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ABSTRACT

A new imaging method, closely related to prestack Kirchhoff
migration, has recently been proposed for use with multioffset borehole
seismic data. In order to test this method in a combined
exploration/reservoir-description environment, a controlled case study was
carried out during the fall of 1984. The purpose of the study was to
evaluate the applicability of seismic reflection tomography (SRT)-
processed borehole seismic profilesto two problems. Thefirstisa
structural problem: Can we perform an experiment in adry hole to provide
aclear indication of the presence and lateral offset of anearby geological
structure that is poorly resolved by surface seismics? The secondisa
stratigraphic problem: Can we provide any details on the lateral extent of
internal units of aproven reef complex?

In this report we summarize the application of the method to the
delineation of a Silurian pinnacle reef in the Michigan basin.

INTRODUCTION

Pinnacle reefs are major producers of gas and oil in Michigan.
Estimates of recoverable reservesin the northern reef trend, for example,
have been in the range of 400 to 600 million barrels of oil and 3 to 5 trillion
cubic feet of gas. A brief and oversimplified description of their history
follows (see Caughlin et a., 1976; Lee and Budros, 1982; and Nurmi,
1982, for more detailed accounts).

Thereefsare of Middle Silurian (Niagaran) age and grew in an
intracratonic structural basin which has been in existence for at least 500
million years (Figure 1). They are encased in an Upper Silurian (Cayugan)
series of evaporites and carbonates (the Salina) that effectively act as both
seal and source for the hydrocarbons (Figure 2). From bottom to top, the

principal faciesin the Salina Series consist of: Al salt and A1 carbonate;
A2 salt and A2 carbonates. Usually the Al sequence shows draping; the Al
salt istruncated and turns to anhydrite on the flanks of the reef; the A1
carbonate may or may not be truncated. The A2 salt can turn to anhydrite
or only show inclusions of it, and the A2 carbonate usually drapes and
overlies the reef, with a physical pull-up on top of the reef. The sequence
below the reef may be compacted, with aphysical pull-down of the base of
the reef.

These simple geometrical considerations have led to some criteriain
the interpretation of surface seismic data (and of dipmeter data) to identify
reefs themselves, or to aert the explorationist to their proximity. Seismic
criteriainclude (1) disruption of the seismic response of the A1-A2
sequence; (2) time thinning from the Dundee (an essentially flat shallow
formation top) to the top of the A2 carbonate; (3) disruption of the
Niagaran reflection; and (4) apparent pull-up of deep reflections.

Reliable determination of the thicknesses of the A1 and A2 sequence,
and of the reef itself, is made difficult by the usual pitfallsin defining
geometry from two-way times and by the variation of their velocity and
density profiles dueto post-depositional chemical changes. Further
complications arise from athick section of glacia deposits (about 600 ft, or
183 m, in the area of the experiment) and from the presence of surface
sand dunes. Conversions occur at the base of the glacial layer to create
“noisy” records, and statics (when not handled properly) play havoc with
the seismic detection criteria.

The general consequence of al thisisthat although surface seismics
can provide afairly reliable proximity indication for Michigan basin
pinnacle reefs, it often lacks the resolution to determine their exact
location, and it is common to strike several dry holes before production
begins.

e —

Back Reef“—‘;é e
=

Reef Bank
\/ -_. Jmmﬂ
,é Back Reef ==

g

Figure 1. Niagaran environments of sedimentation, Michigan basin
(from Briggs and Briggs, 1974, viaLee and Budros, 1982).
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Figure 2. Cross section across atypical northern Michigan reef
zone. See Figure 1 for location (from Mantek, 1973, viaLee and
Budros, 1982).
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THE STUDY

Our experiment was carried out in the vicinity of aproven reef in
Oceana County, Michigan. The general trend of the reef is defined by two
producing wells aligned from west to east and separated by approximately
1500 ft (457 m). Three dry wells flank the producing wells both to the
north and south at offsets of about 1000 ft (305 m) in each direction (Figure
3). Our data were collected with a vertically polarized Well Seismic Tool
from multiple receiver positionsin one of the southern dry holes (well A).
Source positions were chosen to provide a borehole seismic image along a
north-to-south line parallel to a surface seismic line and about 400 ft (122
m) west of the nearest production well. The common depth point (CDP)
seismic section indicates the difficulty in picking a precise reef location
from surface-collected seismic data alone (Figure 4).

For geophone depths from 1400 to 4000 ft (427 to 1219 m), four offset
profiles were recorded (Figure 5), one for a source 920 ft (280 m) to the
south, and three for sources up to 1700 ft (518 m) to the north of well A.
For 13 geophone depths from 1800 to 2400 ft (549 to 732 m), 28 walkaway
profiles were recorded, seven to the south (up to 920 ft, or 280 m, offset),
and 21 to the north (up to 3800 ft, or 1158 m). The south and north lines
were recorded as allowed by local conditions, and well Aisat about 350 ft
(107 m) east of these lines.

Logs from the dry well and a standard vertical seismic profile (VSP)
from the near offset are shown in Figure 6. They indicate that the top of the
A2 sat occurs at 3330 ft, or 1015 m (650 msec two-way travel time), and
that the top of the Al salt occursat 3720 ft, or 1134 m (700 msec).
Correlation with the CDP section suggests a static shift of 50 msec between
the two, placing the top of the A2 at 600 msec and the top Al at 650 msec
on the CDP section.

PROCESSING

In recent years, a number of “full wave equation” algorithms have been
proposed for the migration of offset vertical seismic profiles. They include
methods based on acoustic wavefield extrapolation using the Kirchhoff
integral (Keho, 1984; Wiggins, 1984; Koehler and Koenig, 1984; Wiggins
and Levander, 1984), phase-shifting in the frequency domain (Gazdag and
Sguazzero, 1983), and finite-difference extrapolation (Whitmore and Lines,
1985; Change and McMechan, 1986). See Oristaglio (1985) for a more
complete history. Miller, Oristaglio, and Beylkin (1984; 1986) proposed a
general approach to seismic imaging (including VSP), whichis closely
related to these methods and to recent work on linearized inverse scattering
(Borninversion; seee.g. Stolt and Weglein, 1985, for a summary).

This method, which is derived from the wave equation and the
mathematics of the Radon (slant-stack) transform, seems particularly well-
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suited for use with multi-offset borehole seismic-data collection where one
must combine datafrom several experiments and contend with
heterogeneous velocity structures. The connection with the Radon
transform and the methods of ordinary x-ray tomography suggests the term
“seismic reflection tomography” (SRT). It should be emphasized, however,
that the method is substantially a variation of the classical diffraction stack.

The integral equation for seismic reflection tomography derived by
Miller, Oristaglio, and Beylkin (1984; 1986) trandates to a summation
processing: For all image points x, compute

image (x) =EW(r,x,s)usc(r,s,t).
$,Q

Here, sand r are sources and receivers, t = t(r,x) + t1(x,s) istravel time,
computed by ray tracing from sto x to r through a background model, and
u(r,st) isthesingly scattered wavefield generated by the scattering object.

W isa product of weighting factors which handle geometrical spreading,
source and receive-angular spacing as viewed from the image point, and
source-receiver offset angle. An additional factor equal to the vertical
component of the unit vector along the receiver ray was included to attempt
to compensate for the vertical polarization of the geophone.

The SRT agorithm requires that two essential inputs be derived from
the experimental data: the singly scattered data field u_(s,r,t); and the
reference velocity model for usein the computation of travel times t(x.y).

An acceptable approximation to the first item is provided by the
traditional V SP processing steps of velocity filtering and waveshaping.
(See Hardage, 1983, for adiscussion of basic VSP processing.) In the
present case the presence of high-amplitude events on traces where the
ratio of source offset to geophone depth islarge makes these steps difficult
(Figure 5). These events appear to occur at the contact between the Antrim
Shale and the Traverse carbonate, at about 1800 ft (549 m). They affect a
few geophone levels above and below this contact, suggesting possible
waveguide effects. For the offset profiles, the separation of events was
performed with an interactive F-K  filter. Unwanted events of high
amplitudes on the shallowest traces were muted before the filtering, as
most of them occur later than the reflections in interest. Upgoing events
were then waveshaped using afilter designed from the extracted
downgoing wavefield. Due to difficulties presented by the combination of
the high-amplitude noise events and the smaller number of receiver stations
available for estimation of the downgoing (incident) wavefield, the
walkaway data were more difficult to process. In the end, they gave similar
results. The image shown was generated using the three northern offset
profilesonly.

The second requisite item is provided by alog and VSP-based velocity

analysis. Formation tops for aflat velocity model were tentatively
pinpointed from the gamma-ray log of well A, and velocities were assigned
from the lithology. Those velocities then were refined by requiring that the
first arrival times derived from ray tracing through the model match those
measured from the data. Static corrections for each source location were
estimated by a similar process, replacing each actual source position, s, by
avirtual source position, ¢, at the base of the weathered zone.

When elastic parameters were introduced into the model, some events
could be interpreted by ray-tracing as P-to-S conversions at the base of the
weathering. An example isthe event going down from 400 msec to 450
msec in the walkaway at 1736 ft (529 m; top of Figure 5). A sonic log was
derived from the model and used to generate the synthetic seismogram
shown in Figure 6.
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THE IMAGE

Figure 7 shows the SRT borehole seismic profile (BSP) displayed in
depth together with gammaray logs for both wells. The reflection from the
top of the Al salt matches the logs of the dry well (A) at its projected
location in both time and polarity. Aswe move north toward the productive
well (B), it shows draping and a change of character, and a new reflection
appears below it. This new reflector matches the top of the high-porosity,
light-hydrocarbon-bearing, dolomitic formation in the productive well. A
thin bed of anhydrite separates this zone from the above low-porosity
mixture of limestone and dolomite. The black peak of the SRT profile
indicates adecrease in acoustic impedance at the top of the high-porosity
zone.

Figure 8 shows a detailed drawing taken from Gill (1973) illustrating
the expected relationship between the various faciesin the reef complex. In
particular, it shows the conventionally accepted division of the reef
formation into three distinct growth stages corresponding to biohermal
development below wave base, wave-resistant organic reef devel opment
above wave base, and tidal and supratidal-island development in a
hypersaline environment (cf. Lee and Budros, 1982).

Figure 9 shows a corresponding enlarged section of our borehole
seismic profile together with detailed logs from both wells. The three
growth stages are evident on the Global ™ log of the productive well with
the organic reef stage corresponding to the porous reservoir between depths
3680 and 3790 ft (1122 to 1155 m). The continuous event that connects the
top of the Al salt to the tight dolomitic zone at 3550 ft (1082 m) suggests a
correlation between the A1 carbonate and the upper part of the supratidal-
island stage of the reef complex. This supports Huh's (1973) suggestion
that some of the growth of the northern reef complexes occurred during the
deposition of the Al carbonate (cf. Lee and Budros, 1982, p. 10).

Figure 10 shows the same borehole seismic profile displayed in two-
way time together with the surface CDP section. Aperture for specular
reflections on the BSPis a function of the location of the sources and
receivers, and of the dip of the reflector. The apparent decay of the flat
reflectorsin the upper right of the BSP occurs at the aperture limit for O-dip
specular reflections. The measured dip on the top A2 event is 0 degrees.
The measured dip on the top reservoir event is 15 degrees. The
transformation from depth to two-way time was based on the velocity
model used in processing the BSP.

The events occurring at 4000 ft, or 1219 m (730 msec) and 4300 ft, or
1311 m (760 msec) on the BSP probably correspond to the top Gray
Niagaran and base Clinton. These events are evident at the |eft edge of the
CDP section (Figure 4), but they break up near shotpoint 47 (- 1500 ft on

Global ™ is a Schiumberger trademark. See Mayer and Sibbit (1980).
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Figure 7. Gamma-ray logs and SRT-processed Borehole Seismic Profile
(BSP) displayed in depth.

Figure 10). That shotpoint coincides with the base of a hill which ascends
to shotpoint 35 (+ 300 ft). This breakup, along with the mistie of these
events between the CDP section and the BSP, suggests a possible problem
with elevation statics on the CDP section.

For comparison, Figure 11 shows the image obtained from the same
borehole seismic data (largest offset only) by means of the method that is
the current standard for commercia processing of offset VSPin the
industry as awhole (reflection point mapping). See Wyatt and Wyatt
(1981) implementation by Schlumberger.
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Figure 10. SRTprocessed Borehole Seismic Profile (BSP) displayed in two-way vertical
traveltime and superimposed on the surface seismic section. The polarity of this section is opposite

to that of Figures 7 and 8.
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CONCLUSION

Successful migration of multi-offset borehole seismic profiles seemsto
depend on issues that are familiar from surface seismic-data collection:
geometry (fold of the coverage—especially in terms of the range of dips
resolvable at each image point), velocity analysis (including statics), and
deconvolution. The present study shows that the complicating factors
present in field data can be handled smoothly by making full use of VSP
and logs. In the specific case of Michigan pinnacles, we seem to see both a
useful exploration tool and a method for shedding new light on some long-
standing geological questions.
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