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ABSTRACT 

JAKUBOWICZ, H. and MILLER, D. 1989. Two-pass 3D migration and linearized inversion in 
the (x, t)-domain. Geophysical Prospecting 37, 143-148. 

3D Kirchhoff migration and acoustic Born inversion of zero-offset seismic data in a 
constant-velocity medium can be uniformly factored as a cascade of two 2D diffraction inte­
grals. The formal argument is based on a straightforward implementation of the original 
time-domain approach of Gibson, Lamer and Levin. The factorization differs from the factor­
ization described by Jakubowicz and Levin in omitting all time-dependent filters from the 2D 
operators in favour of ID filtrations performed as a preprocess and a postprocess. 

INTRODUCTION 

Gibson, Larner and Levin (1983) introduced an efficient approach to 3D migration 
by means of a simple heuristic argument showing that the Kirchhoff-summation 
method could be accomplished by successive applications of the standard 2D tech­
nique. In a companion paper, which has been the subject of some further discussion 
(Stolt 1984; Fokkema, Lortzer and Ziolkowski 1986; Jakubowicz and Levin 1986), 
Jakubowicz and Levin (1983) argued that 3D wave-equation migration could be 
precisely factored as a cascade of two 2tD wave-equation migrations by considering 
migration in both the (x, w) and (k, w) domains. They declined to treat the (x, t) 
domain on the grounds that the half-derivative in 2tD Kirchhoff migration ren­
dered the analysis intractable. 

In this note we sidestep the issue of the half-derivative and observe that the 3D 
wave-equation migration can be handled precisely by the original time-domain 
algorithm provided both the input data and output image are modified by the appli­
cation of suitable 1D filters. This is both computationally efficient and natural with 
respect to the original heuristic. Furthermore, since Kirchhoff migration based on 
exploding reflectors differs from multidimensional inversion based on the Born 
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approximation only in the data preparation step, the factorization applies equally to 
these algorithms. 

THE CASCADED TWO-PASS 3D DIFFRACTION INTEGRAL 

Recall the time-domain analysis of Gibson, Lamer and Levin (1983): given a homo­
geneous medium with two-way slowness a = 2/e, in computing 

image (xo, Yo, to) f f dx dy data (x, y, t = J t~ + a2 (Llx 2 + Lly2», 

we can first form temporary (' in-line ') sums: 

temp (x, Yo, t1) f dy data (x, y, t = J ti + a2 Lly2) 

and then combine these temporary sums by stacking in the orthogonal (' cross-line ') 
direction: 

image (xo, Yo, to) = fdx temp (x, Yo, t1 = Jt'5 + a2LlX2), 

= Jdx f dy data (x, y, t = (1) 

Algebraically, the factorization rests on the trivial identity 

Jt'5 + a2(Llx2 + Lly2) = J(Jt'5 + a2 Llx2)2 + a2Lly2. (2) 

Since the temporary sum is independent of the final image point, the total number 
of terms to be computed per output trace is reduced from (ni)(nx)(ny) to (ni)(nx + ny) 
where nx and ny are the number of x and y offsets contributing to the stack, and ni 
is the number of points in each image trace (and each temporary trace). 

When we replace the diffraction stack by a wave-equation migration, (1) 
becomes a Kirchhoff integral (Schneider 1978): 

1 8 f 1IKirch(xO, Yo, to) = 2n 8z dx dy ; data (x, y, t = ar), (3) 
-

where z tola and r = JLlx 2 + Lly2 + Z2. 
Equation (3) refines (1) (and complicates the problem of cascading) by the addition 
of a weighting term 1/r that depends on both x and y, plus a differentiation filter 
that is applied after integration. Jakubowicz and Levin (1983) suggested that the 3D 
migration operator defined by (3) could be factored as a cascade of two 2!D migra­
tions. In space-time the standard 2!D operator has the form (Schneider 1978): 

IKirch:m(xo, to) = - ~ :z fdX[f.~ dt ~J ...._. (4) 
'-11 t tl tl=/to2+a2ax2 

This operator involves a 2D diffraction stack and the application of ID filters before 
and after stack. The integral can be written in other forms involving a single 1D 
filter (e.g. Stolt and Benson 1986, p. 105). These extra filters add to the computa­
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tional complexity of the cascaded 3D integral and make it difficult to analyse 
directly. Jakubowicz and Levin (1983) attacked that difficulty by working with 
equivalent forms in the (x, oo) and (k, (0) domains. This indirect treatment is tricky 
and the original paper contained some errors (Stolt 1984; Fokkema, Lortzer and 
Ziolkowski 1986). The (k, (0) argument can be corrected (Jakubowicz and Levin 
1986; Stolt and Benson 1986, pp. 97-106), but requires careful handling of imagin­
ary wavenumbers and a stationary-phase argument to convert the 2!D operator to 
space-time. 

In fact, the situation is much simpler than this extended discussion suggests. By 
directly re-examining the 3D space-time operator, we can describe a factorization 
which is different from that described in the previous work and is simpler both 
conceptually and computationally. The key is to separate the diffraction integral 
from ID filters and to factor only the former. In the following section we show that 
three standard migration/inversion operators can uniformly be implemented as a 
three step process: 

1. Preprocess by replacing the original input traces data (x, y, t) by appropri­
ately filtered traces data (x, y, t). This first step is accomplished by an operator that 
depends only on t and can be applied tracewise. 

2. Form the simple diffraction stack 

image (~, Yo, to) = ff dx dy &ta (x, y, t ,Jtf+ a2(L\x 2 + L\y2». 

3. Postprocess by replacing image (x, y, t) by the final output 

J(xo, Yo, to) = to image (xo, Yo, to)· 

The second step has the trivial factorization described in (1). The ID operations 
described in steps one and three replace four ID operations required to cascade (4). 
The various migration/inversion operators differ only in the preprocessing step. 

TWO-PASS 3D MIGRATION AND INVERSION IN THE (x, t) DOMAIN 

In view of the above discussion, it suffices to show that each of our migration/ 
inversion operators can be written in the normal form 

J(xo, Yo, to) = to f f dx dy aata (x, y, t = Jt~ + a2(L\x2 + L\y2) (5) 

./'..
by making an appropriate choice of data. We consider them in order of complexity. 

Approximate Born Inversion 

The simplest 3D zero-offset migration operator to put into normal form is 
derived from the approximate inversion of the acoustic Generalized Radon Trans­
form (e.g. Miller, Oristaglio and Beylkin 1987, equation (29»: 

to ../'--.JGRT(XO, Yo, to) = 2a3 If dx dy t data (x, y, t (6) 
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This is clearly reduced to (5) by substituting the trivial preprocessing 

~ 2a3 

dataGRT (x, y, t) = - data (x, y, t). (7)
t 

Kirchhoff Migration 

Consider (3). It has the equivalent form 

a data (x, y, t)] 
(8)

2nt at t t=Jto2+a2(Ax2+Ay2)' 

Equation (8) is reduced to (5) by the preprocessing 

/'-..... 1 a data 
dataKirch(x, y, t) = - -2 -;- --"-'-"::";;"-'.. (9)

ret ut 

Exact Born Inversion 

A more complicated 3D inversion operator for zero-offset data which is exact 
within the Born approximation is derived in Cheng and Coen (1984). In their equa­
tion (41) they provide a prefilter which should be applied to the data before apply­
ing the Kirchhoff operator 

clata (x, y, t) = -8re{2 J:d' fdata (x, y, tt) dt' + J:r data (x, y, ,) drJ. (10) 

The exact Born inversion is then obtained by substituting data for data in (3) or (8). 
The same substitution in (9) will yield a rather complicated preprocessing for this 
case. In fact, the operator can be substantially simplified. Making use of integration 
by parts with A = t, and dB data (x, y, t), we can rewrite (10) as 

d7ta (x, y, t) = -8re{2t J:data (x, y, r) dr - J:, data (x, y, ,) d,J. (11) 

Substituting this expression for data (x, y, t) in (9), we obtain a simpler preprocess 
for exact 3D Born inversion 

rt 
/'-..... 8a [ ]dataexactBorn(x, y, t) = t data (x, y, t) + t- 2 Jo' data (x, y, ,) dr . (12) 

The authors are grateful to C. Esmersoy and M. Oristaglio for this last reduction. 
The factor of c2 by which (7) differs from the leading term in (12) is explained by the 
difference between two definitions of the scattering potential. Linearized inversion in 
the (k, co) domain is discussed in Stolt and Benson (1986, pp. 150-156). 
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REMARKS 

The postprocessing multiplication by to is easily incorporated into the cascaded 
integral. Writing data t elata, we can put each migration operator into the alter­
native normal form 

J(xo, Yo, to) = - ff dx dy data (x, y, t Jt~ + a2(Ax 2 
- Ay2». 

The cosine weighling_ter:n:Ltolt can be factored as a product of cross-line cosine term 
tolt1 with an inline cosine term tlit to give the variant of the cascaded 3D operator: 

J(xo, Yo, to) = f dx temp (x, Yo, t1 Jt~ + a 2 Ax2
),

t1 

2= fdX ~ fdY E.! data (x, y, t = ~j(Jt~ + a AX2)2 + a2 Ay2). (13)
t1 t 

This approach also yields a simple uniform approach to 2tD migration and inver­
sion. Assume that the earth is invariant under changes in y. Then so is the data and 
we can write 

temp (x, Yo, t 1) = temp (x, t 1), 

= fdy ttl data (x, t Jti + a2y2). 	 (14) 

Make the change of variables y = (±~)/a in (13) and recollect terms to 
obtain the 2tD operator: 

[1 ro . 	 f data (x, t)]mage (xo , to) = dx dt . (15) 
a t=1! Jt 2 

- ti tl=-/t02+02,1:<2 
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