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Abstract. The problem of recovering density-normalized elastic moduli of a 
transversely isotropic anisotropic medium from data consisting of qP or qSV phase 
velocities measured in multiple directions is addressed. Previous studies have used 
linear fitting methods with approximate forms of the dispersion relation. Here, it is 
shown that with algebraic manipulation, and a prior estimate of the squared shear 
velocity along the symmetry axis (A55), it is possible to use simple linear methods with 
an exact alternative form of the anisotropic dispersion relation. The method is 
demonstrated with an application to data from a walkaway vertical seismic profile 
(VSP) experiment and then used as a tool to address several questions raised by that 
experiment. It is shown that given data with realistically achievable accuracy, the prior 
estimate of A 55 cannot be improved by optimizing the fit to qP data. It is shown that a 
near perfect fit by a transversely isotropic medium with a vertical symmetry axis (TIV) 
model to qP data collected in a single vertical plane does not rule out azimuthal 
anisotropy. Finally, it is shown that a variation of the method, combined with an 
algorithm suggested by Hood and Schoenberg, suggests a practical way to determine 
from walkaway VSP data, all the parameters of an orthorhombic medium formed by 
adding vertical fractures to a transversely isotropic medium. 

Introduction 

Sedimentary rocks, particularly shales, form principally 
by the vertical action of gravity and hence are likely to have 
a fabric that is transversely isotropic, i.e., invariant under 
rotation around a vertical axis of symmetry. Vertical frac- 
tures or the effect of anisotropic horizontal stresses on 
microcracks can give rise to a medium with lower symmetry, 
such as an orthorhombic medium (invariant under reflection 
with respect to each of three mutually orthogonal planes of 
mirror symmetry). Elastic wave propagation in such media 
may be expected to show velocity anisotropy, with a phase 
slowness function that is determined by density, together 
with an appropriate set of elastic moduli. When analyzing lab 
data [e.g., Jones and Wang, 1981; Gibson and Toksoz, 1990] 
or field data [e.g., White et al., 1983' Gaiser, 1990; Miller et 
al., this issue], researchers may need to find a model to fit a 
set of phase slowness measurements. 

In condensed (Voigt) notation, a homogeneous trans- 
versely isotropic medium with a vertical symmetry axis (a 
"TIV medium") has five independent elastic moduli, c•, 
c13 , c33 , c55 , c66. The density-normalized moduli, A v - 
cij/P, have dimensions of squared velocity and, for a homo- 
geneous TIV medium, they are related to elastic propagation 
as follows. We label the axes interchangeably as 1, 2, 3 or as 
x, y, z, and we take the z axis as the axis of rotational 
symmetry. Any plane harmonic wave propagating in the 
medium, say with phase slowness vector (Sx, Sz) lying in 
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the x-z plane, must have displacement either in the x-z plane 
(qP or qSV case) or normal to it (SH case). In either case, 

2) must the squared phase slowness vector (X, Z) = (Sx 2, S z 
satisfy the appropriate dispersion relation. In the SH case 
that is 

A66X + A55Z = 1; (1) 

and in the qP or q SV case, that is 

A •A 55X 2 + A 33 A 55 Z2 q- AXZ - (A • + A 55)X 

- (A 33 q- A55)Z = - 1, (2) 

where 

A = AliA33 + A•5 - (A13 + A55) 2. (3) 

[cf. Musgrave, 1970, equations (8.1.7) and (8.1.10b)]. 
For a given set of moduli A i j, equations (1) and (2) 

implicitly determine X and Z as a function of wave type and 
propagation direction. We are interested in the inverse 
problem of determining A ij to best fit a set of measured 
(squared) phase slownesses {(Xi, Zi): i = 1, n} of known 
wave type. For the case of SH data, that is straightforward 
[cf. White et al., 1983]. Equation (1)just becomes an 
overdetermined linear system 

A66X + A ssZ = 1, (4) 

X=(S 2' i= 1 n) X t ' , 2'i=1 n) Z= (Sz, , , 

1=(1' i=1, n) 
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to be solved for A66 and A55 by standard methods. 
Because (2) is nonlinear in the moduli, determining All, 

A33 , and A 13 is more problematical. Previous authors have 
typically worked with qP data and followed one of three 
basic approaches: 

Method ! 

Pick the right three data points [e.g., Jones and Wang, 
1981]. When X or Z is 0, the left-hand side of (2) factors as 
a product of simple linear terms. It follows that A 33 and A 1 l 
can be determined as the squared qP velocities along and 
orthogonal to the symmetry axis, respectively. Given a 
single additional off-axis qP phase slowness measurement 
(typically at 45ø), (2) yields a quadratic expression that can 
be solved for A 13 in terms of the measured squared slowness 
and the other three moduli that affect qP propagation. 

Method 2 

Use brute force nonlinear methods [e.g., Gibson and 
Toksoz, 1990]. This typically involves making an initial 
estimate for the moduli, and iteratively calculating (numeri- 
cally of analytically) Frechet derivatives D relating change in 
the measured quantities to changes in the moduli, and 
revising the estimate by solving a linear system of the form 
d - do = DAm, where d are the measured phase slowness 
points, do are the phase slowness points generated by the 
current estimate using (1) and (2), and Am are the estimated 
corrections to the moduli. Hsu and $choenberg [1993] used 
a hybrid of methods 1 and 2, solving directly for the A ii from 
axial measurements and then using an iterative method to 
find A 13 from multiple off-axis qP measurements of group 
velocity. 

Method 3 

Use an approximate form of equation (2) [e.g., White et 
al., 1983; Gaiser, 1990]. Assuming that the true model is 
approximately isotropic, one can obtain approximations to 
(2) that are linear in parameters that can be related to the 
moduli. Using linear methods to fit the data with an approx- 
imate slowness curve and extracting moduli from the param- 
eters of that curve, one can perform exact forward modeling 
based on (2) and argue a posteriori that the answer is 
accurate. This approach can be realized as a special case of 
method 2 where the initial estimate is isotropic, the Frechet 
derivatives are calculated analytically, and there is no iter- 
ation [cf. Chapman and Pratt, 1992]. 

In the next section, we show that with algebraic manipu- 
lation it is possible to use simple linear methods with an 
exact alternative form of (2). Given a prior estimate for A 55, 
we show that A 1 l, A 13, and A 33 can be determined together, 
directly from the solution to an appropriate linear system. 
This method does not require axial qP measurements or 
assumptions about weak anisotropy. It retains the robust- 
ness of linear methods without sacrificing accuracy. 

The method described here was used by Miller et al. [this 
issue] to invert qP phase slowness points obtained from 
walkaway vertical seismic profile (VSP) data by a modified 
version of the an experimental method described by Gaiser 
[1990]. Carried out in a horizontally stratified offshore envi- 
ronment, the experiment yielded an estimate for A55, to- 
gether with a set of roughly 200 measurements of qP phase 
slowness at wide range of inclination angles. The analysis 
raised several questions which we address in later sections 

of the present paper. We show that given data with realisti- 
cally achievable accuracy, the prior estimate of A55 cannot 
be improved by optimizing the fit to qP data. We show that 
a near perfect fit by a TIV model to qP data collected in a 
single vertical plane does not rule out azimuthal anisotropy. 
Finally, we show that our method, combined with an algo- 
rithm suggested by Hood and $choenberg [1989], suggests a 
practical way to determine from walkaway VSP data, all the 
parameters of an orthorhombic medium formed by adding 
vertical fractures to a TIV medium. 

The TI Trick 

The qP-qSV dispersion relation (2) can be rewritten 

A •[A55X 2 - X] + A 33[A55 Z2 -- Z] -t- A[XZ] 

= [A55(X + Z) - 1]. (5) 

Given (squared) phase data points {(Xi, Zi): i = 1, n) and 
a value for A 55, each of the bracketed quantities becomes a 
data vector and (5) becomes a linear system similar to (4). In 
more detail, 

U = (A55X/2 -Xi: i= 1, n), 

V = (AssZi 2 -Zi: i= 1, n), 

W = (XiZi: i= 1, n), 

(6) 

D = (A55(X i + Zi) - 1' i= 1, n). 

Then (5) can be rewritten 

A•U + A33V + AW = D, (7) 

that is, as a linear system to be solved for scalar coefficients 
A•, A33, and A. 

A •3 can then be obtained directly from (3) assuming A •3 + 
A55 > 0: 

A•3 = (A•A33 + A•5 - A)•/2 _ A55. (8) 

An alternative solution for A 13 (with A 13 q- A 55 < 0) would 
yield a medium with the same phase slowness surfaces, but 
with anomalous off-axis polarizations [Helbig and Schoen- 
berg, 1987]. For inversion of physical measurements, this 
case is unlikely to occur and can easily be distinguished by 
looking at polarizations near 45 ø . Mathematically, it is sim- 
ply a second solution to the inversion problem which is 
physically anomalous but is permitted provided certain 
stability conditions are met [Helbig and $choenberg, 1987, 
equation (2)]. 

The only requirement for the applicability of this approach 
is a prior estimate of A 55. Depending on the application and 
the available set of phase slowness points, this may come 
from a sonic log, from separate analysis of $H data [White et 
al., 1983], from separate analysis of axial $V data [Miller et 
al., this issue], or it can be treated as a free parameter 
indexing a family of solutions that can be optimized by a 
one-parameter search. The method can be applied to any 
combination of qP and qSV data; however, it should be 
noted that (5) is degenerate for axial $V points. In the next 
section we consider applications involving qP points only. 
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Applications o.e 
Inversion of Walkaway VSP Data • 

Miller et al. [this issue] use the above method to invert qP ,• o.1 
phase points obtained from walkaway VSP data by a modi- • 
fled version of the an experimental method described by • 
Gaiser [1990]. A model with density-normalized moduli •o o 
{All A13, A33, A55} = {6.986, 2.641 5 527 0.910} was • 
obtained using 201 input phase slowness points. Units for g 
density-normalized moduli, here and throughout the paper, .• -o.• 
are km2/s 2 For later reference we call this "model 1" a 

Figure la shows the experimental data points, together •: 
with the qP phase slowness function from model 1. The -0.2 
model is qualitatively similar to other shale examples [e.g., 
Jones and Wang, 1981]. It is significantly anisotropic, and 
the anisotropy is significantly anelliptic. Figure lb shows the 
accuracy of the fit to the experimental data, as measured by 
the percentage relative phase error 

E[,•i, S(Oi) ] = 100 
•i- S(Oi) 

S(Oi) 

where •i -' (Xi q- Zi) 1/2 is the magnitude of the ith 
measured phase slowness, 0 i -- arctan (Xi/Zi) 1/2 is the 
associated phase angle, and S(Oi) is modeled phase slowness 
at phase angle Oi. The root-mean-squared (RMS) error is 
0.55%. 

For comparison, we inverted the same data using the 
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Figure 1. The qP phase slowness data from walkaway 
VSP, fit with an exact slowness function using the method 
described in the text. (a) Measured phase slowness values 
and exact slowness function from model 1. (b) Percent 
relative error of the fit. 
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Figure 2. Percent relative phase slowness error in fitting 
qP data from model 1 using the weak anisotropy approxi- 
mation of Gaiser [1990]. The dotted curve shows errors in 
the approximating surface. The solid curve shows errors in 
the exact surface associated with the moduli extracted from 

the approximation. 

approximate method described by Gaiser [1990]. Fitting 
squared phase velocities using Gaiser's equation (A15) and 
then convering the approximation coefficients to moduli 
using his modified (A16) and (A21) (and using the same 
estimate for A55), we obtained {All, A13 , A33 , A55} = 
{7.010, 2.601, 5.552, 0.910}. 

Any method that involves an approximate form of the 
dispersion relation introduces errors of two types. Type one 
errors occur because the approximating slowness surface 
does not fit the exact one. Type two errors occur because the 
moduli obtained from the approximate surface are incorrect. 
Figure 2 shows the errors associated with Gaiser's approx- 
imation when exact phase data from model 1 were used as 
input. The dotted curve shows the relative (type one) error 
E[Xapp(O), S(0)], where S(O) are the exact phase values 
from model 1 and Sapp(0 ) are values from the approximating 
surface. The approximating surface yields density- 
normalized moduli m = {6.998, 2.615, 5.547, 0.910} in this 
case. The solid curve shows the relative (type two) error 
E[Sm(O), S(0)], where Sm(O) are exact slowness values for 
that model. These values are small in comparison with the 
fitting error shown in Figure 1, so we can conclude that the 
error introduced by the approximate method is not signifi- 
cant in this case. There is no computational advantage, 
however, to using the approximate method, and it would be 
a source of significant error given more accurate measure- 
ments. 

Poorly Resolved A55 

A55 is poorly resolved from qP data only. Equation (2) 
involves four parameters {A•, A•3, A33, A55} that deter- 
mine the phase surface for qP waves, and it is tempting to 
consider iteratively revising the estimate of A 55 to optimize 
the fit. This would allow the determination of all four 

parameters using qP data alone. However, sensitivity anal- 
ysis based on weak anisotropy [Every and Sachse, 1992; 
Chapman and Pratt, 1992] shows that for weakly anisotropic 
media, first-order changes in qP phase slowness due to 
perturbations in A 1 l, A 13, A 33, A 55 depend principally upon 
All , A33 , and the combination A•3 + 2A55. For a medium 
that is not approximately isotropic, the assumptions of the 
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Figure 3, Compa•son of three transversely isotropic mod- 
els. (a) Th• qP slowness functions. Th• dotted curve is from 
modal 1. Solid curves ar• for models 2 and 3. (b) First 
quadrant group vdocity points for models 1-3. 

ization direction. The three qP surfaces are effectively 
indistinguishable, while the qSV surfaces differ dramati- 
cally. 

Figure 4 shows the relative error as function of the choice 
of A 55 used in the inversion, for values of A 55 ranging from 
0.1 to 3.0. Writing m(a) = {A•(a), A13(a), A33(a), a} for 
the medium obtained by inverting using the value a for A 55, 
and $ re(a) (0) for the associated phase slowness function, the 
relative phase error E[$ re(a) (0), S (0) ] was defined as above, 
and for each a, the maximum absolute value and RMS 
average over phase inclination angle, 0, are plotted. 

It is ditficult to imagine an experiment on a real rock core 
or subsurface medium that could reduce experimental un- 
certainty to the level shown in Figure 4 without providing an 
independent estimate of A 55. It is interesting to note that the 
triplication in the qS surface occurs at all values of Ass 
shown. Thus, while accurate qP measurements do not pin 
down the value of A 55, they can provide a confident quali- 
tative assertion about qSV triplication. The point of interest 
here is that while the exact shape of the qSV surface cannot 
be known without knowing A 55, large anellipticity in the qP 
surface implies large anellipticity in the qSV surface, which 
in turn implies triplication. Dellinger [1990] derived an 
algebraic condition for triplication. See also Tsvankin and 
Thomsen [1992, equation (6)]. It may also be observed that 
for some applications, all that is required is an accurate 
representation of the qP surface. In such situations, it would 
still seem desirable to fit qP data using an exact equivalent of 
(2), rather than an approximate one. 

The values obtained for the moduli as a function of a are 

well predicted by the weak anisotropy theory, even though 
the anisotropy here is not weak and the values of A 55 vai-y 
over a wide range. Two theories based on weak anisotropy 
give similar predictions: Aii(a) and A33(a ) should be ap- 
proximately constant, as should either A 13(a) + 2a [Every 
and $achse, 1992; Chapman and Pratt, i992] or [(A 13(a) + 
a) 2 - (A33(a) - a)2]/{2A33(a)[A33(a) - a]} [Thomsen, 
1986]. For model 2 these theories predict moduli of {6.986, 
3.461, 5.527, 0.500} and {6.986, 3.474, 5.527, 0.500}, respec- 
tively. For model 3 they predict {6.986, 0.461, 5.527, 2.000} 
and {6.986, 0.406, 5.527, 2.000}. 

sensitivity analysis do not apply, and it is natural to study 
sensitivity to A55 numerically, using the method described 
above to vary A55 while solving for values ofA•, A•3, A33 
in order to fit qP phase slowness points from the original 
medium. If there is significant variation in goodness of fit as 
a function of the chosen A55, an estimate of A55 could be 
obtained by a one-parameter optimization. Otherwise, A55 
must be obtained independently. 

We inverted exact qP slowness points from model 1 using 
values of 0.5 and 2.0 for A 55, (that is, with a 100% variation 
in axial shear velocity), obtaining two media with moduli 
{6.990, 3.468, 5.526, 0.500) and {6.972, 0.430, 5.530, 2.000) 
respectively. Below, we refer to these as "model 2" and 
"model 3." 

Figure 3a shows the qP phase slowness functions for these 
two media as curves superimposed on the input points 
created from model 1. RMS variation in the qP phase 
slowness points between models 2 and 3 is less than 0.1%. 
Figure 3b shows first quadrant group velocity points for 
models 1-3. Points are sampled at 3 ø intervals of phase 
velocity. The attached tickmarks show the associated polar- 
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Figure 4. Relative phase slowness error in the qP slow- 
ness function as a function of the value of A 55 used to seed 
the inversion. 
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Azimfithai Anisotrophy 
A good TI fit to data from a single vertical plane does not 

imply that the medium has negligible azimuthal anisotropy. 
Model 1 was obtained by fitting a TIV model to qP data that 
were acquired in a single azimuthal plane. It is natural to ask 
to what extent the good fit by a TIV model can be taken as 
evidence that the medium is, in fact, TIV. Certainly, the 
medium is not isotropic, but are there media with lower 
symmetry than TI that "look TIV" when phase slowness 
points are sampled in a single randomly chosen vertical plane? 

A natural class of models to consider in this regard are the 
media obtained by adding a fabric of parallel vertical frac- 
tures to a TIV medium [Hood and Schoenberg, 1989]. Such 
media, which we refer to as "fractured TIV" exhibit mirror 
symmetry with respect to horizontal planes and with respect 
to vertical planes parallel to and perpendicular to the frac- 
tures and are therefore orthorhombic. A general orthorhom- 
bic medium has nine independent density-normalized moduli 
{All , A12 , A13 , A22 , A23 , A33 , Ann , A55 , A66 }. In a 
fractured TIV medium, the relation 

A23 
= (All + A 12) - A 12 (9) A22 •13 

holds, reducing the number of independent moduli to eight 
[Hood and $choenberg, 1989, equation (13)]. 

We created a fractured TIV medium by starting with a 
background TIV medium similar to model I with moduli 
{Albl Alb3 A b A•5 A•b6} = {7.0, 2.5 5 5 1 0 2 0} and , , 33, , , ß , ß , ß 

then adding vertical fractures parallel to the 2 axis by the 
method of Hood and Schoenberg [1989]. Excess compli- 
ances {&N, &2, &3} = {0.10, 0.25, 0.20} were used. The 
resulting "fractured TIV" medium has moduli 

Aij = 

'6.300 2.700 2.250 

2.700 6.871 2.393 

2.250 2.393 5.411 

1.000 

0.800 

1.500 

(10) 

The qP phase slowness values were calculated in this 
medium for seven azimuths at 0 ø, 15 ø, -.., 90 ø from the 1 
axis. (For display purposes in (10), we have rounded the 
values for A22, A33, and A12 to three decimals. Machine- 
precision numbers were used in the forward calculation.) At 
each separate azimuth, a best fitting TIV model was obtained 
using the TI trick. At 0 ø and 90 ø the correct vertical shear 
parameters (0.8 and 1.0, respectively) were used to seed the 
algorithm. At intermediate azimuths, interpolated vertical 
shear values between 0.8 and 1.0 were used. Figure 5 shows 
the seven sets of qP phase slowness points with the seven 
analytic qP slowness curves from the TIV models. The 
models change with azimuth, but the fit at any azimuth is 
essentially perfect. Figure 6 shows a plot of maximum and 
RMS misfit as a function of azimuthal angle. In the x-z and 
y-z planes, the coupled qP-qSV modes satisfy TI dispersion 
relations [Hood and Schoenberg, 1989] and the fit is perfect. 
At intermediate azimuths, however, the maximum misfit is 
less than four parts in 100,000. To rule out a TIV model in 
practice, given this type of experiment in this type of 
medium, one must sample multiple azimuths! 
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Figure 5. The qP phase slowness points at various azi- 
muths for the fractured TIV medium described in the text. 

At each azimuth a TI medium has been fit to the points, and 
its phase slowness curve has been superimposed. 

Fractured TIV Medium 

The TI trick may be used to determine elastic moduli in a 
fractured TIV medium. Hood and Schoenberg [1989] ob- 
served that for a fractured TIV medium (in fact, for any 
orthorhombic medium) the dispersion relation for phase 
points lying in any of the symmetry planes has the same 
algebraic form as (2). (In the x-z plane, (2) holds as stated. In 
the x-y plane, change A 13 to A 12 and A55 to A66; In the y-z 
plane, change A•3 to A23 and A55 to A44.) They suggested 
that this observation could be exploited to determine the full 
set of moduli from TI methods applied to data from the 
symmetry planes. As we now describe it, a modified version 
of their algorithm can be combined with the TI trick to make 
a practical scheme for use with walkaway VSP data col- 
lected in appropriate azimuthal planes. If the symmetry 
directions are known in advance, a sufficient data set would 
involve experiments in the two vertical symmetry planes 
plus a third at an intermediate azimuth. The following 
sequence of steps illustrates the algorithm using the example 
from Figure 5. 

Step 1 

Identify the symmetry directions and determine A55 and 
A44. This might be done in advance using shear sonic 
measurements or by examining multiple azimuth walkaway 
VSP data. Miller et al. [this issue] obtain an estimate for 
vertical qSV slowness in a single azimuth by observing 
upgoing converted shear waves at near vertical incidence. 
The y-z plane (parallel to the fractures) can be determined 
from the data in Figure 5 as the azimuth with the minimum 
qP slowness at all inclination angles (in Figure 5 it is curve 
B). This information could also be obtained from polariza- 
tion analysis of vertical shear waves (shear splitting) in shear 
VSP or shear sonic data. If the data are independent of 
azimuth, then the medium is TIV, and the data can be 
handled by the method described above. If the medium does 
not show two orthogonal planes of mirror symmetry, then 
we are not in an orthorhombic medium and the method does 

not apply (though it may be of use to find an approximating 
orthorhombic medium). 
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Figure 6. Maximum (solid) and RMS (dotted) percent rel- 
ative phase slowness error in the best fitting TI qP slowness 
curve as a function of azimuthal angle for the orthorhombic 
medium described in the text. 

Step 2 

Use the TI trick to invert the qP data in the x-z plane for 
{All, A13, A33, A55) and in the y-z plane for {A22, A23, 
A33, A44). These are the models that define curves A and B, 
respectively, in Figure 5. In our case they are {6.300, 2.250, 
5.411, 0.800) and {6.871, 2.393, 5.411, 1.000), respectively. 

Step 3 

Solve for A 12 using equation (9). Equation (9) can be 
rearranged to solve for A 12: 

A12 = (A13A22 - AllA23)/(A23 - A13 ). (11) 

In our example, substituting the values from step 2 into (11), 
we obtain A 12 '- 2.684. This value differs slightly from the 
correct value (2.700) because the values in step 2 have been 
rounded to three decimal places and the rounded values do 
not exactly satisfy (11). Note that (11) is degenerate when 
the medium is TIV. The accuracy of this method for deter- 
mining A 12 increases as the azimuthal anisotropy increases. 
Using equations (24), (26), and (20) of Hood and $choenberg 
[1989], these eight moduli can be converted into seven of the 
eight parameters that characterize the fractured TIV me- 
dium, namely, the five moduli that characterize the back- 
ground TIV medium plus the normal and vertical shear 
excess compliances $•v and $3. In our example, working to 
three-digit accuracy, we found background moduli {Alii, 
Alb3, A3b3, A5•5, A6•6} = {6.998, 2.499, 5.500, 1.000, 2.008} 
and excess compliances {$•v, •3• -- {0.1, 0.2•. 

Step 4 

Invert a set of at least three qP points from the x-y plane 
(the column at 90 ø in Figure 5) to determine A66. This can be 
done by using the TIV trick applied to the x-y plane qP 
points (as in our first example) to determine A 12 as a function 
of A66. This functional relationship can be inverted numer- 
ically to find the value of A66 that gives the previously 
determined A 12- Figure 7 shows a graph of the best fitting 
A 12 as a function of A66, determined using three data points 
from Figure 5 taken on the x axis, on the y axis, and at 45 ø 
in the x-y plane. It is almost a graph of the straight line 
determined by the equation A12 + 2A66 = 5.9. Thus the 
added condition A 12 = 2.68 makes a stable, almost linear 

problem for determining A66. In our numerical example, we 
found A66 = 1.508. Once A66 is known, the remaining 
excess compliance (•2) can be calculated directly using 
equations (20) and (2lb) of Hood and $choenberg [1989]. In 
our example we found •2 = 0.249. 

In a more general orthorhombic medium, equation (11) 
may not hold. If an independent estimate of A66 can be made 
(say, from core measurements), then the horizontal qP 
points can be used to determine A 12 without appeal to (11) 
and without need for steps 3 and 4. If only vertical shear 
points are available and the medium is not far from a 
fractured TIV medium (in the sense that equation (11) gives 
a plausible value for A 12), then the method described is 
likely to yield a fractured TIV medium that agrees to 
experimental accuracy with the true medium at all the 
measured phase points. 

To check this observation, we created phase slowness 
data as in Figure 5 for a medium with all the A ij as in 
equation (6), except that for A12, a value of 2.0 was 
substituted for the original value of 2.7. This new medium 
has moduli 

Aij = 

'6.300 2.000 2.250 

2.000 6.871 2.393 

2.250 2.393 5.411 

1.000 

0.800 

1.500 

(12) 

These parameters violate (11) so the resulting medium is not 
a fractured TIV medium. (Note that we can violate the 
fractured TIV assumption by changing any one of the moduli 
occurring in (11) but that a change to any of the axial shear 
parameters, (A44 , A55 , A66), would result in a fractured 
TIV system with a new value for •2 or •3.) Inverting as 
outlined above for a fractured TIV medium and working to 
machine accuracy, we obtained moduli (rounded here to 
three decimal places) 

• 2.5 

2 

0.8 1 1,2 1.4 1.6 1.8 2 

A66 (km2/s 2) 

Figure 7. Best fitting A 12 as a function of A66 determined 
by applying the TI trick to selected qP points in the x-y plane 
as described in the text. Horizontal and vertical lines indi- 

cate the values A 12 = 2.680 and A66 = 1.508 determined in 
the inversion. 
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Figure 8. Percent relative qP phase slowness error be- 
tween the orthorhombic medium defined by (11) and the best 
fitting fractured TIV medium defined by (12). Maximum and 
rms error are plotted for each azimuthal angle. 

Aij = 

'6.300 2.700 2.250 

2.700 6.871 2.393 

2.250 2.393 5.411 

1.000 

0.800 

1.151 

(13) 

Note that the change in A 12 has been erroneously mapped to 
a change in A66 and that A 12 + 2A66 has been preserved to 
two parts in 10,000. All the other A ij, including A 12 are as in 
(10). This phenomenon is analogous to the inability to 
resolve A55 from qP data in the TIV case. Because we 
preserved the parameters controlling qP points in the x-z 
and y-z planes, the new medium from (12) maps to the same 
background TI medium as before; &•v and &3 are unchanged; 
&2 = 0.425. Figure 8 shows a plot of maximum and RMS 
misfit between the input qP phase slownesses from the two 
models defined by (12) and (13), as a function of azimuthal 
angle. The maximum difference is less than four parts in 
10,000. To practically rule out a vertically fractured TIV 
model, given this type of experiment in this type of medium, 
one must sample some qSV points off the vertical axis! 

Conclusions 

We have shown that with algebraic manipulation and a 
prior estimate of the squared vertical shear velocity (A •), it 
is possible to use simple linear methods with an exact 
alternative form of the anisotropic dispersion relation when 
recovering moduli from phase slowness data in a trans- 
versely isotropic medium, or in an orthorhombic medium 
where data are recorded from a symmetry plane. 

The method was demonstrated with an application to data 

from a walkaway VSP experiment and then was used as a 
tool to address several questions raised by that experiment. 
It was shown that given data with realistically achievable 
accuracy, the prior estimate of A55 cannot be improved by 
optimizing the fit to qP data. Furthermore, a near perfect fit 
by a TIV model to qP data collected in a single vertical plane 
does not rule out azimuthal anisotropy. Finally, a variation 
of the method, combined with an algorithm suggested by 
Hood and Schoenberg [1989], suggests a practical way to 
determine from walkaway VSP data, all the parameters of an 
orthorhombic medium formed by adding vertical fractures to 
a transversely isotropic medium. 
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