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Short Note 

Backprojection versus backpropagation in multidimensional 
- - linearized inversion 

Cengiz Esmersoy* and Douglas Miller* 

INTRODUCTION 

Seismic migration can be viewed as either backprojection 
(diffraction-stack) or backpropagation (wave-field extrapola- 
tion) (e.g., Gazdag and Sguazzero, 1984). Migration by 
backprojection was the view supporting the first digital 
methods-the diffraction and common tangent stacks of 
what is now called classical or statistical migration (Lindsey 
and Hermann. 1970; Rockwell, 1971; Schneider, 1971; 
Johnson and French, 1982). In this approach, each data point 
is associated with an isochron surface passing through the 
scattering object. Data values are then interpreted as projec- 
tions of reflectivity over the associated isochrons. Dually, 
each image point is associated with a reflection-time surface 
passing through the data traces. The migrated image at that 
point is obtained as a weighted stack of data lying on the 
reflection-time surface (Rockwell, 1971; Schneider, 1971). 
This amounts to a weighted backprojection in which each 
data point contributes to image points lying on its associated 
isochron. 

With the introduction of wave-equation methods by Claer- 
bout (1971), this backprojection view was largely replaced 
by a backpropagation approach in which the recorded waves 
are extrapolated either downward in space or backward in 
time and the image extracted from the extrapolated wave 
field by an imaging condition (e.g., Berkhout, 1984; Stolt and 
Weglein, 1985). In the case of a single-source, multiple- 
receiver experiment. the simplest imaging condition consists 
of reading the value of the extrapolated field at each image 
point at the time of illumination from the source. This 
reverse propagation constitutes the solution of a boundary- 
value problem and can be accomplished either by means of 
a finite-difference simulation constrained by data values 
along the receiver array (Whitmore, 1983; Baysal et al., 
1983; Chang and McMechan, 1986; Whitmore and Lines, 
1986) or by means of a Kirchhoff integral (Schneider, 1978; 
Wiggins, 1984). The Kirchhoff formulation provides a key to 

the reconciliation of backprojection migration with the wave 
equation. It is formulated in terms of the backpropagation 
approach, but implemented as a backprojection. In this way 
one obtains the weights and prefiltering operations that are 
required to make the two algorithms equivalent. 

Recently, these classical migration methods have been 
reformulated in terms of a theory of multidimensional linear- 
ized inversion (Born inversion). Within this theory, the 
seismic imaging problem is recast from that of extrapolating 
a scattered wave field to one of recovering the perturbations 
of material parameters (the scattering potential) that gave 
rise to the scattered field. As with the earlier methods, 
multidimensional Born inversion can be formulated either in 
terms of backprojection (Miller et al., 1984: Beylkin, 1985; 
Miller et al.. 1987) or (for certain experimental geometries) in 
terms of backpropagation (Cheng and Coen, 1984: Esmer- 
soy, 1986: Esmersoy and Oristaglio, 1988). For the case of 
zero-offset geometry, the two inversion formulas agree in the 
far field and differ from classical wave-equation migration 
only by a one-dimensional filter which is applied to the data 
traces before backprojection or backpropagation (Jakubo- 
wicz and Miller, 1989). For a single-source, multiple-re- 
ceiver geometry, backprojection inversion differs from stan- 
dard backprojection migration by adding to the integrand an 
extra “obliquity factor” that depends on the angle between 
the source and receiver rays at each image point. The 
backpropagation inversion method (Esmersoy, 1986; Esmer- 
soy and Oristaglio, 1988) differs from standard backpropa- 
gation migration by adding an extra spatial diff‘erential oper- 
ator which is applied to the extrapolated wave field before 
imaging. 

In this note, we discuss the relationship between these two 
formulations of single-source migration. We show that the 
two linearized methods satisfy the same formal equivalence 
as the earlier methods. In particular, the extra stacking 
weights applied in backprojection inversion are identical to 

Manuscript received by the Editor October 22, 1987; revised manuscript received September I?, 1988. 
*Schlumberger-Doll Research, Old Quarry Road, Ridgefield, CT 06877-4108. 
0 1989 Society of Exploration Geophysicists. All rights reserved. 

921 



922 Esmersoy and Miller 

the weights applied implicitly to the plane-wave components 
in backpropagation inversion. If the source and receivers are 
in the far field of the imaging region, these two methods give 
the same result. 

THE BASIC RELATION 

As described above, backprojection imaging is implemented 
as an integral over the receiver data, whereas backpropagation 
imaging is obtained by a local operation inside the scattering 
medium after the data are extrapolated from the receivers into 
the medium by using a finite-difference algorithm, Kirchhoff 
integral, or frequency-wavenumber technique. It appears diffi- 
cult, therefore, to make a term-by-term comparison of these 
methods. However, a direct relation becomes evident when we 
consider how these methods reconstruct local spatial projec- 
tions at each point in the migrated image. 

In the backprojection formulation. each data point repre- 
sents the integral of reflectivity over an isochron curve (an 
ellipse in the case of a homogeneous background). For a given 
image point, data points on the reflection-time curve are 
associated with integrals along isochron curves passing through 
the image point. In the vicinity of the image point. these 
isochron curves can be approximated by straight lines (Miller 
et al., 1987). Thereby, each receiver data point is locally 
associated with a line integral through the image point (see 
Figure I). 

In the backpropagation formulation the counterpart of the 
above discussion is as follows: When a medium is probed by 
a plane-wave source, the plane-wave components of the 
scattered field are directly related to straight-line integrals of 
reflectivity (e.g., Esmersoy and Levy, 1986). In the case of a 
point source, we can assume that the incident field has a 
locally plane wavefront in the vicinity of an image point. 
Then, each plane-wave component of the hac~~~?ropagntrd 

field at the image point is associated with a line integral 
through the point (see Figure 2). 

Thus, a given spatial projection (line integral) is locally 
associated either with an individual receiver datum in the 
backprojection formulation or with an individual plane-wave 
component of the backpropagated field. It is seen from the 

Line Integral 

FIG. I. In backprojection migration, the data points T,~ + TV 
of each receiver give a line integral passing through the 
image point. 

above discussion that, functionally, receiver data in the back- 
projection formulation correspond to the plane-wave compo- 
nents of the field in the backpropagation formulation. In what 
follows, this relation is shown more explicitly. For concrete- 
ness we work with algorithms formulated for 2-D acoustic 
propagation in models with constant density and variable 
velocity. 

COMPARISON OF INVERSION INTEGRALS 

The backprojection form of the 2-D single-source inver- 
sion derived from consideration of the generalized Radon 
transform is given in Miller et al. [equation (27a), 19871. The 
reconstructed scattering potential .fJ is written 

where p, is the scattered field trace, sg is the background 
slowness, ir is the unit vector along the ray connecting image 
point r to receiver rK (see Figure I), and X denotes Hilbert 
transform in time 7 and rc denote the traveltime and geomet- 
rical spreading between the image point and the source (with 
index S) or receiver (with index R). The angle 01 is half of the 
angle between the source and receiver rays at the image 
point as shown in Figure 1. 

In backpropagation migration, “imaging” the backpropa- 
gated field by using some imaging principle implicitly results 
in a weighted superposition of the plane-wave components 
of the backpropagated field at the image point. As shown in 
Appendix A, the basic inversion formula of Esmersoy and 
Oristaglio (1988) can be written 

where f;< is the reconstructed scattering potential, p,~ is the 
backpropagated field, 3 is a filter with frequency response 
(iw)) ‘( -iw)) I”, and V denotes gradient with respect to r. Note 
that the differential operator inside the braces is a one-way 
wave operator along the rays of the incident source field. The 
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FIG. 2. In backpropagation migration, the data point 
Is - .s$l ^ - r of each plane-wave component gives a line 
Integral passing through the image point; so is the back- 
ground slowness. 
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FIG. 3. Single-source, multireceiver point reconstructions using (a) backprojection, (b) refined backprojection, (c) 
backpropagation, and (d) refined backpropagation. The source was a 40 Hz Blackman-Harris pulse located at 
x = 500 m (horizontal axis), z = -500 m (vertical axis). Receivers were located on the frame completely 
surrounding the images with a uniform 20 m spacing. The medium consisted of a point velocity anomaly at x = 
z = 500 m (IO00 m below the source) in a homogeneous medium with velocity 10 000 m/s. Traces were obtained by 
means of a finite-difference simulation. 
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backpropagated field p? can be viewed as the superposition of 
the backpropagated plane-wave components of the scattered 
field. Let q(0, I) be the plane-wave component of the scattered 
field along the direction ti (see Figure 2). Backpropagation of a 
plane-wave component to a given point is accomplished by a 
simple time-shift operation. More precisely, the plane-wave 
component Q backpropagated to a point r is given by ~(0. t - 
.r,,Q * r). It is shown in Appendix B that the backpropagated 
field satisfies the relation 

(3) 

From equations (2) and (3), 

(4) 

Due to the form of the second argument of (1. the gradient 
operation can be replaced by -s,,Q(dldt). Then, 

(5) 
Here, (I/s,,)VT,~ is the unit vector tangent to the source ray at 
the image point r. Thus, half of the bracketed term in 
equation (5) can be written as 

I 

2 
-I VTg .ij+I zz- 

S(l 1 

I 

2 
(cos 2a + I) = cos? 01, (6) 

where 2a is the angle between the source ray and the 
plane-wave direction. 

Finally, from equations (5) and (6) and by defining the filter 
‘9 = -(?~/a++, we have an explicit expression for the 
migrated image as a weighted superposition of plane waves 

where % is a filter with frequency response (-iw)- I”. 
The correspondence between equations (I) and (7) is now 

evident. Specifically, the filtered plane-wave components 
%q(ti, t) in equation (7) are replaced by the scaled scattered field 
p,&,, t)/a, in equation (I). The receiver location rK is the 
intersection of the receiver array with the ray defined by ti at 
the image point. In fact, we can pass directly from equation (1) 
to equation (7) (and vice versa) by substituting from the 
far-field expression of p,, in terms of q (stated here in terms of 
Fourier transforms): 

P,,(rR, w) = (-iw) “‘aK exp [iw(~~ J soti * r)]Q(ii, w). 

(8) 

This relation is formally derived in Appendix C. It reflects the 
well-known fact in scattering theory that if we take a receiver 
to infinity along some direction ii, then the observed scattered 
field asymptotically becomes identical to the filtered plane 
wave in that direction. Consequently, if the receiver array is far 
from the reflector being imaged, then the backprojection inver- 
sionf, and the backpropagation inversionJ, become the same. 

COMPARISON OF POINT IMAGES 

In order to illustrate the relationship between the two meth- 
ods. in Figure 3 we show migrated images of a point scatterer 
obtained by backprojection and backpropagation algorithms. 

Figures 3a and 3b show point images obtained by backpro- 
jection migration and inversion, respectively. In both cases, 
traces were Hilbert transformed in time before stacking. The 
direrence between these two reconstructions is the obliquity 
factor [co? cy in equation (I)], which is absent in migration. 
Figures 3c and 3d show point images obtained by backpropa- 
gation migration and inversion, respectively. Backpropagation 
is implemented by using a reverse-time finite-difference algo- 
rithm. Again, in both cases, traces were prefiltered so that the 
only difference between these two images is the implicit 
weighting factor [co? CI in equation (7)], which is absent in 
migration. Note that straightforward 2-D reverse-time migra- 
tion (e.g.. Chang and McMechan. 1986) does not include the 
temporal prefilter which is used here. More detailed analysis of 
backpropagation migration algorithms can be found in Esmer- 
soy and Oristaglio (1988). Although this example with receivers 
below the anomaly is not realistic. it shows that, for either 
method, the obliquity factor clearly has a much larger effect 
than that due to the diff‘erence between the backprojection and 
backpropagation approaches. 

CONCLUSION 

2-D backprojection and backpropagation migration algo- 
rithms can be viewed as reconstructions of scattering objects 
from their line integrals. In backprojection, these line integrals 
are associated with data points of the scattered field; in 
backpropagation, they are associated with the plane-wave 
components of the scattered field. In both algorithms, image 
points are reconstructed by weighted sums of the correspond- 
ing line integrals. A quantitative comparison of two recent 
algorithms shows that the stacking weights in backprojection 
inversion are the same as the weights implicitly applied to the 
plane-wave components in backpropagation inversion. 
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APPENDIX A 

DERIVATION OF EQUATION (2) 

In Esmersoy (1986) and Esmersoy and Oristaglio (1988). 
the reconstructed image J, is defined in the frequency 
domain. In the following, we derive the equivalent time- 
domain expression. From equation (23) in Esmersoy and 
Oristaglio (1988), 

and incident field P,, for an impulse source is 

Po(r, w) = (-iw) -l/? nscm’. (A-4) 

Using equations (A-2), (A-3), and (A-4) in equation (A-l). we 
obtain 

where P,, is the backpropagated field, 

F(w) = 2/o’, 

,Y$(r, w) = {VT~ - V - s&}, 

(A-2) 

(A-3) 

(A-5) 

Equation (A-S), viewed as an inverse Fourier transform, 
gives equation (2), where pV is the inverse transform of P,, 
and B is a filter with frequency response (i~)~‘(-i~)~“‘. 

APPENDIX B 

DERIVATION OF EQUATION (3) 

In Esmersoy and Levy (1986), the plane-wave compo- 
nents are explicitly defined in terms of the scattered field by 
equation (7), where Q(ii, w) is the Fourier transform of 
q(ti, t). Following the Appendix of that paper, setting 
S(o)= 1 (for an impulse source). replacing s,:?(r) byf’(r) and 
e”,.” by P(r, co) (for an arbitrary excitation instead of a 

P,.(r, 0) = 
i sgn (w)w’ 

4Tr / 
dti exp (iw.soO*r’) 

X dr’j(r’P(r’, w) exp ( - n0srjti.r). (B-2 

plane-wave source), we have 
Using equation (B-l) in equation (B-2). we obtain 

Q(ii, w) = w2 
J 

dr’f(r’)P(r’, w) exp (-iwstrd * r’), (B-l) 

V P,.(r, w) = & dii i sgn (o)Q(ti. W) exp (iws$i.r). (B-3) 
where V denotes the volume containing the scatterers. From 
equations (5) and (7) in Esmersoy and Oristaglio (198X), the An inverse Fourier transform of both sides gives equation 
extrapolated field can be written as (3). 

APPENDIX C 

DERIVATION OF EQCATION (8) 

The scattered field, observed at an arbitrary point rR. is 
given by the volume integral [e.g., Esmersoy and Oristaglio 
(1988), equation (4)] 

,- 

background and at large distances from the scattering vol- 
ume (i.e., w.s,,lrR -r’l>) I, for all r’ E V and the origin of the 
coordinates is chosen in the neighborhood of V), the Green’s 
function can be approximated 

P,(rR, w) = 0’ 
J 

drylr’)P(r’, w)G&R, r’, co), (C-l) 
V 

where G,, is the background Green’s function and V is the 
bounded support of the scatterers. For a homogeneous 

where [iR = (8 ns,,tr,-r’l))“’ is the geometric spreading 
term. 
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Now consider the following identity: 

IrR - r’l = [(rR - r’) * (rR - r’)]“’ 

= [lrR12 - 2rR - r’ + Ir’l’] I:? 

and 

[ 

CR * r’ lr’lz I:? 
1 lrRl I - 2 p+- 

lrRI 1 JrK;? ’ (C-3) 

where i, = r,/lr,l is the unit vector pointing to the re- 
ceiver. For Ir,<l+ m, by keeping only the first-order terms, 
we have 

PK * r’ 

[ 1 
I!2 

IrR - r’l = IrRl I-2 ~ 
lrRI 

(C-4) 

The first-order Taylor expansion of the square root gives 

lrR - r’l 
iR * r’ 

= IrKI I - - 
[ 1 lrRl 

= IrRl ~ fR . r’. (C-C) 

From equations (C-l), (C-2). and (C-5), 

P,(rK. 0) = (-iw) Ii’ ciR exp (iwsolrRI) 0’ 

X I dr’ ,flr’)P(r’, w) 
V 

X exp ( - iwsOiR.r’), 

and using equation (B-l), we obtain the relation 

(C-6) 

(C-7) 

P,,(rR, w) = ( - iw) “’ uR exp (iwsolrRI) Q(PR, 0). (C-8) 

Finally, by shifting the origin to an arbitrary point -r, we 
obtain equation (8), where rR = sglr-rl and ti = 

(rR -r)/lr,-rl. 


