
PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 63, Number I, March 1977

ON THE MEASURABILITY OF ORBITS IN

BOREL ACTIONS

DOUGLAS E. MILLER

Abstract. We replace measure with category in an argument of G. W.

Mackey to characterize closed subgroups H of a totally nonmeager, 2nd

countable topological group G in terms of the quotient Borel structure G/H.

As a corollary, we obtain an improved version of a theorem of C. Ryll-

Nardzewski on the Borel measurability of orbits in continuous actions by

Polish groups.

In [9], G. W. Mackey gave an argument using Haar measures to prove the

following: Assume G is locally compact topological group. If H is a subgroup such

that the space G/H, formed by giving the set of (left) H-cosets the quotient Borel

structure, is countably separated, then H is closed in G. We will show that this

result can be obtained by an analogous argument using the theory of Baire

category. The category version has a wider application and shows that the

above statement remains true under the weaker assumption that G is totally

nonmeager. In particular, it holds whenever G is topologically complete (in the

sense of Cech). As a corollary, we will prove that a well-known theorem of C.

Ryll-Nardzewski on the Borel measurability of orbits in continuous actions by

Polish (separable, completely metrizable) groups holds for Borel actions as

well. We will also show that a recent result of R. Vaught on decompositions

of invariant analytic sets has a similar extension to Borel actions.

Each step in our main argument corresponds to an analogous step in

Mackey's proof. The reader may find it interesting to compare our develop-

ment with the proof of Theorem 7.2 in Mackey [9].

Recall (cf. [2, IX, Exercise 5-27]) that a topological group G which is not

meager (first category) is a Baire space (i.e. no nonempty open subset of G is

meager in G). G is totally nonmeager if no nonempty closed subset of G is

meager in itself. Every topologically complete space, in particular every locally

compact space and every completely metrizable space, is totally nonmeager

(cf. [7, III, §8]). B E G is strictly Baire (or has the restricted Baire property)
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provided B n C is Baire (has the Baire property) in C whenever C is closed

in G. A function J: G —» X is strictly Baire measurable if J~ (B) is strictly

Baire when B is Borel in X. Every Borel set is strictly Baire and every Borel

measurable function is strictly Baire measurable.

The identity of a group G will always be denoted by e. If H is a subgroup,

then G/H is the set of left //-cosets and rr is the projection g —> g//.

The key lemma is a zero-one law for nonmeager groups:

Lemma. Assume that G is a nonmeager topological group and H is a dense

subgroup of G. Suppose E E G is Baire and (right) H-invariant (i.e. EH = E).

Then E is meager or comeager in G.

Proof. This is a special case of the theorem of [3]. A somewhat shorter

proof of our lemma (and of (1) => (4) in [3]) can be given using a known

technique (cf. [13, 3.5]) -D(E) = [x: E is not meager at x) is closed, H-

invariant, and congruent to E. Since H is dense, either D(E) = G or

D(E) = 0.    D

Theorem 1. Assume that G is a totally nonmeager topological group. Suppose

H is a subgroup of G and {E¡ : i G w) is a collection of H-invariant, strictly Baire

sets which separates H-cosets (i.e. for each g G G, gH = (!{£,:?£ E¡}). Then

H is closed in G.

Proof. Here and below, let H be the closure of H in G. By replacing G by

H and each E¡ by Ei n H, we may assume that H is dense in G. We must

show H = G.

It follows from the lemma that each E¡ is meager or comeager. Since

H = r\{E¡: e G E¡), H is Baire, and it follows from a well-known theorem

of Banach, Kuratowski, and Pettis that H = G or H is meager (cf. [8, §13,

XII]). Assume for contradiction that H is meager. Let g E G, then gH is

meager. Since gH = (!{£,-:?£ E¡) and comeager sets are closed under

countable intersections, there is a meager E¡ which contains g. Thus, G

E {J{E¡: E¡ is meager} and G is meager. This contradiction shows that

H = G as required.    D

An action of a group G on a set A' is a function J: G X X ^> X such that the

map g -> Jg is a homomorphism on G to the group of permutations of X.

jS(x) = J(g,x) = Jx(g) = gx.

A metrizable space X is Lusin (absolutely Borel) provided X is the image of

a Polish space under a 1-1, continuous map. Every Borel subspace of a Polish

space is Lusin and every Lusin space X is Borel in any metrizable extension

of X (cf. [8]).

The next theorem combines and extends two known results. The special

case "G Polish, X metric, J x continuous" was proved by C. Ryll-Nardzewski

in [11]. (A closely related result is in Dixmier [6].) The special case "G 2nd

countable, locally compact, X separable metric, J x Borel" follows from results

of Mackey (cf. [1, 3.7]).
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Theorem 2. Assume G is a Polish topological group, X is a metric space and

J: G X X —> X is an action. Suppose x E X and J x is Borel measurable. Then

the stabilizer Hx = {g: gx = x) is closed in G and the orbit Gx = {gx: g E G)

is a Lusin space.

Proof. Gx is a metrizable image of the Polish space G under the Borel map

J x, so Gx is separable. Let [B¡ : i G «} be a basis for the relative topology on

Gx. Then {(/*) (B¡): i G w} is a collection of //^-invariant Borel sets which

separates /7x-cosets. It follows from Theorem 1 that Hx is closed and hence,

there is a Borel set 5 E G which intersects each /7^-coset in a singleton (cf.

[11] or [6]). Gx is the metrizable image of the Lusin space 5 under the one-one

Borel function J*s. By §39 V(i) of [8], Gx is Borel in its completion, so Gx is

Lusin.    D

Remark. The fact that a metrizable image of a Polish space G under a Borel

map S is separable was apparently first noticed by Calvin Moore, see [5]. The

same result with/assumed one-one is a well-known theorem of A. H. Stone,

cf. [8, p. 491]. To derive Moore's theorem from Stone's, consider the

composition

G -^8-^/(G)

where § = {(g,/(g)): g G G} is the graph of/ and tr is the projection map.

% is separable by Stone's theorem, and/(G) = triff) is the continuous image

of a separable space, hence separable.

In order to make the connections with Mackey's work more explicit, we

next restate Theorem 2 in terms of Borel structures and then give a

generalization of Theorem 1 which is analogous to 7.2 of [9].

A Borel space A1 is a set with a a-field <S of distinguished or Borel subsets.

X is countably separated if there is a collection {B¡ : i G w} of members of $

which separates points in X ix = n{5(: x E B¡) for each x E X). Relative

Borel structures and quotient Borel structures are formed in the obvious way

(cf. [9] or [1]). A topological space is implicitly given the Borel structure

generated by the open sets. A Borel space is standard if it is isomorphic to the

Borel structure of a Polish space.

Remark. If G is a topological group and H is a subgroup, the Borel structure

of the quotient topological space ((G///)), (which is generated by projections

of invariant open sets) is generally weaker than the quotient Borel structure on

G/H (generated by projections of invariant Borel sets). If G is Polish and H is

closed, then both G/H and ((G///)) are countably separated, hence analytic

(cf. [9, Corollary to 5.1]). It follows from 4.3 of [9] that the two structures

coincide.

Theorem 2'. Assume that a totally nonmeager topological group G acts on a

countably separated Borel space X according to a function J: G X X —> X.

Suppose x E X and J x is strictly Baire measurable. Then the stabilizer subgroup

Hx = {g: gx = x) is closed. If G is Polish and Jx is Borel, then the orbit
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Gx = [gx: g G G) EX, given the relative Borel structure, is a standard Borel

space and Gx is Borel in X.

Proof. Let [B¡ : i G w} be a collection of Borel sets which separates points

in X. Then {(Jx) (B¡): i G w} is a collection of //,,-invariant, strictly Baire

sets which separates //^-cosets. It follows from Theorem 1 that Hx is closed.

As before, if G is Polish, there is a Borel selector S for G/Hx. If J x is Borel, it

follows from 5.1 of Mackey [9] that Gx is countably generated. Then it follows

from 3.2 of [9] that Gx is standard. By Corollary 3 to 3.2 of [9], Gx belongs to

the a-algebra generated by [B¡ : i G a}; a fortiori, Gx is Borel in X. (In fact,

this corollary could be stated, "A subset of a countably separated Borel space

which is standard as a Borel subspace is a Borel subset."1)    □

In [9] Mackey assumes that G has a countable base and proves that H is

closed whenever G includes a small (in the sense of measure) //-invariant

subset N such that G/H ~~ ttN is countably separated. The category version

of this argument also requires that G has a countable base. Since it is not

required for the application, we have separated it from the main theorem.

Theorem 3. Assume G is a totally nonmeager topological group with a

countable base. Let H be a subgroup of G. Then the following are equivalent:

(i) H is closed.

(ii) The quotient Borel structure G/H is countably separated.

(iii) There is an H-invariant meager set N E G and a collection {E¡ : i G u>) of

H-invariant, strictly Baire sets such that {E¡ — N: i G w} separates H-cosets in

G ~ N.

Proof, (i) => (ii). Let ((G/H)) be the quotient topological space (i.e. the

homogeneous space associated with //). Let {B¡: i £ u} be a basis for the

topology on G. If G is closed, then ((G/H)) is Hausdorff (cf. [2, III, §2.5]), and

the set {^(BjH): i E w} witnesses the fact that G/H is countably separated.

(ii) =» (iii) trivially.

(iii) =*> (i). Assume G, H, N, {E¡ : i E w} satisfy condition (iii). If H is dense

in G, the argument of Theorem 1 is easily modified to show that H = G. Thus,

it suffices to prove that we can replace G by H; i.e. that there is a set N' E H

and a collection [D¡ : i G to} of subsets of H such that H, H, N', [D¡ : i E c¿}

satisfy condition (iii).

H is a nonmeager topological group with a countable basis which acts on G

by right translation. For g E G, {h E 77: gh E N} = g~xN D H. Let A/A

= {g E G: g~l N n H is not meager in //}. It follows from Theorem 2.4(a)

of [4] that 7VA is meager in G. Since G is not meager in itself, G ~ NA ¥= 0

and there exists g0 G G such that g0_1 N n H is meager in 773 Let 7v"

= gr]~l N n H, and D¡ = g0~ E¡ n H for each i E u. Since the map

g h* gQX g is an automorphism of G and H is closed, each D¡ is strictly Baire

in 77. If h E H ~ TV', then g0h E G ~ N and g0hH = D{F, ~ TV: g0h

E £,}. It follows that
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hH = n{gôiEi ~ gfj1 A: h E g^Ej = n{D; ~ A': h E Dt}.

Thus, {D¡ ~ A': / G w} separates cosets in G ~ A' as required.    □

In [13, 2.5 and 2.6], R. L. Vaught obtained a result on orbits which is closely

related to that of Ryll-Nardzewski. By exploiting the connection between

Vaught's general assumptions and his "product case" we can extend several of

his main results about continuous actions to the case of Borel actions. In

particular, we improve his general theorem ([13, 2.5]) on the decomposition of

invariant analytic sets and (consequently) obtain a second proof that orbits are

Borel in any Borel action of a Polish group on a countably separated Borel

space.

Let A", A" be topological spaces, G a Baire space with a countable weak

basis [13], and J: G X X -> X' a Borel measurable function. For BEX'

define B*J = [x: g: Jig,x) E B) is comeager} as in [13]. A set is analytic if it

can be obtained from Borel sets by the operation (S$). G is the smallest family

including the Borel sets and closed under complementation and the operation

CflO.

Theorem 4. Assume G, X, A", J satisfy the above conditions.

(a) If B E A" is respectively Borel, analytic, or 0, then the same is true of B*.

(b) Assume additionally that X = X', G is a topological group, and J defines

an action of G on X. Then every invariant analytic subset of X is a union of N,

invariant Borel sets.

Proof, (a) and (b) are proved in [13] under the stronger hypothesis that J

is continuous in each variable. We easily reduce our theorem to Vaught's as

follows. Fix BEX' and let A = J~\b). Let I: G X X ^> G x X be the

identity map and notice that for every x, [g: J(g,x) E B) = {g: I(g,x)

G A). Thus, B*J = A*1. Since / is continuous and each of the collection of

Borel, analytic, and 6 sets is closed under inverse Borel images, our conclusion

is immediate from the corresponding results in [13]. In verifying (b), note that

the proof [13, 2.1 (a)] establishes the invariance of B* in our more general

setting.    D

Remarks. 1. Assume G is a Polish group, X a countably separated Borel

space, J: G X X -* X a Borel action. Then the Borel structure on X is

compatible with a metric topology; hence, orbits are analytic (and minimal

invariant). It follows directly from 4.1(b) that orbits are Borel. (Compare [13,

2.6].) Using our Theorem 2', Vaught has recently obtained positive results on

the measurability of orbits in certain cases where X is not countably separated.

He has also discovered two arguments extending our 4(a) to the case where X

and X' are arbitrary Borel spaces.

2. Assuming that G is a locally compact, 2nd countable topological group

acting by a Borel map J: G X X -* X on an analytic Borel space X, V. S.

Varadarajan (cf. [12, 3.2 and 3.5]) obtained the fact that each stabilizer Hx is

closed as a consequence of a normal form theorem; viz.: In this case there is a
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metric on X, which is compatible with the Borel structure and which makes J a

continuous map. We do not know whether an analogous result holds assuming only

that G is Polish. Note however, that every quotient of a metrizable group by a

closed subgroup is separable and regular, hence metrizable (cf. [10]). There-

fore, the normal form result follows from Theorem 2 if we add the assumption

that the action is transitive (i.e. A" is a single orbit).
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