πR
eiωR/c

[
F (θ)φ̂φ̂ −G(θ)θ̂(φ̂ × ẑ)

]
(18)

where θ and φ are polar and azimuthal angles of the
radius vector to point r; θ̂ and φ̂ are unit vectors in
the corresponding directions; and the angular factors
are

F (θ) =
2n cos θ

(1 − n2 sin2 θ)1/2 + n cos θ
(19)

G(θ) =
2n cos θ

n(1 − n2 sin2 θ)1/2 + cos θ
(1 − n2 sin2 θ)1/2, (20)

where n =
√
εr is the index of the refraction of the

ground.
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GPR antennas close to the interface also excite a
strong ground wave, which propagates at the speed of
radar waves in the soil. Thus, GPR data has two “di-
rect” waves between transmitter and receiver anten-
nas: one propagating in air and one in ground. These
waves interfere when the two antennas are close to-
gether (within a wavelength or two), but separate
clearly in any GPR survey in which the transmitter
antenna is held fixed and the receiver is moved to
successive larger separations or receivers are laid out
in an array at different distances from the source.

Example: Scattering from a pipe in soil

Models more complicated than a halfspace generally
require a numerical solution. The popular finite-
difference time-domain (FDTD) method for solving
Maxwell’s equations in 3D is easily adapted to GPR
models and can include the effects of propagation
in dispersive soils (Luebbers et al., 1990; Wang and
Oristaglio, 2000).
Figure 8 shows synthetic waveforms for an exper-

iment with geometry of Figure 7. Coherent events
visible in the data include an air-coupled wave [A], a
ground-coupled wave [G], and a wave scattered from

Figure 6 Evolution of transient field of a dipole in homogeneous
conductive media. Center panel shows fields in freespace at distances
(m) shown at left. Top and bottom panels show the fields in homo-
geneous wholespace of 100 and 20 ohm-m, respectively. Amplitudes
are normalized by trace.
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Figure 7 Geometry of finite-difference calculation of scattering from
a pipe in soil.
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the pipe [S]. The first two panels show the result, at
low and high gain, when soil conductivity and per-
mittivity are constant with frequency with the values
indicated by the dots on the top curves in Figure 4.
The third panel displays the waveforms at high gain
for a dispersive soil in which the electrical parame-
ters follow the dotted curves in Figure 4, which comes
from a two-term Debye model that fits the proper-
ties of clay-loams of 10% moisture content (Hipp,
1974). The change in soil has little effect on the air-
wave, some effect on the phase of the ground and
scattered waves, and a negligible effect on the prop-
agation speed of the ground and scattered waves.

0.1.3. Location and Imaging with GPR

Conventional radars use directional antennas (or an-
tenna arrays) to locate objects. These systems can
broadcast a radar wave along a specific direction—
i.e., within a certain angular spread—and time the
echo returning to the same (physical) antenna (top
of Figure 9). If te is the round-trip echo time, the ob-
ject is located at radial distance (range) cte/2 from
the antenna along the radar’s “line of sight”, which
sweeps periodically through different directions. A
fundamental result of antenna theory is that the an-
gular spread of the main lobe of a broadcast wave is
inversely proportional to the antenna’s size in wave-
lengths (see, e.g., Kraus, 1988),

∆Ω ∼ 2λ/L. (21)

This relationship sets the minimum size of an an-
tenna designed to achieve a given angular resolution.
Antenna size alone, of course, does not give direc-
tionality; it is also necessary to control the current
pattern on the antenna by giving it a special shape
or by controlling its individual elements. Neither of
these options is very practical with a general-purpose
GPR, which needs to move easily over the ground
and to operate over soils with different wavespeeds
(and therefore wavelengths).
It is nevertheless possible to achieve high resolu-

tion with a GPR by synthetically forming an image
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Figure 8 Radargrams from pipe in model of non-dispersive and dispersive clay-loams of 10% moisture content.
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from data collected at different source and receiver
positions with omni-directional antennas. This pro-
cessing resembles conventional “synthetic-aperture
radar” (SAR), in which an antenna array is syn-
thesized by applying coherent phase delays to data
obtained at different antenna positions. Before con-
sidering these imaging methods in detail, it is useful
first to see how simple geometric ideas can be used
to locate objects with GPR.

Geometry of Scattering

The arrival times of echoes recorded at different po-
sitions can easily be used to locate an object with
non-directional radar if the object is small compared
to the radar’s wavelength. The simplest case is a
pointlike object which scatters radar energy in all
directions. Let rp = (xp, yp, zp) be the location of
the point scatterer, while ri and rj are locations
of the transmitting and receiving antennas, respec-
tively. The equation for the arrival times of echoes
from the point scatterer is

tp =
|rp − ri|
c

+
|rj − rp|
c

(22)

where c is the radar velocity (assumed to be con-
stant). For simplicity, let the point scatterer be lo-
cated in the (x, z) plane at rp = (xp, 0, zp), and con-
sider a standard GPR survey in which one transmit-
ter and and one receiver, located at essentially the
same position ri ≈ rj , move together along a line
(e.g., the x-axis) at the surface z = 0 above the scat-
terer (Figure 9). The curve of arrival times is then a
hyperbola, such as the one we have overlain on the
data of Figure 1,

tp = 2

√
(xj − xp)2 + z2p

c
, or (23)

c2t2p − 4(xj − xp)2 = c2t2o (24)

where to = 2zp/c is the earliest arrival time, when the
antenna pair is directly above the point scatterer.
The velocity c can be determined from the slope

of the curve of echoes at large offsets,

dtp

dx
=

2
c

x− xp√
(xj − xp)2 + z2p

→ 2
c

(xj → ∞). (25)

The horizontal location of the pipe is determined by
the apex of the hyperbola dtp/dx = 0; its depth is
zp = cto/2. These quantities could also be deter-
mined by fitting the locus of arrival times with the
hyperbola (24).
A related way of looking at the problem of locat-

ing an object from its radar echoes is to see what
can be learned from a single echo. If xp and tp
are held fixed in equation (22), and if the velocity
is known, then this equation determines the locus
of possible scatterer positions rp that could generate
an echo arriving at the right time. The appropri-
ate locus is clearly an ellipse (or ellipsoid in 3 di-
mensions) with the source and receiver antennas at
the focus. If we assume the echoes are coming from
an object in the ground, the ellipse becomes a semi-
ellipse. When source and receiver are co-incident,
this semi-ellipse becomes a semi-circle centered on
the source-receiver pair, as given by (23), viewed as
an equation for (xp, zp), with tp and c fixed. A point
scatterer located in the ground at any point along
the semi-circle generates an echo at time tp. This
ambiguity in the object’s position is inherent in any
omni-directional radar operating at a fixed location;
it is removed by considering semi-circles of possible
scatterer positions corresponding to echoes received
at other locations of the radar. All the semi-circles
determined by times that satisfy equation (24) in-
teresect at the point (xp, zp).

Synthetic Aperature Radar The hyperbolas
and ellipses generated by equations 22 or 24 provide
complementary pictures of radar echo location (with
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non-directional antennas). One determines the lo-
cus of echoes that are generated by scattering from
a single (point-like) object; the other generates the
locus of object positions determined by a single echo.
The geometry of these equations has inspired numer-
ous algorithms that transform raw radar data into
maps (or images) of object positions. One class of
such algorithms, called Synthetic Aperture Radar or
“SAR”, computes a likelihood map of object posi-
tions by summing the data along travel-time curves.
Let D(ij, t) stand for the amplitude of the radar data
at time t when the source is at position ri and the
receiver at position rj , and let rp stand for a generic
object position. Then, the value of a SAR likelihood
map, or SAR image, at rp is given by a summation
of the form,

SAR(p) ≡ SAR(rp) =
∑

ij

w(p, ij)D(ij, t(i, p, j)), (26)

where t(i, p, j) is total radar traveltime from source
to point rp and back to the receiver, and w(p, ij) is a
weighting function tailored to normalize amplitudes
for different distances to the object position, polar-
ization of the antennas, etc. The sum is computed
for all possible object positions rp and plotted in 2D
or 3D.
The SAR formula is intuitively very appealing.

If a (point-like) object is present at point rp, sum-
ming the data along the travel-time curve will add
its echoes together coherently giving a large num-
ber, whereas random noise and interfering echoes
from other objects will tend to add incoherently and
cancel. The SAR formula can also be interpreted
as a synthetic focussing—also called “phasing” or
“steering”—of the array of receivers onto individual
image points. Similar algorithms have been used in
acoustic imaging for medical ultrasound and for geo-
physical exploration (where they are called “seismic

migration”, Claerbout, 1976). These heuristic inter-
pretations can be made rigorous by using a consistent
model of radar scattering.

Scattering Model for GPR Imaging

The Born approximation to electromagnetic scatter-
ing provides a simple (linear) scattering model that
leads to a rigorous formulation of GPR imaging. In
this model, the complex permittivity is first split into
a background term ε̄o plus a perturbation δε̄, both
of which can vary spatially,

ε̄(r) = ε̄o(r) + δε̄(r) (27)

= εo(r) + δε(r) + i [σo(r) + δσ(r)] /ω. (28)

The background model represents the properties of
the soil, which are taken to be known or are guessed;
in practice, the background model is usually a homo-
geneous wholespace or halfspace. “Scattered waves”
(i.e., radar echoes) are caused by the deviations δε̄,
which is an unknown 3-D function to be recovered
by the imaging formula.
The approximate scattering model follows from

the integral formula that represents the total elec-
tric field as the sum of the field in the background
medium plus the scattered field. This formula uses
Green’s dyadics for the total field and the field in the
background medium. The dyadic for the total field
is the solution of the vector wave equation in the full
medium with all variations in the properties of the
soil and buried objects,

∇ × ∇ × G̃(r, r′, ω) − ω2µε̄(r)G̃(r, r′, ω) = Ĩ δ(r − r′).(29)

The dyadic for the background medium G̃o satisfies
the vector wave equation in the background medium,

∇ × ∇ × G̃o(r, r′, ω) − ω2µε̄o(r)G̃o(r, r′, ω) = Ĩ δ(r − r′).
(30)

Figure 9 Synthetic aperture GPR: (Left) Hyperbola of arrival times of echoes from a point-like object in the ground as a transmitter-receiver
pair is scanned along the surface. (Right) Ellipse of possible scatterer positions determined by a single echo. Dark curve corresponds to the
antenna pair shown; light curves are for nearby positions.
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z
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time
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These Green’s dyadics have the usual interpretation:
if û is a unit vector giving the direction of a dipole
source at position r′, then iωµG̃(r, r′, ω) · û is the
vector electric field at position r in the full medium;
and iωµG̃o(r, r′, ω) · û is the vector electric field in
the background medium.
We will assume that the transmitting antenna is

an ideal electric dipole,

Js(r) = I(ω) δ(r − rj)ûj , (31)

with current moment I(ω) (amp-m) and direction
ûj , and that the output of the receiving antenna
can be converted into a measurement of the elec-
tric field. These assumptions imply that radar data
are essentially different components of the Green’s
dyadic. For example, with a GPR transmitter an-
tenna aligned in the x-direction at position rj and
a receiver antenna aligned in the y-direction at ri

(a cross-polarized measurement), then the measured
electric field is

iωµI(ω) ŷ · G̃(ri, rj , ω) · x̂.

The measurement includes both the “direct” waves
in the background medium and the EM field scat-
tered by buried objects. When using radar to image
the objects, one usually subtracts an estimate of the
direct coupling between the transmitter and receiver
antennas in the background medium. To model this,
we use the “scattered field” dyadic, defined as the dif-
ference between the total field and the background
field,

G̃s(r, rj , ω) ≡ G̃(r, rj , ω) − G̃o(r, rj , ω). (32)

A full set of scattered-field radar measurements
then comprise a 3× 3 data matrix,

D̃(ri, rj , ω) =


 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 , (33)

where

Dyx = iωµI(ω) ŷ · G̃s(ri, rj , ω) · x̂, etc. (34)

With ideal dipoles as transmitters and receivers,
the data matrix is symmetric because of reciprocity.
Generally, only horizontal antennas are used in GPR
surveys; this gives 3 independent polarizations from
the upper-left 2 × 2 matrix: Dxx, Dyy, and Dxy =
Dyx. In what follows, we maintain the convention
that rj represents positions of a transmitter antenna
and ri positions of a receiver antenna, and will refer
to the Green’s dyadics as “fields”, since field compo-

nents are obtained by sandwiching the dyadics with
unit vectors and multiplying by iωµI(ω).
With these definitions, the scattered field has the

integral representation,

G̃s(r, rj , ω) = ω2µ

∫
Vs

dr′ G̃o(r, r′, ω) · G̃(r′, rj , ω)δε̄(r′),

(35)

in which the scattering currents, (−iωδε̄)(iωµG̃),
driven by the total electric field in the scatterer, ra-
diate with the background Green’s dyadic. Equation
(35) is the basic integral equation for forward and
inverse EM scattering. The integration is over the
region of support of the contrast function: Vs = {r′ :
δε̄(r′) = 0}. The point r where the field is com-
puted can be anywhere. When the contrast func-
tion is known, equation (35) becomes a linear integral
equation for the field by letting r range over the scat-
tering region. When contrast function is unknown,
as in radar imaging, equation (35) becomes a non-
linear integral equation for determining δε̄ from the
scattered field recorded outside the scattering region,
r = ri ∈ Vs.
Inversion for δε̄ is nonlinear because the total field

G̃ which multiples δε̄ in equation (35) also depends
on δε̄. The equation is linearized by replacing the
total field G̃ in the integral by the background field
G̃o, giving

G̃B
s (ri, rj , ω)

= ω2µ

∫
Vs

dr′ G̃o(ri, r′, ω) · G̃o(r′, rj , ω)δε̄(r′) (36)

= ω2µ

∫
Vs

dr′ G̃T
o (r′, ri, ω) · G̃o(r′, rj , ω)δε̄(r′). (37)

The second equation, which is perfectly symmetric
in sources and receivers, follows from the symmetry
of electric Green’s dyadic under (matrix) transpo-
sition, G̃T = G̃ (see, e.g., Felsen and Marcuvitz,
1975).
Equation (36) is the Born approximation for vec-

tor EM scattering (Chew, 1990). It is the only self-
consistent linear relation between the scattered field
and the perturbation δε̄. All linear radar imaging
methods therefore rest, explicitly or implicitly, on
the assumption that this equation accurately models
the actual scattered field—i.e., measured radargrams
with the direct field substracted.1 The next section
develops a specific and flexible formula that is based
on interpreting equation (36) as a generalized Radon
transfrom. To simplify the notation in what follows,
we will drop the superscripts “B” and “o” since ev-
erything relies on the Born approximation and the
background model is the only model used in imag-
ing.
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EM Scattering as a Generalized Radon Transform

Quantitative radar imaging requires an inversion of
equation (36) to recover δε̄. A general theory for
inverting this and similar equations, involving the
Green’s function of wave propagation, can be de-
rived from the theory of Fourier Integral Operators
(Beylkin, 1985) and the generalized Radon transform
(Miller et al., 1987). The ordinary Radon transform
is an operator that maps a function into its integrals
over straight lines in 2D or planes in 3D. Its inverse is
known explictly and provides the inversion formulas
for X-ray tomography and magnetic resonance imag-
ing (Deans, 1982). The generalized Radon transform
(GRT) maps a function into its weighted integrals
over a family of curved surfaces. Although the GRT
is invertible under general conditions, explicity for-
mulas exist only for specialized surfaces—such as for
integrals over spheres (Helgason, 1984).
Putting equation (36) into the form of a GRT

requires a further approximation that replaces the
background Green’s dyadic with its high-frequency
approximation by geometrical ray theory. Since the
development of this approximation for EM fields is
lengthy, we will simply quote the relevant results.
Details can be found in Born and Wolf (1983), Kline
and Kay (1965), and Felsen and Marcuvitz (1973).
Geometrical ray theory assumes that the Green’s

dyadic in the high-frequency limit can be written as
the product of a geometrical amplitude factor and an
exponential (phase) factor:

G̃(r, r′) = Ã(r, r′) eiωτ(r,r′), (38)

where Ã is a dyadic amplitude, independent of fre-
quency, and iωτ is the phase. In this representation,
τ will become the traveltime along a raypath. Equa-
tions for the amplitude and traveltime are developed
by substituting equation (38) into (30) and taking
the limit ω → ∞. The leading-order result is the
eikonal equation for the traveltime,

∇τ · ∇τ = µε(r). (39)

and the transport equation for the dyadic amplitude
(outside the source region),

Ã∇2τ + 2∇τ Ã · ∇ ln ε(r) + 2(∇τ · ∇)Ã + σµÃ = 0, (40)

where ε(r) and σ(r) are the real permittivity and con-
ductivity. When equations (39-40) are solved in the
usual way—e.g., by tracing bundles of rays—the last
term in equation (40) gives an additional exponential
attenuation of the amplitude,

exp

(
−1

2

∫
dl σ(r)µc(r)

)
≡ exp

(
−

∫
dl α(r)

)
, (41)

where α(r) is the attenuation rate and the integral
is along the raypath (Kline and Kay, 1965). For ex-
ample, geometrical ray theory for a point dipole in a
homogeneous conducting medium gives

G̃(r, r′) ∼ (̃I − R̂R̂)
e−αR

4πR
eiωR/c, (42)

which is just the far-field term in equation (14), with
the further approximation that σ/(ωε)	 1. As dis-
cussed before, the exponential attenuation in this
regime is independent of frequency and is propor-
tional to the product of the conductivity and the
intrinsic impedance of the medium, η =

√
µ/ε.

Replacing the Green’s dyadics in equation (36)
with their asymptotic forms gives

G̃s(ri, rj , ω) = ω2µ

∫
dr′ Ã(ri, r′, rj) eiωτ(ri,r′,rj) δε̄(r′).

(43)

where

Ã(ri, r′, rj) = Ã(ri, r′) · Ã(r′, rj) and (44)

τ(ri, r′, rj) = τ(ri, r′) + τ(r′, rj) (45)

are the total amplitude and total traveltime along
the path from source to scattering point to receiver.
When transformed to the time domain, this equation
becomes a generalized Radon transform in the time-
domain. Consider, for example, the Dyx component
of the data at time t,

Dyx(ri, rj , t) = µ

∫ ∞

−∞
dωe−iωtiω3I(ω)· (46)∫

dr′ ŷ · Ã(ri, r′, rj) · x̂ eiωτ(ri,r′,rj) ε̄(r′)

= −µ∂
3I(t)
∂t3

$

∫
Vs

dr′ δ
[
t− τ(ri, r′, rj)

]
Ayx(ri, r′, rj) δε(r′)

− µ
∂2I(t)
∂t2

$

∫
Vs

dr′ δ
[
t− τ(ri, r′, rj)

]
Ayx(ri, r′, rj) δσ(r′),

(47)

where % indicates a temporal convolution. The delta
functions collapse the spatial integrals over r′ to
points that satisfy the travel-time contraint:

{r′ : τ(ri, r′, rj) = τ(ri, r′) + τ(r′, rj) = t}. (48)

This locus of points will generally be a curved sur-
face, determined by the velocity in the background
model and the positions of the antennas. For ex-
ample, when transmitter and receiver are coincident
in a homogeneous background medium ri = rj , the
scattered field at successive times t involves weighted
integrals of conductivity and permittivity over larger
and larger spherical surfaces,

S = {r′ : 2|rj − r′|/c = t}.
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SAR Imaging by Inversion of the GRT

An approximate inversion of equation (47) can be
derived by localizing the inversion formula for the
ordinary Radon transform over planes.2 In fact, it is
easiest to develop this formula working with equa-
tion (43) and the spatial Fourier transformation in
spherical coordinates. Our convention for the for-
ward transformation is

f̃(κ) = f̃(κ, ξ̂) =

∫
dr′ eiκ·r′

f(r′) =

∫
dr′ eiκξ̂·r′

f(r′),

(49)

where the position vector in the Fourier domain is
represented by 3-D spherical coordinates, κ = κξ̂; ξ̂
is a (radial) unit vector; and κ is the distance from
the origin. The inverse transformation is

f(r) =
1

16π3

∫
dξ̂

∫ ∞

−∞
dκκ2e−iκξ̂·rf̃(κ, ξ̂), (50)

where the ξ̂ integral is over the unit sphere. (An ex-
tra factor of 1/2 appears in this formula compared
to the standard Cartesian formula because integra-
tion over the full unit sphere and over positive and
negative radial frequencies κ gives a double coverage
of Fourier space.)
In standard spherical coordinates with polar angle

θ and azimuthal angle φ,

ξ̂ = (sinθ cosφ, sinθ sinφ, cos θ)

, and dξ̂ = sin θ dφdθ. Substituting (49) into (50)
gives

f(r) =
1

16π3

∫
dξ̂

∫ ∞

−∞
dκκ2

∫
dr′ e−iκξ̂·(r−r′)f(r′).(51)

Inversion of equation (43) involves reworking it
into a form that resembles (51). First, let

D(ri, rj , ω) ≡



Dxx

Dyx

Dxy

Dyy


 and A(ri, rj , ω) ≡



Axx

Ayx

Axy

Ayy



(52)

be the data and amplitude vectors made from com-
ponents of the data matrix D̃ (equation 33) and the
amplitude dyadic Ã. In GPR surveys with just hor-
izontal antennas, equation (43) then becomes

D(ri, rj , ω) = H(ω)

∫
dr′ A(ri, r′, rj) eiωτ(ri,r′,rj) δε̄(r′),

(53)

where H(ω) = iµ2ω3I(ω) is a (pure) frequency fac-
tor. Next, assume that the contrast function is local-

ized around an arbitrary point r and thatA(ri, r′, rj)
varies slowly near r,

A(ri, r′, rj) ≈ A(ri, r, rj) + ∇A · (r′ − r) ≈ A(ri, r, rj),

(54)

so that it can be approximated by its value at r
and removed from the integral. Multiplying equa-
tion (43) by e−iωτ(ri,r,rj) then gives

e−iωτ(ri,r,rj)D(ri, rj , ω) =

H(ω)A(ri, r, rj)

∫
dr′eiω[τ(ri,r,rj)−τ(ri,r′,rj)] δε̄(r) + error

(55)

where the “error” term absorbs all the approxima-
tions leading to this point.
The right-hand side of equation (55) has the form

of a Fourier integral operator acting on the function
δε̄ (Beylkin, 1985). Its dominant action at r as ω →
∞ can be obtained from the first term of a Taylor
expansion of the phase about r,

τ(ri, r′, rj) − τ(ri, r, rj) ≈ ∇τ(ri, r, rj) ·
(
r′ − r

)
. (56)

For any given source-receiver pair, the gradient of
the total traveltime (on the right-hand side) is the
sum of the gradients of traveltimes from the source
to point r and from point r to the receiver:

∇τ(ri, r, rj) = ∇τ(ri, r) + ∇τ(r, rj). (57)

The geometry of this vector relationship is shown
in Figure 10. Since traveltime increases as r moves
locally away from the source or receiver along a ray-
path, ∇τ(r, rj) points along the ray that arrives at
r from the transmitter; similarly, ∇τ(ri, r) points
along the ray that arrives at r from the receiver. Let
ξ̂ be a unit vector in the direction of the total gra-
dient. It is easy to see geometrically or algebraically
that

∇τ(ri, r, rj) =
2 cosα(ri, r, rj)

c(r)
ξ̂(ri, r, rj)

≡ s(ri, r, rj)ξ̂(ri, r, rj), (58)

where s ≡ |∇τ | = 2 cosα/c, and α is half the angle
between the two rays at r. The unit vector ξ̂ will
play the role of the Fourier-domain radial vector in
the inversion of equation (55) (by comparison with
equation 51). This unit vector is connected to the
source and the receiver by the raypaths (Figure 2);
thus, integration over ξ̂(ri, r, rj) becomes an integral
over source and receiver positions.
Substituting (58) into (55) gives

e−iωτ(ri,r,rj)D(ri, rj , ω) =

H(ω)A(ri, r, rj)

∫
dr′eiωsξ̂·(r′−r)δε̄(r′) + error

(59)
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where for simplicity we have dropped the arguments
of s and ξ̂. The integral term on the right-hand side
now resembles the inversion formula (51). But since
both sides of this equation are vectors, it is an overde-
termined system for the scalar δε̄. Least-squares so-
lution of this system amounts to operating on it with
the pseudo-inverse of the vector A,

A+(ri, r, rj) = lim
ε→0

(
AH · A + ε

)−1
AH , (60)

where ε is a real positive number and the super-
script H stands for the Hermitian transpose (to ac-
count for a possibly complex amplitude factor). Left-
multiplying (59) by A+ and splitting δε̄ into compo-
nents gives

e−iωτ(ri,r,rj)A+(ri, r, rj ,uj) · D(ri, rj , ω)

= H(ω)

∫
dr′ eiωsξ̂·(r−r′) [

δε(r′) + (−iω)−1δσ(r′)
]

+ error

. (61)

Comparing equations (51) and (61) indicates that the
final step in the inversion must involve an integral
over ξ̂ and frequency ω.
If the experiement surrounds the scatterer—e.g.,

if antenna positions cover a sphere that contains the
unknown object—then it is easy to show that both
positive and negative spatial frequencies of the ob-
ject can be recovered from data at positive temporal
frequencies ω by the mapping κ = ωsξ̂ (see inset in
Figure 10). In practice, because the data must be
real, positive temporal frequencies are the only ones
available (the data at positive and negative tempo-
ral frequencies are complex conjugates). Still, with
complete coverage of the Fourier domain, it is possi-
ble to reconstruct both δσ and δε independently, as
the real and imaginary parts of the complex function
δε̄. In effect, probing from both sides of the object
gives both positive and negative spatial frequencies.
In typical GPR surveys, of course, the object lies in
a halfspace and can only be probed from one side. In
this geometry only positive spatial frequencies of the

Figure 10 Geometry of rays at image point
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object can be reconstructed, and independent recov-
ery of the conductivity and the permittivity pertur-
bations is not possible without further assumptions.
We thus consider two separate operators: one recov-
ers the permittivity when the conductivity perturba-
tion is negligible; the other recovers the conductivity
when the permittivity perturbation in negligible.
Neglecting δσ first, consider the linear operator on

D,

Hε(D) =
1

16π3

∫
dξ̂ s3(ri, r, rj)·∫ ∞

−∞
dω ω2H−1(ω)e−iωτ(ri,r,rj)A+(ri, r, rj) · D(ri, rj , ω)

(62)

Using equation (51) and (61) (with δσ = 0) gives

Hε(D) =
1

16π3

∫
dξ̂ s3

∫ ∞

−∞
dω ω2eiωsξ̂·(r−r′) δε(r′) + error

=
1

16π3

∫
dξ̂

∫ ∞

−∞
dκκ2eiκξ̂·(r−r′) δε(r′) + error

= 〈δε(r)〉 , (63)

where the angle brackets indicate an estimate of the
quantity. The second equality above follows from
the change of variable κ = sω. The frequency fac-
tor in Hε (equation 62), ω2H−1(ω) = [µ2iωI(ω)]−1,
deconvolves the spectrum of the time-derivative of
the transmitter current. In practice, the spectrum
is not be broadband and the deconvolution must be
regularized.
The operator for recovering δσ differs from Hε

only by the extra frequency factor (−iω),

Hσ(D) = − 1
16π3

∫
dξ̂ s3(ri, r, rj)·∫ ∞

−∞
dω iω3H−1(ω)e−iωτ(ri,r′,rj)A+(ri, r, rj) · D(ri, rj , ω)

(64)

The frequency factor of this operator removes the
spectrum of the transmitter current.

GPR Imaging in a Homogeneous Wholespace

The simplest example of the imaging formula is for
a vector radar survey with co-incident pairs of an-
tennas in a homogeneous background medium (this
neglects effects at the earth-air interface for a GPR
survey). The following geometrical parameters spec-
ify the experimental geometry:

rj = (xj , yj , 0), position vector of the j-th antenna pair,

R = |r − rj |, distance from rj to image point r;,

R̂ = (r − rj)/R, unit vector from the antennas to r;,

θr,rj = polar angle between R̂ and the z-axis, and

φr,rj = azimuthal angle between R̂ and the x-axis,
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Then, from equation (42), the amplitude vector A
splits into a scalar amplitude that depends on R and
a projection vectorP that depends on only the angles
θr,rj and φr,rj ,

A(ri, r, rj) = A(R) P(θr,rj , φr,rj ), (65)

where

Pxx = x̂ · (̃I − R̂R̂) · x̂ = 1 − sin2 θr,rj cos2 φr,rj

Pyy = ŷ · (̃I − R̂R̂) · ŷ = 1 − sin2 θr,rj cos2 φr,rj

Pyx = Pxy = ŷ · (̃I − R̂R̂) · x̂ = sin2 θr,rj cosφr,rj sinφr,rj ,

and
A =

1
16π2

e−σµcR

R2
,

A straightforward calculation shows that AH · A =
A2(1+cos4 θr,rj

). For this geometry, the incident and
scattered rays point in the same direction: α = 0,
s = 2/c, and ξ̂ = R̂. The integration over ξ̂ is easily
converted to an integral over the antenna positions
(Miller et al., 1987) with

dξ̂ = cos θr,rj /R
2 drj .

Finally, PH = PT since the projection factors are
real. Putting this all together gives

〈δε(r)〉 =
8

πc3µ2

∫
d2rj

cos θr,rj

1 + cos4 θr,rj

·
∞∫

−∞

dω
1

iωI(ω)
e−2iωR/c PT (θr,rj , φr,rj ) · D(rj , ω)eσµcR

=
4
c3µ2

∫
d2rj

cos θr,rj

1 + cos4 θr,rj

·

PT (θr,rj , φr,rj ) · D∗(rj , t = 2|r − rj |/c)eσµc|r−rj |, (66)

where D∗(rj , t) is the data deconvolved by the time-
derivative of the transmitter current ∂I(t)/∂t. The
exponential amplitude factor corrects for attenuation
in the background medium (geometrical spreading is
implicitly corrected by the integral over drj). In the
final formula, we have substituted R = |r−rj |, so all
geometrical quantities are explicit. The formula for
δσ is the same except that data is first deconvolved
by I(t).
In practice, equation (66) is a vector stacking al-

gorithm. Let p index (discrete) image points and ij
source-receiver positions, then

IMAGE(p) =∑
j

wxx(p, j)D∗
xx(j, t(p, j)) +

∑
j

wyy(p, j)D∗
yy(j, t(p, j)) +

∑
j

wxy(p, j)D∗
xy(j, t(p, j)) (67)

where D∗
•• is the data (appropriately filtered), t(p, j)

is the (round trip) traveltime to the image point, and
the discrete weights w•• absorbs all other factors.

Figure 11 Stepped-time impulse radar
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0.1.4. Practical Description

Daniels (1996) gives the most comprehensive descrip-
tion of modern GPR equipment, including both com-
mercial and experimental systems; other general ref-
erences are Daniels et al. (1988), Peters et al. (1994),
and Davis and Annan (1989). Extensive descriptions
of systems and their applications are now also avail-
able online (a good starting point is www.g-p-r.com).
The 3 largest commercial manufacturers of general
purpose GPRs are:

• Geophysical Survey Systems, Inc.
www.geophysical.com

• Sensors and Software, Inc.
www.sensoft.on.ca

• Mal̊a Geoscience
www.malags.se

The systems currently available from these manu-
facturers are impulse radars that sample and record
waveforms digitially. Inexpensive and rugged analog-
to-digital converters (ADCs) do not, however, op-
erate fast enough to cover the broad bandwidth of
GPRs, which can be several hundred MHz or more.
These systems therefore build up a full transient
waveform one sample at a time by firing the source
repeatedly and, at each firing, capturing and record-
ing one sample of the waveform at successively in-
creasing time delays. This “stepped-time” recording
is a standard method used by fast sampling oscillo-
scopes: A capacitor is discharged repeatedly to gen-
erate broadband impulses at a rate, fs = 1/DTs,
of about 100,000 per second. In synchronization
with the source, but with a slightly lower frequency,
fr = 1/(DTs+dt), a circuit is repeatedly triggered to
sample and hold a value proportional to the voltage
between the receiver antenna leads at the moment of
triggering. If the source is repeatable and the sam-
pling frequencies are stable, this sampling shifts fre-
quencies down by a factor of (fs −fr)/fr, converting
radio frequencies to audio frequencies and creating a
signal that can be digitized by an audio-band digi-
tizer.
A few “stepped-frequency” GPR systems have

also been built by specialized manufacturers. These
systems operate by broadcasting and coherently de-
tecting one frequency at a time that sweeps through
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the GPR bandwidth. In principle, stepped-time and
stepped-frequency systems are equivalent through a
Fourier Transform, provided the source is perfectly
repeatable and the noise is stationary. Of course,
neither condition holds exactly.

Digital impulse radars

A generic digital impulse radar uses the following
components:

• A trigger generator,
• A source antenna, with associated pulser
electronics,

• A receiver antenna, with associated sam-
pling electronics,

• An ADC connected to a storage device
(often a laptop computer).

The last three components are all configured to be
synchronized by signals from the trigger generator.
The trigger system generally works by first generat-
ing an accurate and stable sawtooth wave (Figure
11) that repeats at audio frequencies (10-100 kHz)
and has a precise slope = ∆V/∆t on its trailing edge.
Conceptually, this sawtooth wave itself could be used
to synchronize source and receiver electronics. For
example, the source can be set to fire at the initial
jump of the sawtooth (from 0 to 1), while the re-
ceiver electronics can be set to capture and digitize
a sample (of the voltage across its antenna leads)
when the trailing slope of the sawtooth fails below a
certain voltage vR. Decreasing this receiver trigger
voltage by a fraction ∆vR on successive firings delays
successive samples in time by ∆t = ∆vR/slope.
In practice, separate square-wave triggers for the

source and receiver electronics are usually created
from the sawtooth using a digital-to-analog convertor
and a comparator3 by a loop of the form:

isv=VS
irv=VR0
For is=1:NSAMP
irv=irv-deltaV_R;
rtrig=COMP(sawtooth,D2A(irv));
strig=COMP(sawtooth,D2A(isv));

END

In this scheme, the length of the “on” (1) interval
in the train of square waves sent to the source elec-
tronics has a fixed length, whereas this interval grad-
ually increases in length with each successive wave
in the train sent to the receiver electronics. An ad-
vantage of sending square waves is that their binary
nature can allow more accurate detection of the trig-
ger time. Also, the leading pulse of the square wave
(“on”) can signal the electronics to prepare for ac-

tion that is triggered by the trailing edge (“off”).
Obviously, any distortion of these trigger pulses can
cause a loss of samples or variations in their timing.
With modern electronics, however, the timing can be
accurate to hundredths of a nanosecond.

Antennas

The antennas of impulse GPRs are generally linear
or bow-tie antennas designed to radiate and receive
as broadband dipoles (Figure 5). The central fre-
quency of a bow-tie antenna is inversely proportional
to its length, so a 250 MHz antenna will be twice as
long (and occupy 8 times the volume) as a 500 MHz
antenna. (A bow-tie antenna with a spectrum very
close to the one shown in Figure 6 has a length of 25
cm.) To minimize ringing, the ends of the antennas
are resistively loaded (Shlager, et al., 1994). Anten-
nas in newer systems are also surrounded with radar
absorbing material and placed in a rectangular metal
cavity to minimize radiation into the air.
The source electronics consist of a capacitor (or

cascading set of capacitors) that discharge through
avalanche transistors at the trigger signal. Consis-
tency of source signatures depends on the manufac-
turers’ abilities to control variations in the charge
and discharge cycle as temperature, moisture, or
other environmental factors vary. Most systems need
some warmup time before use.
The receiver electronics consists of a sampler

whose input leads are connected to the voltage gap in
the receiving antenna. When triggered, the sampler
voltage jumps to a value proportional to the volt-
age difference at the gap and holds that value long
enough for an ADC operating at kHz frequencies to
digitize and record the signal.

Digitization

The voltage sampled at the receiver is not very dif-
ferent from the voltage on an audio microphone. A
preamplifier close to the receiver boosts the signal to
a level suitable for digitization by an ADC similar to
those used for digitizing audio. Depending on the age
of the system design, the data will be digitized to an
accuracey from twelve to twenty bits. Time-varing
gain can be applied before digitization to compensate
for limitations in bit length. Gain applied after dig-
itization cannot improve signal-to-noise ratios, but
may be part of the digital signal processing chain.
The digitized data is generally stored directly to a
PC, which is either a dedicated device or a consumer
laptop.
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Figure 12 Lab Survey Location

0.1.5. Applications and examples

The following examples from the authors’ files illus-
trate cases where 3-D GPR imaging proved useful.
The scanning system used in the last two examples
was developed in a project on ground-penetrating
imaging radar partly funded by the Electric Power
Research Institute (EPRI) and the Gas Research In-
stitute (GRI).

Laboratory Floor

In March 1997, the facilities manager at Schlumberger-
Doll Research asked if a ground-penetrating radar
survey could show structures beneath the floor of lab
workshop where a new elevator was being planned.
The location is shown in Figure 12. A floor drain
just outside the door visible in the figure suggested
that pipes might lie under the floor.
We collected 2 multi-polarization 3D GPR surveys

using a set of linear-dipole antennas with nominal
frequency of 900 MHz. The data were collected with
an antenna separation of .17 m, on a regular 2-D grid
with an inline sampling rate of one trace every 0.02
m and a crossline sampling of one line every 0.04 m.
The rail system visible in Figure 12 was used to guide
the equipment and to control the crossline spacing. A
string, fixed at one side of the rail, was used to trigger
the pulse every 0.02 m. We collected three data sets
in which source and receiver dipoles were respectively
parallel to each other and perpendicular to the line of
acquisition (TE), parallel to each other and parallel
to the line of acquisition (TM), and perpendicular to
each other (X).
The data were processed using a version of the

algorithm in equation 66. Figure 13 shows the im-
age volume rendered in a way to show low-amplitude

returns from the near subsurface. The regular grid
pattern is understood to be the image of a steel re-
inforcement mesh.

Figure 13 3D GPR image

Figure 2 shows the image volume rendered as an
isosurface at a relatively high amplitude value. In
this display we see a clear image of a pair of pipes
joind by a standard 45-degree fitting. Figure 14
shows a horizontal projection of the image, overlain
by a copy of the building plans drawn in 1955. The
planned pipe location runs through a region where
the GPR image shows an anomaly. This anomaly
could be caused by bedrock whose presence caused
the builders to deviate from the plans.

Figure 14 Projection of GPR image combined with floor plan.
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Figure 15 Zone of injection of the barrier

Figure 16 Injection

Injected Colloidal Gel During August 1997 a
project organized by Lawrence Berkeley Laboratory
was carried out to test the feasibility of controlling
buried contaminents by injecting colloidal silica gel
to form an impermeable wall around the contami-
nants. In the test, which took place at Brookhaven
National Laboratory, an attempt was made to form
a barrier in the form of a half-V with three vertical
walls and one wall slanted at 45 degrees. Figure 1
shows the site after the injection of the walls. The
four walls are marked in orange, with the slanted wall
on the right. The walls are about 10m long and were
injected to a depth of 10m deep.
Figure 15 shows the site after the injection of the

walls. The four walls are marked in orange, with the
slanted wall on the right. The walls are about 10m
long and were injected to a depth of 10m deep. Fig-
ure 16 shows injection of part of the wall closest to
the road. In the injection process, colloidal silica is
pumped through a hollow drill stem as it is jackham-
mered into the sand.
A 3D GPR survey with 100 MHz antennas was

acquired after the placement of the slanted wall and
the vertical wall closest to the road. Data was col-
lected along 35 scan lines, each with 60 transceiver
locations, on a one foot grid starting at the slanted
wall. Figure 17 shows the acquistion.

Figure 18 shows the reconstructed 3D image vol-
ume. Figure 20 is a composite of views into the im-
age. After some shallow slightly dipping events are
clipped from view the dipping “wall” is visible as
a sequence of blobs, one of which has a kink in it
that makes it discontinuous with its neighbors below
about 5 ft.

Figure 17 GPR acquisition

Figure 18 3D GPiR Image of injected gel
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Figure 20 3D images of gel

Figure 19 Survey at rock quarry

Monitoring fluids in a porous rock

In 1999 a survey was made at a rock quarry in Port-
land, Connecticut, to test if time-lapse 3D GPiR
could monitor the flow of fluid injected into a porous
rock. Figure 19 shows the setup: Two pairs of 400
MHz antennas (“A” in Figure 19) were scanned on
a motorized, computer-controlled frame over a .05 m
grid covering an area roughly 2.5 m by 2.5 m. A bore-
hole 3 m long (“B” in Figure 19) was drilled at an
oblique angle to the scan directions. During a two-
hour period, eight surveys were made while saline
brine was injected into the rock from the packed-off
end of the borehole. Data from a baseline survey
were subtracted from each successive survey and a
series of 3-D images were created.
Figure 21 shows frames taken at 20, 50, and 80

minutes after start of the injection. The left panel
shows the frames in 3-D perspective; the right panel
shows the same images projected onto a photograph
of the rock surface. The borehole was imaged inde-
pendently and appears in red in the left panel, yel-
low in the right panel. It is evident that the fluid
found its way to a high-permeability bedding surface
within the sandstone and flowed mainly toward the
rock face lying at the right edge of the images in
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Figure 21 GPiR images at 30 minute intervals

Figure 21. Figure 22 show a photo of the brine as it
emerged from the rock. An arrow marks the location
where the first fluid emerged. It lies directly in line
with the flow seen in Figure 22.
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Figure 22 Injected fluid emerging from rock



20 Ground Probing Radar

0.1.6. Acknowledgements

Notes
1. Accuracy of the Born and related approximations, such as

the Rytov approximation, are the subject of a large and
controversial literature (see, e.g., Oristaglio, 1985). It is
difficult to state precisely all the condtions under which the
Born approximation is accurate, but it is certainly accurate
under the condition that the scattered field is small (point-
wise) compared to the incident field inside the scattering
volume.

2. Norton and Linzer (1978) first derived a scalar version
of equation (47) for pulse-echo imaging (medical ultra-
sound) in a homogeneous background medium and recog-
nized its connection with the generalized Radon transform
over spheres. They derived an exact inversion formula for
this specific GRT in the spatial Fourier transform domain.
Miller et al. (1987) developed the general form of this equa-
tion for acoustic imaging and derived a simple approximate
inversion formula by localizing the formula for inversion of
the standard Radon transform. Beylkin (1985) provided a
justification for this approximate formula through the the-
ory of Fourier Integral Operators.

3. A comparator, COMP(a,b), is a component that gives an
output voltage equal 1 when a > b, 0 otherwise
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