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Abstract. Direct arrival times and slownesses from wide-aperture walkaway vertical 
seismic profile data acquired in a layered anisotropic medium can be processed to give 
a direct estimate of the phase slowness surface associated with the medium at the 
depth of the receivers. This slowness surface can, in turn, be fit by an estimated 
transversely isotropic medium with a vertical symmetry axis (a "TIV" medium). While 
the method requires that the medium between the receivers and the surface be 
horizontally stratified, no further measurement or knowledge of that medium is 
required. When applied to data acquired in a compacting shale sequence (here termed 
the "Petronas shale") encountered by a well in the South China Sea, the method yields 
an estimated TIV medium that fits the data extremely well over 180 ø of propagation 
angles sampled by 201 source positions. The medium is strongly anisotropic. The 
anisotropy is significantly anelliptic and implies that the quasi-shear mode should be 
triplicated for off-axis propagation. Estimated density-normalized moduli (in units of 
km2/s 2) for the Petronas shale are All = 6.99 -+ 0.21, A33 = 5.53 _ 0.17, A55 = 
0.91 _+ 0.05, and A13 - 2.64 _+ 0.26. Densities in the logged zone just below the 
survey lie in the range between 2200 and 2400 kg/m 3 with an average value close to 
2300 kg/m3. 

Introduction 

In any horizontally layered medium (i.e., a medium which 
is invariant under all horizontal coordinate transformations 

(x, y, z) --> [x + a, y + b, z)], propagation (for any type 
of wave) between any two points (say (x•, y•, z•) and 
(x2, Y2, z2)) must depend only on their two depths and their 
relative offsets (i.e., on (z•, z2, x2 - x•, Y2 - Yl)). It 
follows that a seismic experiment made in such a medium 
with a vertical array in a borehole and multiple (identical) 
sources along a line on the surface (such as a walkaway 
vertical seismic profile (VSP)) is fully equivalent to an 
experiment made with a single source and a two-dimensional 
array of subsurface receivers. 

This simple observation formed the basis for the method 
of wave fronts [Ansel, 1931; Thornberg, 1930]. Various authors 
who used the method observed that p wave propagation was 
sometimes anisotropic, particularly in shales [Ricker, 1953; 
Hagedoorn, 1954; Jolly, 1956; Dunoyer de Segonzac and 
Laherrere, 1959; Meisner, 1961; Vander Stoep, 1966]. 

The most popular methods used in attempting to quantify 
the anisotropy have been based on layer stripping, assuming 
that the medium is layered and, at least approximately, 
elliptical for p waves [Cholet and Richard, 1954; Dunoyer de 
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Segonzac and Laherrere, 1959; Vander Stoep, 1966; Byun et 
al., 1989; Byun and Corrigan, 1990]. 

White et al. [1983] made VSP measurements in two closely 
spaced boreholes in the Pierre shale formation to obtain both 
vertical and horizontal components of phase slowness for 
direct arrivals generated at eight surface locations. These 
phase slowness data were fit by a transversely isotropic 
anisotropic medium with a vertical symmetry axis (a "TIV" 
medium) under an assumption of mild anisotropy. 

In a layered medium, the method of wave fronts can 
provide data analogous to that of White et al. [1983] but 
derived from measurements in a single borehole. Gaiser 
[1990] observed that partial derivatives of arrival time with 
respect to source offset and receiver depth (i.e., the gradient 
of times contoured in a classical wave front chart) directly 
give points lying on the phase slowness surface of the 
medium at the depth of the receivers. Brodov et al. [1984] 
showed anisotropic phase diagrams that may have been 
computed by a similar method. Gaiser [1990] used the 
method to analyze a multioffset VSP data set from east 
Texas, fitting measured phase points with linearized TIV 
phase slowness functions in a style similar to that of White et 
al. [1983]. 

Miller and Spencer [this issue] show that the linearization 
step in the inversion from phase slowness data to elastic 
parameters can be omitted in favor of a direct regression 
based on an algebraic rearrangement of the medium's dis- 
persion equation. 
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Figure 1. Group velocity surface associated with the 
Greenhorn shale as measured by Jones and Wang [1981]. 
Points are sampled uniformly as a function of phase angle. 
Tickmarks indicate polarization directions. 

In this paper, we analyze wide-aperture walkaway VSP 
data recorded at an offshore well in the South China Sea. A 

variant of Gaiser's method is used to obtain qP phase 
slowness points from over 200 source positions for a single 
receiver depth in a compacting shale. These phase slowness 
points are fit by a transversely isotropic model using the 
method described by Miller and Spencer [this issue]. The 
estimated TIV medium fits the data extremely well over a 
full range of vertical propagation angles. The medium is 
strongly anisotropic. The anisotropy is significantly anellip- 
tic and implies that the quasi-shear mode should be tripli- 
cated for off-axis propagation. 

Anisotropy 101 
Figure 1 shows the impulse response (group velocity 

surface) for a representative shale medium. The medium is 
transversely isotropic (TIV) with a vertical axis of symme- 
try. For the inplane strain modes shown here, propagation is 
controlled by four density-normalized elastic moduli {A 11, 
A13, A33, A55} [e.g., Helbig and Schoenberg, 1987]. In this 
case the values have been taken from the Greenhorn shale of 

Jones and Wang [1981] and are {14.17, 4.42, 9.38, 2.23}, all 
in units of km 2/s 2. 

All points on the surface have the same travel time from 
the origin. At each point, the phase direction is normal to the 
surface, the group direction passes through the origin, and 
the attached tickmark shows the associated polarization 
direction. The points are sampled uniformly in phase angle. 
The outer surface is the quasi-P surface (polarization is 
approximately parallel to phase direction); the inner surface 
is the quasi-S surface (polarization is approximately normal 
to phase direction). If we write T(x, z) for the travel time of 
the quasi-P wave to the point (x, z), then $z = OT/Oz and 
$x = OT/Ox are the vertical and horizontal components of 
the phase slowness vector [e.g., White et al., 1983; Gaiser, 
1990]. 

The shape of the surface is determined from the density- 
normalized moduli by the requirement that each phase 

slowness point (Sx, S z) satisfy the dispersion equation (here 
for both the wave vector and the strain in the x-z plane)' 

A11A55X 2 + A33A55 Z2 + AXZ- (All + A55)X 

where 

- (A 33 q- A55)Z + 1 = 0, (1) 

A = AliA33 + A525 - (A13 + A55) 2, 

(x, z) = (Sx Sz). 

The collection of all phase slowness points forms the phase 
slowness surface. It is the polar reciprocal of the group 
velocity surface. 

Vertical P velocity is given by V33 -- (A33)1/2, horizontal 
P velocity by Vll = (A11)1a; axial shear velocity is V55 = 
(A55) 1/2. Quasi-P velocity near 45 ø is approximately given 
by Vqv = (Aqv) 1/2, where 

A qe = [A 11 + A 33 q- 2(A 13 q- 2 A 55) ]/4. 

Quasi-$ velocity near 45 ø is approximately given by Vqs = 
(Aqs) 1/2, where 

Aqs = (All q- A33 - 2A13)/4. 

The approximations are exact when A 11 = A33 (i.e., in a 
TIV medium with cubic symmetry). In an isotropic medium, 

All = A33 = Aqp = (A q- 21x)/p 

and 

A55 = Aqs = la,/p. 

The qSV slowness surface is circular (i.e., isotropic) exactly 
in the case where the qP surface is elliptical. This is 
equivalent to the requirement that the qP and qSV squared 
slownesses defined implicitly by (1) lie on straight lines. The 
algebraic condition for this is that 

A13 + 2A55 = (All + A33)/2. (2) 

Equivalent algebraic conditions are Aqv = (All + A33)/2 
and A qs = A55. It is, therefore, natural to quantify the 
anellipticity using either the qP velocity ratio Vqp/[(A 11 q- 
A33)/2 ] 1/2 or the qSV velocity ratio Vqs/V55. In the case of 
the Greenhorn shale, these ratios have values 0.88 and 1.28, 
respectively. 

The most striking feature of Figure 1 is the triplication of 
the qSV wave which is associated with the substantial 
failure of (2). This type of pattern has been seen in numerous 
laboratory studies [cf. Thomsen, 1986] and in a few field 
studies [e.g., Vander Stoep, 1966; Miller and Chapman, 
1991]. It will be seen in the present analysis. It can be 
associated with lack of resistance to slip along horizontal 
planes [Schoenberg and Dourna, 1988]. Dellinger [1990] 
discusses an algebraic condition for the presence of q SV 
triplication. Since the failure of (2) is detectable as andlip- 
ticity of the qP surface, it is possible to obtain qualitative 
information about the qSV surface from accurate qP mea- 
surements alone. Miller and Spencer [this issue] show that 
for the Petronas shale medium described in the present 
paper, q SV triplication is present in virtually any TIV 
medium consistent with the measured qP slowness values. 



MILLER ET AL.' ESTIMATION OF ANISOTROPIC ELASTIC MODULI 21,661 

1.000 

1.200 

1.400 

1.600 

1.800 

2.000 
1.000 2.000 3.000 4.000 

Logged Velocity (km/s) 

0.980 

•. 1 .ooo 

.>_ 

• 1.o2o 

1.040 

I I I 1.2 1.3 

Time (s) 

Figure 2. Shear and compressional sonic logs recorded 
below the receiver interval. Superimposed on the logs are 
lines defined by the equations V = 0.358 + 0.7D and V = 
1.369 + 1.0D. 

Figure 4. Radial component common source gather for the 
source at -1.985 km offset from the well. 

Field Study 
A wide-aperture walkaway VSP survey was acquired 

using the Schlumberger five-level three-component array 
seismic imager tool positioned with receiver depths from 
0.978 to 1.038 km. A marine air gun source occupied 
positions from -3.000 to +4.000 km offset. 

The well was drilled from an offshore platform into a 
Tertiary sand-shale sequence with a normal compaction 
trend. Compressional and shear sonic logs run between 
depths 1.100 m and 2.000 km showed gradient velocity 
trends of about 1.0 and 0.7 s -•, respectively, with substan- 
tial variation around the trends (Figure 2). 

Figure 3 shows selected vertical component traces from 
the receiver at z3 = 1.008 km. The data display a high 
degree of symmetry about zero offset, suggesting that the 
medium is horizontally layered. The amplitude of the first 
arrival on the vertical component goes to zero at offsets of 
about 2.000 km on each side. At these "turning" offsets, the 
apparent vertical velocity as seen on common shot gathers is 

infinite, indicating that first arrivals from these offsets are 
horizontal (turning) P waves (Figure 4). 

Vertical component traces from a common shot made 
close to the well indicate a vertical velocity of about 2.350 
km/s (Figure 5). Superimposed on the traces in Figure 3 are 
travel times computed in an isotropic model that matches the 
vertical velocities seen in the near-offset VSP data. It shows 

a significant underprediction of travel times for large offsets 
similar to what has been seen in other walkaway surveys, 
particularly in the North Sea [e.g., Christie and Dangerfield, 
1987]. In fact, two of the four density-normalized moduli that 
determine propagation in a TIV medium for waves with 
polarization in the plane of the survey can be read directly 
from these data. A• is the square of the horizontal P 
velocity which can be read as AXs/AT at the turning offsets 
in Figure 3. A 33 is the square of the vertical P velocity which 
can be read as AZr/AT in Figure 5. These axial P velocities 
differ by 12%. The remaining in-plane moduli (A55 and A 13) 
can be obtained by further analysis as described below. 

2 35 km/s 

2.000 -2.•)00 -1.000 0.600 1.000 2.000 3.000 
Source Offset (km) 

Figure 3. Vertical component common receiver gather for the central receiver at 1.008 km depth. 



21,662 MILLER ET AL.' ESTIMATION OF ANISOTROPIC ELASTIC MODULI 

0.980 

1 .ooo 

1.o2o 

1.040 

0.3 0.4 0.5 0.6 0.7 0.8 

Time (s) 

Figure 5. Vertical component common source gather for 
the source at -0.165 km offset from the well. 

Anisotropic Elastic Moduli From Phase 
Velocity Analysis 

Figure 6 shows a contour plot of picked first-break travel 
times as a function of source-receiver offset and receiver 

depth. It is a classical wave front chart. The essence of the 
phase velocity method is that at each point in the chart, the 
gradient of travel time is a point on the phase slowness 
surface for the medium at the given depth. The gradient of 
travel time has as components the apparent horizontal and 
vertical slowness of the direct qP arrival. Since our vertical 
receiver array is short, we will obtain phase points only for 
the medium at the center of the array (at 1.008 km). Since 
our horizontal source array is long and arrivals range from 
vertical to horizontal, we will sample the entire qP phase 
slowness surface at this depth and azimuth, obtaining about 
200 estimated qP phase points. 

Vertical Slowness as a Function of Offset 

From each three-component trace, a two-component (ver- 
tical and radial) trace was created by rotating the coordinate 
system to align it with the horizontal polarization vector seen 
in the direct P arrival. Then, for each source position, 
vertical slownesses were estimated using the parametric 
inversion method described by Esmersoy [1990]. This 
method, applied to an array of two-component (vertical and 
radial) data windowed around the first arrival, finds a best 
fitting decomposition of the vector wave field as a sum of 
four plane waves (down and up, P and S), each with an 
associated polarization and slowness across the array. Fig- 
ure 7 graphs the four vertical slownesses as a function of 
source offset. At large offsets, a one-plane wave model (for 
the direct qP arrival) was fit. 
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Figure 7. Vertical apparent slownesses calculated for each 
common source gather. From top to bottom they represent 
downgoing qSV, downgoing qP, reflected qP, and reflected 
qSV waves, respectively. 

Horizontal Slowness as a Function of Offset 

It was deemed inappropriate to attempt a parametric 
inversion for horizontal slownesses because there is some 

small variation in the picked travel times (presumably due to 
the fact that the data were acquired in two passes of the 
source boat). However, the overall trend of the data is 
surprisingly symmetric, with variation between the two sides 
of the survey having a magnitude similar to the level of local 
variation. Figure 8 shows travel time data from both sides of 
the survey plotted in squared travel time and offset coordi- 
nates. It is impossible to distinguish sets of points coming 
from the two sides of the survey. This is strong evidence that 
the layered-Earth assumption is valid. 

Gaiser [1990] suggested calculating horizontal slownesses 
locally by fitting straight-line segments in the squared coor- 
dinate space. Given the large consistent data set, we found it 
practical instead to construct a smooth, symmetric global 
travel time function by fitting a third-degree polynomial in 
the squared domain. Offsets out to 2.800 km were used to 
help guarantee that the approximation would be smooth at 
offset 2.000 km. This approximating curve is superimposed 
on the data in Figure 8. The x derivative of the global travel 
time function gives horizontal slowness as a function of 
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.......... 6.6 ............ 0.8 ............... t 
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Figure 6. Wave front chart made from recorded first-break travel times. 
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Figure 8. Squared qP travel time versus squared offset for 
the central receiver. A best fitting third-degree polynomial is 
superimposed on the data. 
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Figure 10. Estimated qP phase slowness points together 
with the analytic phase slowness curve for the best fitting 
TIV medium. 

offset. It is shown in Figure 9 together with horizontal 
slownesses calculated locally using Gaiser's method. 

Phase Slowness Surface and Anisotropic Moduli 

At each source offset, the horizontal slowness calculated 
from the smooth curve displayed in Figure 9 was paired with 
the downgoing qP vertical slowness displayed in Figure 7 to 
define the two-component travel time gradient (i.e., the 
phase slowness vector) at that offset, at the depth of our 
central receiver. These phase slowness points are displayed 
in Figure 10 together with the analytic qP phase slowness 
curve for a TIV medium obtained as follows. 

Miller and Spencer [this issue] show that given an estimate 
for Ass, the three remaining density-normalized moduli 
(All , A13, A33 ) can be directly estimated from qP phase 
slowness data. Since Ass is the square of the axial shear 
velocity, an estimate can be obtained from the wave field 
analysis data displayed in Figure 7. The points with maxi- 
mum absolute slowness belong to near vertically propagating 
converted qSV waves. They show a slowness that lies 
between 1.02 and 1.07 s/kin. It follows that A55 lies between 
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Figure 9. Horizontal apparent slowness calculated from 
the travel time data of Figure 8. The solid curve was 
obtained analytically from the curve shown in Figure 8 by 
differentiation and change of variables. The points shown 
were obtained by Gaiser's local method, fitting straight lines 
to 0.400-km segments of points in Figure 8. 

0.87 and 0.96 km2/s 2. We used the value 0.91 in our 
calculations. 

Using this value for A 55 and applying the method of Miller 
and Spencer [this issue] to the qP phase slowness points 
from Figure 10, we obtained elastic moduli {A•, A•3, A33, 
A55} = {6.99, 2.64, 5.53, 0.91}. The analytic qP phase 
slowness curve from this model has been superimposed on 
the measured phase points in Figure 10. As measured by the 
relative error of the fit Imeasured phase-modeled phasel/ 
modeled phase, the standard deviation of the scatter is 0.6%. 
Thus a conservative estimate is that the slownesses are fit to 

within _+1.5%. That implies a confidence in the estimated 
moduli of _+3%. Combining this with our earlier discussion 
of the confidence in A55, we can tabulate 

All = 6.99 _ 0.21 

A33 -- 5.53 _+ 0.17 

A = 5.36 _ 0.16 
qp 

A55 = 0.91 _+ 0.05 

A13 = 2.64 _ 0.26. 

Densities in the logged zone just below the survey lie in the 
range between 2200 and 2400 kg/m 3 with an average value 
close to 2300 kg/m 3. 

Discussion 

Figure 11 shows the impulse response from the inverted 
medium displayed in a form similar to that of Figure 1. In 
comparison to the Greenhorn shale of Figure 1, the Petronas 
shale shows a smaller degree of axial anisotropy as measured 
by the ratio V•/V33 (1.12 for Petronas versus 1.23 for 
Greenhorn). However, Petronas shale shows a greater de- 
gree of anellipticity, with (A• + A33)/[2(A•3 + 2A55)] 
equal to 1.40 for Petronas and 1.33 for Greenhorn. In terms 

of off-axis velocities the Petronas shale has Vqs/V55 = 1.41, 
Vqp/[(Al! + A33)/2] 1/2 = 0.93. As noted earlier, the 
corresponding velocity ratios for the Greenhorn shale are 
1.28 and 0.88. 

As shown by Miller and Spencer [this issue], the goodness 
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Figure 11. Impulse response of the estimated TIV me- 
dium. Superimposed are two ellipses calculated as the best 
elliptical approximations over phase angles from vertical to 
30 ø and vertical to 90 ø , respectively. 

of the fit to the qP phase points is essentially independent of 
the choice of A 55. For all values of As• between 0.5 and 2.0, 
the best fitting medium shows a triplication in the qSV 
impulse response. This triplication is associated with strong 
anellipticity of the qP surface. Superimposed on Figure 11 
are ellipses calculated as the best elliptical approximations 
over phase angles from vertical to 30 ø and 90 ø . The elliptical 
approximation at 90 ø significantly underestimates both the 
vertical and horizontal wave speeds. Figure 12 is a graph of 
the best fitting ellipticity (as measured by the ratio of vertical 
to horizontal semiaxis length) as a function of maximum 
phase angle from vertical to be fit. The range is from roughly 
1.23 to 0.89 with a value of 1.0 at 55 ø. This medium confirms 

that ellipses make bad approximations to typical shale slow- 
ness or velocity surfaces [cf. Thomsen, 1986]. 

Miller and Spencer [this issue] also show that a good 
fitting TIV model in a single vertical plane would be ex- 
pected even if the medium has azimuthal anisotropy induced 
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Figure 12. Best fitting ellipticity as (as measured by the 
ratio of vertical to horizontal semiaxis length) as a function 
of maximum phase angle from vertical to be fit. 

by a vertical fracture system. Thus we cannot rule out the 
possibility that there is azimuthal anisotropy in this case. It 
would, however, be feasible to repeat this experiment in 
multiple azimuths to obtain data that could completely 
characterize a fractured TIV medium. Miller and Spencer 
[this issue] show that this could be done using as few as three 
correcdy chosen survey directions. 

It should also be pointed out that the parameters we have 
estimated represent an average "effective" medium at the 
scale of our seismic wavelengths (roughly the 0.100 km 
extent of our vertical array). It is evident from the logs that 
the actual medium shows considerable variation at a finer 
scale than that. We have verified numerically that the 
variation seen in the logs (Figure 2) would be grossly 
insufficient to account for the degree of measured anisotropy 
if the log values were taken to represent thin, isotropic layers 
(and assuming that the variation in the logged interval is 
representative of that in the zone just above it where we did 
our VSP). Thus the apparent anisotropy at the seismic scale 
would seem to represent a combination of a weak effect due 
to layering evident at the sonic scale with a strong effect due 
to the anisotropy of the material constituting the layers 
evident at the sonic scale. This is not surprising given 
ultrasonic measurements such as that of Jones and Wang 
[1981]. Clearly, it would be interesting to combine the 
methods described here with core measurements and with 
logs or crosswell measurements done at fine and intermedi- 
ate scales. 
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