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Multichannel Wiener deconvolution of vertical
seismic profiles

Jakob B.U. Haldorsen*, Douglas E. Miller‡, and John J. Walsh**

ABSTRACT

We describe a technique for performing optimal,
least-squares deconvolution of vertical seismic profile
(VSP) data. The method is a two-step process that
involves (1) estimating the source signature and
(2) applying a least-squares optimum deconvolution
operator that minimizes the noise not coherent with
the source signature estimate. The optimum inverse
problem, formulated in the frequency domain, gives as
a solution an operator that can be interpreted as a
simple inverse to the estimated aligned signature mul-
tiplied by semblance across the array. An application
to a zero-offset VSP acquired with a dynamite source
shows the effectiveness of the operator in attaining the
two conflicting goals of adaptively spiking the effective
source signature and minimizing the noise.

Signature design for seismic surveys could benefit
from observing that the optimum deconvolution oper-
ator gives a flat signal spectrum if and only if the
seismic source has the same amplitude spectrum as the
noise.

INTRODUCTION

VSP data are normally collected with a seismic source at
the surface and one or more geophones in the borehole. The
data recorded by a downhole receiver can be viewed as a
superposition of a downgoing field generated by the source
at the surface and altered by transmission effects in the
medium, an upcoming field, and noise not related to the
source. The upgoing wavetrain can be regarded as the
response of the earth beneath the receivers to a perturbation
caused by the complicated downgoing field, making the
downgoing field the “effective” seismic source. A deconvo-
lution operator that collapses the effective signature will

recover the impulse response of the lower-lying earth from
the upgoing wavetrain.

From vertical seismic profile (VSP) data, one can get a
good estimate of the effective source field close to a reflec-
tor. Everything aligned with the direct arrival can be treated
reasonably as part of the source signature. Previous research
(e.g., Kennet et al., 1980; DiSiena et al., 1980; Seeman and
Horowitz, 1983 ; Hardage, 1985), has concentrated on the
downgoing estimation problem, treating the deconvolution
design as a separate, single-channel problem to be solved by
standard techniques. Conventionally, the multichannel esti-
mation of a downgoing wave is followed by the application of
a deconvolution filter, designed at each level as the inverse
of the estimated downgoing signal.

In this paper, we adopt an alternative viewpoint, treating
the estimation of the deconvolution filter itself as the object
of the multichannel design problem. Our formal approach is
close to that of Berkhout (1977), who described multichannel
deconvolution design for application to surface seismic data.
The downgoing source field is estimated from a vertical array
of receivers, similar to the methods of Kennet et al. (1980)
and Hardage (1985). As we estimate the source field, we also
find an optimum inverse filter. This filter is an intrinsically
stable Wiener deconvolution filter where the spectral energy
of the noise is determined implicitly. Our method is a direct
extension of a processing algorithm developed for the de-
convolution of seismic data acquired with a drill-bit source
The drill-bit method is described by Miller et al. (1990) and
Haldorsen et al. (1992).

The noise-optimal deconvolution filter can be written as a
conventional inverse to the average downgoing signal
weighted at each frequency by the semblance across the
receiver array at that frequency. These two terms help the
filter attain the two conflicting objectives of adaptive11
spiking the direct arrivals and of minimizing the noise
incoherent with these arrivals. We will compare this formula
lation to “conventional” deconvolution processing where
the noise attenuation is achieved by adding white noise and
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by applying a subsequent band-limiting filter. In an applica-
tion to a zero-offset VSP recorded with a dynamite source,
we will see how the noise attenuation is achieved automat-
ically by the optimum deconvolution filter without the sub-
jective and labor-intensive filter testing that is required by
conventional deconvolution.

DATA MODEL

We assume that each trace s,(t) contains noise 
added to a signal f(t). The signal is delayed by the transit
time  between the source and the receivers. Under these
assumptions we write

    + (1)

For VSP data acquired with an impulsive source,  is
determined by picking first arrivals. For a vibrator source,
the initial values of  will be found from the correlated data,
using the synthetic sweep as an initial estimate of the source
signature.

In equation  the “effective” source signature; i.e.,
the signature of the surface source complicated by the
transmission through the earth. The noise term represents
both uncorrelated random noise and reflected signal that is
coherent with the source but with a different moveout across
the array.

The processing algorithm will be based on equation (1) in
its frequency-domain version:

  =  +  (2)

SIGNATURE ESTIMATION

We want the estimate of the signal that corresponds to
maximum signal energy-or minimum noise energy. The
average noise energy is given by

   = 
 1n=

where  is the number of traces (offsets, levels) contained
within the window in which the signature is stable.

Solving equation (2) for  and substituting, we get,
after some elementary manipulation:

 =    
n= 1

(4)

and the value of f(o) that minimizes the noise energy is

   
n= 1

The signature estimate  is the average trace along a
moveout path described by  This is, in principle, the same
method that Kennet et al. (1980) and Hardage (1985) de-
scribe for estimating the downgoing source field. For noisy
data one may consider replacing the average expressed in
equation (5) by the median of the moveout-aligned traces
(Hardage, 1985).

We find the bias of the signature estimate from
equations (5) and (2):

     
n= 1

Provided that the right-hand side of equation (6) is zero; i.e.,

    0 ,
n= 1

(7)

 an unbiased estimate off. The condition (7) characterizes
the noise.

DECONVOLUTION FILTER

Having found an estimate of the source signature corre-
sponding to a minimum noise energy in the raw data
[equation (5)], we want to find a deconvolution filter that
collapses the source signature to a spike. At the same time,
we want this filter to leave the least noise energy in the
deconvolved data. In this section we will find a Wiener
deconvolution filter that is completely determined by the
data and the model in equation (2).

Optimum inverse filter

After the application of the deconvolution filter F(w), the
average noise energy  is

1 
 =   

n= 1

2=  (8)

where  is given by equation (3).
We can define the error energy associated with the failure

of the deconvolution filter to “spike,” or spectrally whiten
the signal spectrum by

 =   (9)

Using  from equation (5) as the signal means that any
energy that satisfies condition (7) will be considered noise.
With data that have been correctly sampled spatially, given
the moveout difference between the downgoing and upcom-
ing energy, the reflected energy will thus be considered
“noise,” and  and will not be independent. A filter
that attempts to minimize both  and  will preserve
the part of  that is spectrally coherent with  Our
optimum filter F(w) is therefore found by minimizing

=  +   (10)

Here we have replaced  by  assuming that
equation (7) holds.

The derivative of A with respect to  is

  =     
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and the value of F(o) that minimizes the sum of the noise
and error energies becomes

 =  +  
(12)

where we use * for “complex conjugate.” This filter will
reduce the noncoherent noise and compress and enhance
any energy that is spectrally coherent 

Wiener deconvolution filters, similar to expression (12),
can be derived in a number of different ways [e.g., for
seismic processing, Berkhout (1977); for restoration of
blurred images, Andrews and Hunt (1977, 126-140)].

Equation (12) cannot be used directly as it requires an
estimate of the energy spectrum of the noise. Interchanging
f(o) and  [with the condition (7)], it is easily seen from
equations (4) and (5) that

 =     (13)
1

which introduced into equation (12) simplifies this to

where  is the average total energy of the raw traces:

(15)

In equation (14), the implicit determination of the noise-
spectrum from the trace model (2) has replaced the explicit
determination suggested by equation (12).

We can rearrange the terms in equation (14) to give

(16)

where the frequency-domain semblance S(w) is given by

 
. (17)

We recognize the first  in equation (16)
as a spiking deconvolution filter. The spiking deconvolution
filter is modified by the semblance S(w) . The semblance acts
as a data adaptive band-limiting filter attenuating frequencies
where the signal-to-noise ratio is small.

One could imagine implementing the filter (16) as a cas-
caded filter: a conventional deconvolution followed by sem-
blance weighting. This may give almost identical results,
provided the signal spectrum has no zeros, in which case the
cascaded filter becomes indeterminate. If the filter is imple-
mented in its simplest form, according to equation (14), any
zeros in f(o) will not constitute a problem.

It follows from equation (19) that the least-squares opti
mum deconvolution algorithm gives a deconvolved signature
with a flat spectrum if and only if the seismic source has the
same amplitude spectrum as the noise. dur best source is
thus not necessarily the source with the flattest spectrum but
the source that has the same spectrum as the noise. This
observation has obvious applications in signature design, ir
particular with vibrators where the signature can be designed
to fit the particular noise environment.

EFFECTIVE BANDWIDTH OF THE SIGNAL

In analogy with a suggestion by Hardage (1985) for the If the semblance S(w) is constant and equal to  over a
estimation of the source signature from noisy data, one mayfrequency interval  and zero outside this interval, the
consider replacing the average total energy in equation (14)average semblance  calculated over a larger frequency
by the median total energy. interval  becomes

Stability of the optimum inverse

The average total energy of the deconvolved traces can be
determined using equations (16), (17), and (15):

=  

= S(0). (18)

The stability of F(w) is ensured by equation (18) as 0 
S(0)  1.

DECONVOLUTION OF THE SIGNAL

The filter designed using equations (5) and (14) will trans-
form a signal of any shape and phase characteristics into a
zero-phase, band-limited wavelet.

From equation (16), we find that  applied to the
estimate  of the signal gives the signal-amplitude:

= S(0).

The least-squares best estimates of the source signature and
its inverse are given by  and F(w). With S(w)  1,
equation (19) demonstrates that the best estimate of the
inverse off(o) is not the inverse of the best estimate off(o).
(Note:  = 1 when  = 0.)

In the time domain, g(t) is a zero-phase, symmetric time
series with a peak at  = 0, since the spectrum is composed
of real-valued numbers S(W). We get the peak amplitude
from equation (19) by Fourier transformation:

 = 0) = (20)

where  is the average frequency-domain semblance:

(21)

 is the number of frequency samples.

Source signature optimization
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The frequency-averaged total energy after deconvolution
is  [follows from equation (18)] and the average signal
energy is   [follows from equation (19)]. This gives a
ratio of signal energy to total energy of  Given that the
measured ratio between the signal energy and total energy is

 we can define an “effective” bandwidth  of the
signal in analogy with equation (22). Substituting  for 
and  for  and rearranging terms, we get

 has the intuitively correct properties that  = 
when  = 1   = 1) and   0 as   0.  = 1
means that there is no noise in the data, and  = 0 that
there is no signal.

MEASURES OF NOISE AND SIGNAL

We summarize the estimators for the energy of signal and
noise in the data, before and after application of F(w) in
Table 1.  is the number of frequency samples. After
deconvolution, the total energy is given by equation (18). To
find the signal energy expressed in terms of  and 
we used equations (17) and (19). The noise energy is found
by subtracting the signal energy from the total energy.

Calculating the energies listed in Table 1 helps in evaluat-
ing the data as well as the performance of the algorithm. One
measure of the performance of the filter on the average is the
increase in the signal-to-total-energy ratio. However, for
data giving a nonflat semblance spectrum, the visual effect
may be significant even for small changes in this ratio.

One can note that while the semblance  remains
unchanged by the deconvolution, the total energy is changed
to S(w), a number between 0 and 1. We also have the

condition that the average semblance is less than the signal-
to-total-energy ratio because some bands - of frequencies
included in the processing may contain little or no energy.
These frequencies will reduce the value of the average
semblance but will have little effect on the signal-to-total-
energy ratio calculated according to Table 1. If the spectrum
of the semblance is flat; i.e., the noise and the signal have the
same spectra, the average semblance will be equal to the
signal-to-total-energy ratio.

For random and uncorrelated noise, the energy will be
evenly distributed over the entire record after deconvolution
filtering; whereas, the signal will be compressed. This will
give an amplitude ratio of signal to noise that is significantly
higher than what can be calculated from the expression in
Table 1.

APPLICATION: A ZERO OFFSET VSP

We will look at an application to a zero-offset VSP to
study the effect of the semblance weighting. For this pur-
pose, we will show two separate processings of the data
where the only difference is the introduction of semblance
weights. The data are good quality, and we found indistin-
guishable results whether we used average or median esti-
mators for the signatures and energy spectra.

Data

The data were recorded with a Schlumberger SAT*
Seismic Array Tool, using dynamite sources placed approx-
imately 100 m from the wellhead. The raw stack of the VSP
is shown in Figure 1. The amplitude spectra of the full-length
data traces (Figure 2) show that most of the energy is concen-
trated in a frequency range of 5 to 35 Hz with a rapid decay in
amplitude above 35 Hz. Although weak, there is still energy at
higher frequencies, and one of the objectives of the deconvo-
lution is to bring out the signal at these frequencies.

*Mark of Schlumberger.
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The break times  were found by picking the first breaks
on the raw data traces. The source signature was estimated
in a moving window of five receivers. The application of the
algorithm assumes that the source signature does not change
over the trace window considered, which imposes a constraint
upon the maximum length of the receiver array. The estimated
signature was assigned to the central trace within the window.
Figure 3 shows, in an arbitrary time reference, the signatures
obtained using equation (5). Corrected for traveltimes, the
signatures give an estimate of the direct field (Figure 4).

The frequency-domain semblance S(w) is found as the
ratio of the energy in the estimated direct wave to the total
energy averaged across the array of receivers within the
moving trace window. The semblance is shown in Figure 5.
The low values of the semblance around 50 Hz suggest a
strong presence of noise at this frequency, probably gener-
ated by the rig and associated equipment on the surface. We
arbitrarily chose to process frequencies from 0 to 105 Hz.

Figure 6a shows the spectra of the traces after deconvo-
lution using a simple, conventional spiking deconvolution
filter. Figure 6b shows the corresponding spectra follow-
ing the application of the optimal inverse filter. The con-
ventional filter is implemented by setting  = 1 in
equation (16) and adding enough white noise (0.01 percent)
to the denominator to stabilize the filter.

Examination of the spectra in Figure 6 shows that the
introduction of the semblance weights into the inverse filter
has given an operator that is less sensitive to noise in the
data. The semblance weights provide a data-adaptive band-
limiting filter. In particular, the 50-Hz noise seen in the raw
data has been attenuated by the semblance weights.

The deconvolution filters were applied directly to the
unseparated data. The result is shown in Figure 7. The

subtraction of the deconvolved source field leaves the de-
convolved reflected field shown in Figure 8. This is the
postfiltering residual of the “noise” N in the data model (2).
The optimum inverse filter has attenuated (or failed to
magnify) the incoherent noise, leaving the mostly coherent,
reflected energy. The signal reflected from deeper flat layers
was aligned in a conventional way by shifting the traces by
twice the break times. The aligned reflected signal was
enhanced using a moving-average filter over five receivers.
This procedure is analogous to the way we estimated the
downgoing source field. The enhanced, look-ahead VSP
images are shown in Figure 9.

The only difference between the processing leading to the
two sets of look-ahead VSP images in Figure 9 is the
application of the frequency-domain semblance. The
noise-limiting property of the optimum inverse filter be-
comes evident when comparing the two VSP images.
Both VSP sections have a significantly higher resolution
than the surface seismic. The surface seismic data are
48-fold, recorded using 25-m spacing of the receiver
groups and 50-m source spacing. A geophone group con-
sisted of a pattern of 24 vertical geophones. The seismic
source was a stack of eight 8-s, 16-80-Hz sweeps by
three vibrators. The data have been migrated using the
generalized radon transform (GRT) algorithm described in
Miller et al. (1987).

Bandwidth, relative signal, and noise energy

We have used the expressions listed in Table 1 when
calculating the relative signal and noise energies in Table 2.
Table 2 gives the frequency-averaged semblance, signal-to-
total and signal-to-noise-energy ratios before and after the

(text continues on page 1510)

FIG. 1. Stacked raw vertical component VSP data. Each trace in the display is individually noromalized.
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FIG. 2. Amplitude spectra of raw data from Figure 1. Each spectrum is individually normalized.

FIG. 3. Estimated signatures obtained using equation (5) in a five-trace sliding window. Traces are individually
normalized.
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FIG. 4. The estimated direct field showing the signatures from Figure 3 corrected for traveltime. Display is
normalized trace by trace.

FIG. 5. Frequency-domain semblance for the data from Figure 1.
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FIG. 6. Amplitude spectra of deconvolved VSP data. (a) Without semblance weighting. (b) With semblance
weighting applied. Display is normalized trace by trace.
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FIG. 7. The total field after the application of the optimum deconvolution operator defined by equation (16):
(a) Without semblance weighting. (b) With semblance weighting applied. Display is normalized trace by trace.
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FIG. 8. The residual field obtained by subtracting the deconvolved direct field from the deconvolved total
field: (a) Without semblance weighting. (b) With semblance weighting applied.
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optimum inverse operator was applied. The frequency aver-
aging is done over the processing band from 0 to 105 Hz. The
energies are the average over the total array.

We see that about 95 percent of the total energy is
contained in the direct arrivals. We achieved a reduction of
about 20 percent in the noise energy. A visual inspection of
Figure 6 confirms that the energy removed represents a
substantial portion of the total, incoherent energy, and that
the residual “noise” is, in fact, reflected energy.

The average semblance is 0.90, meaning that the effective
bandwidth of the signal after deconvolution is 95 Hz, or
90 percent of the 105Hz band used in the processing.

DISCUSSION

approach the optimum inverse filter (14) as a limit. However
the filter (14) attains the “best possible” result (in a least
squares sense) automatically and without the subjective and
labor intensive step of selecting filter parameters. Applied in a
spatially sliding time window, the optimum inverse filter will
allow each single trace its maximum coherent bandwidth.

CONCLUSIONS

The application demonstrates that optimal, focused array
deconvolution is an effective technique for processing VSPs

Table 2. Relative signal energy for the frequency interval fron
0-105 Hz from the processing of the zero-offset VSP using th
expressions listed in Table 1.

In the example, when omitting the semblance term from
the deconvolution filter, we added just enough white noise to
the denominator to stabilize the filter. By choosing the noise
and band-limiting parameters for a conventional deconvolution
filter [e.g., Berkhout (1977), equation (27)] it can be made to
perform much better and may, with appropriate parameters,

Before
deconvolution

After
deconvolutiol

Average semblance 0.90 0.90
Signal-to-total energy 0.94 0.95
Signal-to-noise energy 15.3 20.2

FIG. 9. Deconvolved VSP data in two-way time, processed (left) without semblance weighting, and (center)
with semblance weighting applied. To the right: nearby traces from the migrated surface seismic section. The
well is close to the leftmost of the surface-seismic traces. Display is normalized trace by trace.
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In conventional deconvolution processing, the filter is stabi-
lized by additive white noise, and the noise in the decon-
volved data is reduced by subsequent band limiting and
notch filters. For the optimum deconvolution filter described
in this paper, the filter stabilization is not needed and the
postdeconvolution noise is automatically, data-adaptively
and optimally attenuated, thus eliminating an often subjec-
tive and labor-intensive step from the processing of VSP
data. The resulting deconvolved data will be limited to the
bands of frequencies that carry significant signal.

It followed from the general properties of the inverse filter
that one needs a seismic source with the same spectrum as
the noise to get a deconvolved signature with a flat spectrum.
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