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THE JOURNAL OF SYMBOLIC LoGic 
Volume 44, Number 1, March 1979 

AN APPLICATION OF INVARIANT SETS TO GLOBAL DEFINABILITY' 

DOUGLAS E. MILLER 

Abstract. Vaught's "*-transform method" is applied to derive a global defin- 
ability theorem of M. Makkai from a classical theorem of Lusin. 

In a recent article [10], R. L. Vaught introduced a construction which connects 
the invariant descriptive set theory of "logic actions" with the model theory of the 
infinitary language L In this paper we will use Vaught's construction to give a 
short derivation of a recent global definability theorem of M. Makkai [8] from a 
classical theorem of Lusin on countable-to-one continuous functions. 
- Makkai's theorem may be stated as follows. Assume that p is an arbitrary count- 
able similarity type. Let P be a new n-ary relation symbol and let p, = p + P be 
the corresponding expansion of p. Given a sentence a E L,,,,(pI) and a p-structure 
W = (A, S), let MQ() = {P c An (by p) l= } 

THEOREM 1 (MAKKAI). For each sentence a E L,,,,,(pI) the following are equiva- 
lent: 

(i) For every countable p-structure X, M,(%) is countable. 
(ii) There exists a set b = {pi (vI ... Vn+;k): i E ws} c Li,(p) such that 

#l V 3Vn+1 
... 

Vn+ki 'VV ... 
Vn(P(VI 

... 
Vn) +-+i) 

ijc 

Theorem 1 is the infinitary version of the well-known Chang-Makkai Theorem 
(cf. [3, 5.3.6]). This first-order result is easily derived from the infinitary version 
using H. J. Keisler's theory [5] of approximations to infinitary formulas-see 
Remark II below. 

We will derive Makkai's theorem from the following theorem of Lusin. f: B -+ Y 
is countable-to-one if the preimage of every point in Y is countable. A topological 
space is Polish if it is separable and completely metrizable. 

(1) Let B be a Borel subset of a Polish space X and supposed is a countable-to-one, 
continuous function on B to a metric space Y. Then there is a collection {Bj: i Es w} 
of Borel sets such that B = Uicco B, and eachf B is one-one. 

A variant of (1) is stated-in Kuratowski [6, ?39,VII, Corollary 5]. A proof may 
be found in Lusin [7]. Since this last reference is somewhat obscure, we have in- 
cluded a sketch of a proof of (1) in Remark IV below. 

The central proof of this paper was included in the author's Ph. D. dissertation 
which was written under the supervision of R. L. Vaught. Thanks are also due to 
John Burgess for a stimulating conversation regarding Proposition 2. 

Before proceeding with our proof of Theorem 1, we summarize the material 
from Vaught [10] which we require. 

Received November 12, 1976. 
'Research partially supported by NSF grant MCS74-08550. 
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10 D. E. MILLER 

p is viewed as a pair (p', pJ) where f, ip, are disjoint countable sets and 

Xp = f 2 P'') X. 

is the topological space formed over the discrete spaces 2, co. We identify each 
p-structure (S, S) with S E X. to view X. as the set of p-structures having universe 
co. In the typical case of one binary relation, X. = 2wx>0. Note that Xp, is Polish. 

co! is the group of permutations of co. Given n E co, let ?c? be the set of one-one 
functions on n to co. Given s E nul, let [s] = {f E cv!: s c f }. The collection {[s]: 
n E co, s E Vci} forms a countable basis for the relative product topology on co!. With 
this topology, co! is completely metrizable and a topological group. co! acts con- 
tinuously on X. according to the map J.: (g, S) - gS where (co, gS) is the usual 
isomorph of (co, S) under g. fp = (cl!, X0, J.) is the canonical logic action of type p. 
gB = {gS: S E B}. B is invariant if gB = B for every g E cv!. 

The central feature of Vaught's method is the *-transform defined as follows. Fix 
an invariant subspace X c X.. Given B c X and S E X, let Bs = {g: gS E B}. 
Define 

B* = {S E X: Bs is comeager}, 

BJ = ~ (- ~B)* = {S: Bs is not meager}. 

More generally, for n E av, s E nc), define 

B*[s] = {S: Bs n [s] is comeager in [s]}, 

B*n = {(S, t): t E nc) & S E B*[ti}. 

It is easily seen that for arbitrary B, <Bi, i E a> 
(i) B* and Bd are invariant, 
(ii) B = B* = Bd if and only if B is invariant, 

(iii) (UiBJi = UiB- 

Also, for B Borel, 

(iv) B4 =-Unc-c Uscn< o B*[Is]. 
An n-formula of Lt,,,(p) is a formula with free variables included in {vo, ..., vn-}1 

Given an n-formula (p, we set (>)( = Mod(o) n x x on = {(5 d): S E X & (co, S) 

F= s(a)}. A sentence is a 0-formula, blot = U(p (0) i. An inductive argument based on 
(iii), (iv) shows: 

(2) For every n 2 0 and every (relative ) Borel set B c X, there is an n-formula 
qp of LC,,1,(p) such that B*n = [(p (n) 1. 

Now we are prepared to prove Theorem 1 from (1). 
PROOF or THEOREM 1. (ii) => (i) is obvious. Assume (i). 
Since the set of isomorphism types of finite pl-structures is countable and every 

such isomorphism type is definable, we may assume that all models of U are in- 
finite. 

Let B= c X., and let z: [uf- X. be the projection (S, P) | + S. [off is Borel, 

X is continuous, and for each S, z-1(S) = M,((cv, S)) is countable. Thus, we may 
apply (1) to obtain Borel sets Bi, i E co such that [uj = U iBi and each X tBi is 
one-one. 
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INVARIANT SETS AND GLOBAL DEFINABILITY 11 

[oji is invariant, so 

[ff] = =(UBi)4 = UB4 = U U U Bi[s]. 
i i i fln sEnf 

By (2), there is a set 3P = {0bim(Vn+1 ... Vn+m): i, m E WI} c L,1O(p1) such that for each 
m, i e W, (S, P) e Xp,, and s eaom, 

(3) (w, 5, P, s) # Xbim if and only if s E mW & (5, P) E Bi&[s]. 

It follows that u # Vi, Vmew 3vn+l ... Vn+m9&im. We claim that for every i, m 
E W, s E %S E X0, P1, P2 E 2 

(4) [(W, 5, P1 s) #= Vim & (W, 5, P2. s) #= OVim] P1 = P2. 

This suffices since (ii) then follows by the Beth definability theorem for Lay. 
The following computation together with (3) establishes (4): 

(5, P1), (5, P2) E B[s] B P fl B~I ~ P 2) n [s] is comeager in [s] 

=> (3g Ei [s]) [(gS, gP,), (gS, 9P2) Ei Bil 

=> (3g E W!) [gP1 = gP2] 

at P1 = P2- D 

REMARKS. I. Given u as in the theorem, it is apparent that each M,((w, S)) is an 
analytic (2El) subset of 2a. It follows immediately from a famous theorem of Suslin 
(cf. [6, p. 479]), that condition (i) is equivalent to 

(it) For every S E X0, M,((w, S)) does not include a perfect subset. 

II. In [5], H. J. Keisler developed a theory of finitary approximations to formulas 
of L,1. which applies to the present situation as follows: Suppose a sentence 
ci E L,,<,,(p) satisfies (i). Applying Theorem 1, let 3P be the infinitary sentence ex- 
hibited in (ii). We may assume that 3P is in negation-normal form. Then by Keisler's 
results there is a sentence 5b E L which "approximates" 3, such that ci # 5b. Any 
such 5b has the form 

V 3 vfl V.Vni1 ... Vn(P(Vl, *-- vn) - qi) 
iel 

where I is finite and each (pi E L,,,,(p). This constitutes a proof of the finitary Chang- 
Makkai Theorem (C-M) [3, 5.3.6]. The pair of derivations "(1) -. Theorem 1", 
"Theorem 1 => C-M" adds to the list of cases where a result in first-order logic can 
be derived from an analogous topological theorem using Vaught's transform and 
Keisler's approximations. The canonical example of this phenomenon is the pair 
of derivations "Suslin separation = Lopez-Escobar Interpolation" (implicit in 
[10]), and "Lopez-Escobar Interpolation = Craig Interpolation" (implicit in [5]). 
For another example, see [9, ?2]. J. W. Addison has been the primary advocate of 
the study of such analogies, see e.g. [1]. 

III. If the set B in (1) is only assumed to be analytic, the result still holds with each 
Bi required only to be Borel relative to B. This follows immediately from the fol- 
lowing classical fact [7, p. 247]: 

(5) Assume that X, Y are Polish, B is an analytic subset of X x Y, and that each 
X-cross-section of B is countable. Then B is included in a Borel set C twith the same 
property. 
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12 D. E. MILLER 

Let E be an analytic equivalence relation on X x Y (such as the isomorphism 
relation on X. x 2- = X,), and suppose B is an E-invariant analytic set with 
countable cross-sections. By (5) and the Invariant First Separation Theorem (cf. 
[10, (10)], B is included in an invariant Borel set with the same property. It follows 
that the conclusion of Theorem 1 holds provided only that u is an existential sec- 
ond-order (2G'l) sentence. 

IV. As promised, we now sketch a proof of (1). We have introduced one modi- 
fication to Lusin's argument (the use of the boundedness theorem) which will make 
it easier to extract the effective version of (1) in Remark V. 

First of all, it is known (cf. [6, pp. 447, 443]): 
(6) If B is a Borel subset of a Polish space, then there exists a Ga subset G of 2w 

and a continuous, one-one map of G onto B. 
Thus, since such a G is Polish, we may assume in (1) that B is Polish. 

Now fixf, B, and Yas in (1). Given C c B x YandyE Y, let Cy = {x: (x, y) 
E C}. Let G be the graph off and for each a Ei w1 and y E Y, let Gy be the ath Cantor- 
Bendixson derivative of Gym Let Ba = {x: x E G (x)} Let X be a countable basis 
for the topology of B and for each U E #X' and each a, let BaU = {x E Ba: fx} = 

Ga(f) fl U}. Then for any a, 

Ba+1=Ba % U Ba U and B = U U BaU U Ba+. 
Use-' B<a Use, 

Clearly, f is one-one on each BaU. An easy induction on a shows that each BaU is 
Borel. Thus, it suffices to establish 

(7) For some a Ew w1, Ba = 0. 
Since f is continuous, each GY is closed. It follows that for every y E Y, there 

exists a E wo1 such that Gy = 0; let ay be the least such a. (7) is equivalent to the 
assertion that sup{ay: y E Y} < W1. 

Let D {R E 2wxw: for some y E Y, (a, R) is a linear order which can be em- 
bedded in (ay, e)}. Fix a recursive bijection F: 2w @-* (2w)wXw and write F(z) = 

<zij: i, j E wo>. Given z E 2w let zi = {Zij: j E o}. Given y E Y, any subset of GY has 
Cantor-Bendixson rank less than or equal to cay. If follows that the assertion 
"R e D" is equivalent to the assertion that R is a linear order and for some y e Y 
and some z e 2w 

U zi a: GY & (Vk, i) (k < R i _+Zi !; Zk) 

(8) & (Vi,j) (zij isolated in zi -* (Vk) (k > R ij + j Zk)) 

& (Vi, j, k) (zi r Zk (3p) (P < R k & zij is isolated in zp)). 

Each of the clauses in (8) defines a Borel condition on R, y, and z. For example, the 
third clause may be written: 

A ((V (zijE U& A (zip U))) -- A R(i, k) = I-- zij 
# 

)) 
i, j,k Usea p~j kl 

Thus, D is an analytic set of well-orderings. It follows from the classical bounded- 
ness theorem [6, p. 501] that the order-types in D, and hence the ordinals Jay: y E Y} 
are bounded by some countable ordinal. (7) follows immediately. 

V. In [2, IV, 4.6], J. Barwise shows that Theorem 1 (in the strong form of III) 
relativizes to any admissible fragment LA C L,,,,,. The argument establishing (2) 
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INVARIANT SETS AND GLOBAL DEFINABILITY 13 

is highly effective (see [10, ?5]), so our method can be used to derive Barwise's 
4.6 from a suitable strengthening of (1). 

By adding some extra remarks, we can modify the classical arguments to es- 
tablish the required admissible versions of (1) and (5). Let A be a countable ad- 
missible set and let X = X,1, Y = X., where P. p, are A-finite and p a Pl. Let 
f = Xr be the projection map X., -* X.. Elements of X, will be denoted T = (R. S) 
with S = z(T). A Borel pl-name is a propositional (variable-free) sentence of 
LCC(pt), where pt is the result of adding constant symbols 0, 1, ... to Pi. E1 
111 p-names are defined similarly. Given a pl-name a, let [ci] = {T: (a), T, 0, 1, ...) 

The admissible versions of (1) and (5) are: 
(SA) Suppose ci is a 2l-pl-name such that ui E A qnd each S-cross-section of [ci] is 

countable. Then there is a Borel p1-name b E A such that [ci] c [0] and [0] has 
countable cross-sections. 

(1A) Suppose 0 is a Borel pl-name such that 0b E A and each S-cross-section of 
[0] is countable. Then there is a sequence 0 = <(pi: i E I> E A of Borel p1-names, 
such that [0] = Ui,1 [(i] and each S-cross-section of each [pi] has at most one 
element. 

Consider (SA). We may assume that A is the admissible closure of {U}J. Given S. 
let A[S] be the smallest admissible set including A and containing S. HYPA(S) = 

A[S] n Xo, [ciis = [ci] nfl-1 {S}, H = {T: Te HYPA(z(T))}. Then H is I}[A] 
(i.e. H = [0] for some f17-name 0 e A, and since each [ci]s is countable, [ci] C H 
(cf. [2, IV, 4.4]). (5A) follows by the Barwise interpolation theorem. 

The argument outlined in IV can be modified in a straightforward fashion to 
establish (lA): 

One proof of (6) is just the topological version of the familiar technique of 
"adding Skolem predicates". An effective version is given in [9, Lemma 4.1]. 
Applying this lemma, we can reduce to the case where Pi contains only 0-ary rela- 
tion symbols (one for each name in the fragment generated by our original 0b) and 

0b names a Gi subset of X.,. X., may be identified with 201 and names for basic 
open subsets of X., may be identified with finite partial functions from Pi to 2. Thus, 
A contains the set X#' of names for elements of the canonical basis X#' for Xp,. 

A 4l-name qn is a pair (01, 02) where 01 is a 2l-name, 02 is a f1-name, and [01] = 

[02] = [q]. Using the fact that [0] c H, one easily obtains a 41-name for each [0]0oU, 
(U E A) and for [k]1 = [] - Uu. [5]?0U. The definition involves 5b only as a 
parameter and can be used to generate, for any aro, a sequence <m, 6: a e ao, 
U e k> of dl-names, primitive recursive in 5b and a0, such that [qpa, (] = [ ub] U 
for each a and U. One then obtains a corresponding list <0a, &: a < a0, U e k> of 
Borel names by applying the Barwise interpolation theorem. Thus, it suffices to 
show that the ordinals {as: S e X.} have an upper bound in A. This assertion, 
however, follows immediately from the admissible version of the boundedness 
theorem and the fact that D, as defined in Remark IV, has a Xl-name in A. (In the 
admissible version of (8), one works with a bijection X., Xplx'?.) This estab- 
lishes (lA). 

VI. We close the paper with a remark on a related topic. It is a consequence of 
(1) that 
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14 D. E. MILLER 

(9) If B, Y are as in (1), and f: B -- Y is Borel measurable and counable-to-one, 
then the image off is a Borel subset of Y. 

The following application of this result illustrates how the topological approach 
can simplify an argument from model theory, and extend it to a more general 
context. The special case of Proposition 2 for logic actions was proved by V. Harnik 
and M. Makkai [4] by a model-theoretic argument. Their paper also discusses 
several applications of that result. 

Suppose G is a Borel subset of a Polish space G', and that G is equipped with a 
group structure such that the map (g, h) | + gh-1 is Borel measurable (i.e. G is a 
standard Borel group). Let B be a Borel subset of a Polish space Y, and suppose 
G acts on B according to a Borel map J: (g, y) - gy (i.e. B is a standard Borel 
G-space). For y E B, define Hy = {g: gy = y}. The action induces the equivalence 
EJ = {(y, y'): (3g E G) (gy = y')} on B. 

PROPOSITION 2. Assume G, B, Y are as described in the preceding paragraph. 
Suppose that for every y e B, Hy is countable. Then EJ is a Borel subset of Y x Y. 

PROOF. Consider the map J*: G x B -* Y x Y defined by J*(g, y) = (gy, y). 
Since J is Borel, so is J*. By our hypothesis, J* is countable-to-one. Since EJ = 

J*(G x B) the conclusion follows immediately from (9). D 
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