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12. gas flowrate
13. liquid flowrate
14. oil density

15. gas density

Figs. 9.4-14a to 9.4-14d show a selection of some of the
plots listed above against input measured pressure
data.

Below the bottom of Zone 1, fluid entry into the
wellbore can be interpreted using the DIFLOW program
to make a diphasic flow interpretation when both
spinner and gradiomanometer data are available. The
determination of the best correlations by TUPPRA such
as the physical properties of Glaso, and pressure drop
correlation of Aziz and Govier allow us to use the most
appropriate pair of correlations; thus, correct fluid
properties in DIFLOW could be used to solve for the
fluid entry. >

For those cases where the oil and gas properties are
known from laboratory analysis of reservoir fluid
samples, these properties may be used in TUPPRA
instead of general correlations.
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New Slant in Seismic Migration
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A new approach to seismic migration formalizes the
early geometric methods such as the diffraction and
wavefront stacks by relating them to linearized velocity
inversion and the Generalized Radon Transform (GRT).
This approachrecasts migrationas a form of tomography
in which the problem is to reconstruct a function
{velocity perturbation) from its integrals over a famnily
of surfaces (isochrons). The theory rests on a solution
of the wave equation by geometrical optics and an
inversion formula for the GRT. This method can handle
both lateral and vertical variations in velocity as well
as arbitrary configurations of sources and receivers.
Moreover, when specialized to constant background
velocity and zero-offset setsmic experiments, it yields
an inversion algorithm that resembles standard
Kirchhoff mlgratlon Synthetic examples of a combined
surface seismic and VSP experiment illustrate the
resolution of the method for different combinations of
sources and receivers.

Introduction

Borehole seismic data now range in scale from the full-
waveform sonic log (cm to m scale) to the multi-offset
VSP (m to km scale) and have begun to rival sur-
face seismic data in their volume and complexity. A
challenge for seismic data processing is simply to treat
the full range of seismic data, surface and borehole, in
a unified way. One important way in which seismic
data are finalized is in pictures of subsurface structures,
a process that is commonly called migration.

Traditionally, migration has meant constructing an
image of the earth from séismic reflections — in fact,
from seismic reflections recorded at the earth’s surface
(Robinson, 1983; Gazdag and Sguazzero, 1984). The
earliest migration methods were based on simple geometrical
ideas (Hagedoorn, 1954). In the 1970’s, however, these
methods were largely abandoned in favor of methods
based on the wave equation (Claerbout, 1976). As
Gazdag and Sguazzero (1984) point out in their review,
“while these (geometrical) migration procedures make
good sense and are intuitively obvious, they are not
based on a completely sound theory”.

Recently, however, in developing ways to migrate
offset VSPs, we have found a new approach to seismic
migration which not only formalizes the early geomet-
rical methods, but is also flexible enough to handle
both complex structures and unusual configurations of
sources and receivers (Miller, Oristaglio, and Beylkin,
1984). Moreover, these latter two features needed to
migrate most kinds of borehole seismic data, are
difficult to obtain with the popular methods used for
surface seismic migration.

The underlying idea of the new approach is very simple:
That seismic migration can be viewed as the inverse
problem of reconstructing a function — in this case,
the earth’s velocity structure — from its integrals over
a family of surfaces. This reconstruction problem has
arisen independently in many scientific fields, with the
most dramatic results coming from the field of medical
imaging (e.g. x-ray tomography). And, although our
methods and their application to seismic data are new,
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their mathematical basis dates back to the work of
Radon in the early 1900’s (Deans, 1983).

The problem posed and solved by Radon was that of
reconstructing a two-dimensional function from its
integrals over straight lines, often called “projections”.
Radon’s methods from the basis of what is now known
as the classical Radon Transform. The problem of re-
constructing a function from its integrals over arbitrary
surfaces involves the Generalized Radon Transform.
Here, we briefly review the theory that recasts seismic
migration as a problem of the Generalized Radon
Transform, and we illustrate our solution to this
problem with synthetic examples. These examples
also show some of the advantages to be gained by a
unified treatment of seismic data.

Geometrical Migration

A basic principle of migration is that each point in the
earth can be imaged by detecting the field scattered
by that point. The most direct use of this principle
was the classical diffraction stack, which later evolved
into wave-theoretical Kirchhoff migration (French,
1975). The diffraction stack is a summation of the
seismograms along Hagedoorn's (1954) curve of
maximum convexity, also known as a diffraction curve
or reflection-time surface. For a fixed source position s
and image point x, the reflection-time surface R is
the locus of receiver positions r and times ¢ at which
energy from the image point could arrive. Mathe-
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matically, the reflection-time surface can be described
as the set of (r,f) pairs, such that for each receiver r,
the time ¢ corresponds to the total traveltime between
source, image point, and receiver; that is,

Ry = (rp:it=r(rx)+(xs8)]  ...... )
where 7( x,¥) is the traveltime between points x and y.

The heuristic interpretation of the diffraction stack is
as follows: for a given point x, we check if there is a
reflector at that point by integrating the data along the
time-distance curve corresponding to energy scattered
from the point. If a reflector is present at the point x,
then coherent energy should be distributed along the
curve and will sum to a large output. Random noise,
on the other hand, will cancel. Repeating the diffrac-
tion stack for all image points should thus highlight
coherent reflectors.

Dual to the reflection-time surface R is the isochron
surface I defined by fixing a point (r,f ‘in the data
and finding the locus of image points x that could
contribute energy to the field observed at the chosen
data point. Mathematically, we have for the isochron
surface,

L=lxt=rx)+7(xs)l ... )

where in this case, given r and ¢t (and fixed s), we
obtain a locus of image points that satisfy a traveltime
constraint.

The geometrical idea embodied in equations 1 and 2 is
that the traveltime 7 induces a natural correspondence
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between points in one space (data or image) and
surfaces in the other. Moreover, it is well-known that
migration by diffraction stack is equivalent to smearing
or backprojecting the recorded amplitude at each data
point (r,f) along its corresponding isochron surface
I, , (common-tangent or wavefront stack).

The Generalized Radon Transform

The geometrical constructions described above also
arise naturally in the theory of the Generalized Radon
Transform (GRT). First recall the classical Radon
Transform (often called a slant stack in the geophysics
literature) for g three-dimensional function f(x),

f(&p) =[dxdp - Ex)(x) ... 3)

Here, f(§,p) is the Radon Transform of f(x), £ is a
unitvector, and p is a transform parameter. The classical
Radon Transform relates a point function f(x) to its
integrals over the family of planes p = &-x obtained by
rotating the unit vector normal to the plane £ and
varying the parameter p that determines the distance
of the plane from the origin. Integrals with a weight
function over more general surfaces represent the
Generalized Radon Transform.

To connect migration with‘GRT_, we consider the
linearized velocity inversion problem for the scalar
wave equation,

w

Viu(x,w) + é)u(g,w) =—-8(x—5) ...... 4)

where u(x,w) is the total acoustic pressure field, s is
the source position, o is the frequency, and c( x) is the
variable acoustic velocity. Letting

¢ 3(x) = ¢;(x) + f(x),

where ¢;(x) is a known reference velocity (not neces-
sarily constant) and f(x) is the velocity perturbation to
be determined, we obtain by standard techniques the
following linearized integral equation for f

Use(r,0) = o[ d®x G, (r,x,0) Go(x,50) () .. ... )

Here, G,(x.y,w) is the Green function for the reference
medium ¢,(x) and u,.( r,0) = u — G, is the scattered
acousti/c wavefield recorded at the receiver position r.

We nQW set ‘G, (x,V,w) = A(x,y) exp liwT(x,¥)] and
use the geometrical optics approximation for the
amplitude A and phase wr of the Green function.
Substituting for G, in Eq. 5 and inverse Fourier trans-
forming to the time-domain gives ’

ue( ) = —j—; (@A) Als) 8lt — o(2.6) — (2 A(x)
...... (6)

Since 7(x,y) is the traveltime between x and ¥, this
equation relates the scattered acoustic pressure
recorded at ( r,b to a weighted integral of the unknown
function f(x) over the isochron surface I, . (Eq. 2). For
example, when the reference velocity ¢, is constant,
the amplitude term A is just 1/47r|x — y|, where Ix — Yl
is the distance between x and ¥, 7 = |x — ¥|/c, is the
straight-line traveltime, and the isochron surface is an
ellipsoid. S
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Inversion and Migration

The integral in Eq. 6 defines a Generalized Radon
Transform of the unknown velocity perturbation f, with
the transform parametrized by receiver position r and
time t. Denoting it by £*( r,f), we have that the scattered
field is proportional to the filtered GRT of f; i.e.,

. 2
use(r,t) = —%;f*(z,t) ...... M

To recover the velocity function, we invert Eq. 6. Recall
the inversion formula “filtered backprojection” of the
classical Radon Transform,

Transform,

1 > .
f(x) = —8—772]d2§$f(§,p)
p=£x
which involves an integral of the filtered transform
d*f1ap? over all ‘planes passing through the image
point x. {The integral in Eq. 8 is over the unit sphere

|€] = 1. This formula suggests for the inversion of

Eq. 6 a generalized backprojection over all isochron
surfaces passing through an image point x, or

<f(x)>= [W(rxs)us(r,d
R

Here, < f(x) > is the estimated value of the velocity
function at the image point and Wis a weighting factor
which includes the appropriate measure for the integral.
Note that Eq. 9 is just a weighted diffraction stack of
the data over the reflection-time surface R,.
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Theweighting function Wthat follows from the inversion
of the GRT in Beylkin (1982) is given by

W=n"2c (0 A (r.x) A (x,5) cos’a(r,s) d*é(r.s)
...... (10)

Here a( r,s) is half the angle between the incident and
scattered rays at the image point x and d*é(r,s) is
the solid angle measure on the unit sphere surround-
ing x (see Fig. 10.1-1). The essential part of W is the
factor cos®ad?§. As shown in Fig. 10.1-1, this factor
can be obtained by identifying each isochron surface
with its tangent plane at the image point and then
changing variables in the classical Radon formula (8).

The inversion given by equations 9 and 10 is only a
partial solution to the reconstruction problem; more
precisely, it is the first term of a formal asymptotic
solution of the integral Eq. 6 (Beylkin, 1982). Neverthe-
less, it can be shown that what is accurately recovered
by this first term are the (locations of) discontinuities
in the function f— that is, discontinuities in the
velocity field. This is the interpretation normally given
to migrated depth sections and, in part, it formalizes
the intuitive notion of a seismic image.

For a general inhomogeneous reference velocity ¢,( x),
the weight function W must be determined numerically
by ray tracing. But for constant ¢, and certain source-
receiver geometries, W can be determined analytically.
For example, with zero-offset surface experiments —
ie., with s=r = (115,15 = 0) — and with constant
background velocity, Eq. 9 becomes

R M R AR RS LE BT W1
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Fig. 10.1-1 The seismic inversion formula can be obtained
by identifying isochron surfaces in the neighborhood of each
image point with their respective tangent planes and then
making a corresponding change of variables in the Radon
inversion formula.

a) Fix an image point s and a receiver r and assume
¢,{x) = 1. Let £ be the unit vector bisecting the source
and receiver rays. Then £ is the unit vector normal to the
isochron surface I, (, x) and its tangent plane T ,.; at
their point of tangency x.

b) The first-order approximation
trx+ Ax) = t(r,x) + (V, 1(r,%) x
leads to the identification

I_r,t(_r,gr) + At 7},5-5 + At/2cosa

where « is the angle between € and the source ray. From
this identification and the properties of the Radon
Transform under a change of scale — viz,

(& p/a) = la| Fag,p) — it follows that

&2 32
—(£6x) =~ 8 cos’a —f(rHr.x)
ap? dp

Substituting from Eq. 7 and changing variables from ( épito
( r,f) in the Randon formula, Eq. 8, we obtain Eq. 9 and 10.
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which resembles the classical formula for Kirchhoff
migration (Schneider, 1978; Norton and Linzer, 1981).

338

Fig. 10.1-2 Synthetic data from a single-source,
multiple-receiver acoustic experiment with the geometry
as shown. The data was computed using the 2-D analog
of Eq. 6.

Synthetic Examples

Figures 10.1-2 and —3 show a synthetic example of the
migration algorithm described above, specialized to a
two-dimensional geometry. The model consists of a
fixed source and point scatterers, which are separated
by roughly one wavelength at the central frequency
of the source and distributed to form the letter S.
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the 2-D analog of Eq. 9 to all the data (ABC) of Fig. 10.1-2
and to the subsets of the data corresponding to the left
borehole + surface (AB), left borehole only (A), and surface
only (B).
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Receivers were located both on the earth’s surface and
in two wells flanking the scatterers (Fig. 10.1-2).
The images in Fig. 10.1-3 illustrat e the resolution
obtained by using different subsets of the data.
Fig. 10.1-4 shows reconstructions of the letter S and a
homogeneous block, based on a synthetic zero-offset
experiment using all the receiver positions inFig. 10.1-2.

The images in figures 10.1-3 and -4 begin to answer
some of the questions that a rise in dealing with both
surface and borehole seismic data: e.g., What difference
does it make to perform just surface experiments, or
just VSP, or both? What would be the configuration of
an ideal experiment (though we might not be able to
perform it)? How do the initial assumptions about the
structure affect the image?

All of these questions can be formulated as one;
namely, What is the spatial resolution of a seismic
experiment and migration {or inversion) algorithm and
how does it depend on the geometry of the experiment,
the reconstruction algorithm, and our assumptions
about the medium? Providing answers to these ques-
tions is one of the most promising areas of research in
seismic data processing.
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Fig. 10.1-4 Images obtained by applying the 2-D analog

of Eq. 11 to synthetic data representing coincidental source/
receiver experiments in the geometry of Fig. 10.1-2 for
objects consisting of a family of point scatterers and of

a homogeneous square block.
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