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Abstract This paper proposes a new ensemble-based algorithm that assimilates the

vertical rain structure retrieved from microwave radiometer and radar measurements in a

regional weather forecast model, by employing a Bayesian framework. The goal of the

study is to evaluate the capability of the proposed technique to improve track prediction of

tropical cyclones that originate in the North Indian Ocean. For this purpose, the tropical

cyclone Jal has been analyzed by the community mesoscale weather model, weather

research and forecasting (WRF). The ensembles of prognostic variables such as pertur-

bation potential temperature (h, k), perturbation geopotential (/, m2/s2), meridional

(U) and zonal velocities (V) and water vapor mixing ratio (qv, kg/kg) are generated by the

empirical orthogonal function technique. An over pass of the tropical rainfall-measuring

mission (TRMM) satellite occurred on 06th NOV 0730 UTC over the system, and the

observations from the radiometer and radar on board the satellite(1B11 data products) are

inverted using a combined in-home radiometer-radar retrieval technique to estimate the

vertical rain structure, namely the cloud liquid water, cloud ice, precipitation water and

precipitation ice. Each ensemble is input as a possible set of initial conditions to the WRF

model from 00 UTC which was marched in time till 06th NOV 0730 UTC. The above-

mentioned hydrometeors from the cloud water and rain water mixing ratios are then

estimated for all the ensembles. The Bayesian filter framework technique is then used to

determine the conditional probabilities of all the candidates in the ensemble by comparing

the retrieved hydrometeors through measured TRMM radiances with the model simulated

hydrometeors. Based on the posterior probability density function, the initial conditions at

06 00 UTC are then corrected using a linear weighted average of initial ensembles for the

all prognostic variables. With these weighted average initial conditions, the WRF model

has been run up to 08th Nov 06 UTC and the predictions are then compared with obser-

vations and the control run. An ensemble independence study was conducted on the basis

of which, an optimum of 25 ensembles is arrived at. With the optimum ensemble size, the

sensitivity of prognostic variables was also analyzed. The model simulated track when
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compared with that obtained with the corrected set of initial conditions gives better results

than the control run. The algorithm can improve track prediction up to 35 % for a 24 h

forecast and up to 12 % for a 54 h forecast.

Keywords Ensemble data assimilation � Bayesian framework � EOF � Remote

sensing � TRMM � WRF � Cyclone track forecast

1 Introduction

The prediction of the track and intensity of tropical cyclones continues to pose consider-

able challenge to meteorologists. Accurate prediction of track and intensity of cyclones

holds the key for early warning and mitigation. With the availability of state-of-the-art

computational facilities and high resolution regional mesoscale models, it is possible to

predict tracks with increasing accuracy. Even so, typically landfall errors for a 72 h

forecast of a tropical cyclone remain around 300–400 km (Pattanaik and Rama Rao 2009;

Sandeep et al. 2007; Singh et al. 2008). Mohanty et al. (1999) analyzed the Orissa super

cyclone (1999) using National Center for Atmospheric Research (NCAR) mesoscale model

and concluded that (i) the error in track forecast is proportional to the position error in the

initial vortex, (ii) the track forecast could be improved by reducing error in the initial

conditions. Sandeep et al. (2007) indicated that the poor track prediction of a cyclonic

system is due to the poor representation of the initial vortex position. In view of this, they

investigated the impact of NCAR-AFWA(Air Force Weather Agency) synthetic vortex

scheme for modifying the initial vortex position of tropical cyclones over the Arabian sea

during Nov 2003 and then concluded that the simulations of cyclones with the synthetic

vortex scheme give better results in terms of track, intensity and structure of cyclone, when

compared with simulations without the synthetic vortex scheme. Severe tropical cyclones

over the Bay of Bengal during 2007–2010 were analyzed by Raju et al. (2012) with WRF,

and they concluded that while WRF model can simulate the cyclonic system with good

accuracy in terms of track and intensity, it can be further improved by an accurate rep-

resentation of initial vortex position and inclusion of available satellite observations over

open ocean, as the system is evolving. From the above studies, it is clear that the forecast

skill of any regional mesoscale weather model strongly depends on the model initial/

boundary conditions. The prediction skill also depends on the model physics parameteri-

zation schemes/dynamics and representation of topographical data like albedo, snow cover,

vegetation index etc.

Forecast error ¼ f
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664
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775;
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Equation 1 indicates the forecast error is a function of error in initial and boundary

conditions, Limitations in model physics parametrization and dynamics and Error in sur-

face boundary conditions. Physics parameterizations are the heart of all mesoscale weather

models that represent the atmospheric processes as they create and mimic the atmosphere.

A mesoscale weather model contains several physics parameterizations, and under each

parameterization, different schemes are available(i.e., have been developed). Several
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researchers have worked on these schemes, with a view to identify the best schemes for

predicting certain kinds of weather systems. Chandrasekar and Balaji (2012) analyzed the

sensitivity of the cyclone Jal to physical parameterizations by using WRF. They concluded

that different combinations of different schemes give rise to different results and finally

obtained the best combination of physics parameterization schemes for track prediction

based on the tropical cyclone Jal. However, the best combination of physics schemes was

seen to over predict the intensity of the same cyclone and also gave different results when

the grid size and number of nesting were changed. The key result from the study was the

difficulty to generalize the best physics schemes that will work for all systems, particularly

tropical cyclones.

Weather models represent the dynamics of the atmosphere processes by solving

nonlinear equations by using numerical techniques that have a certain order of accuracy

due to truncation, discretization errors while approximating the Taylor’s series and round

off errors. Furthermore, accurate measurement of topography details of the region under

consideration is difficult and suffers from a lack of regular updating. Hence, controlling

the errors in model physics/dynamics and the topography database can be achieved only

up to a certain extent. Most regional mesoscale models are initialized by the Global

Forecast System (GFS) model outputs. Because of the low resolution of GFS data, the

mesoscale features of the weather systems are invariably not represented accurately,

because of which errors in the initial and boundary conditions are introduced. Data

assimilation techniques are the only way to improve those initial conditions by assimi-

lating observations, whether from space borne or land-based instruments. Srinivas et al.

(2012) analyzed the impact of conventional and satellite observation data on the pre-

diction of two cyclonic storms in the Bay of Bengal by the three-dimensional variational

(3DVAR) data assimilation technique and concluded that assimilation with the conven-

tional observational data gives poor prediction. This is mainly because of the fact that

most of the conventional data are available over land because of which large errors are

introduced in the initial stages of the cyclonic systems, where they are developing in the

open ocean. Zhao et al. (2005) studied the impact of assimilating the Advanced micro-

wave sounder unit-A(AMSU-A) retrieved wind and temperature in the case of typhoon

Dan with four-dimensional variational assimilation(4DVAR) system. They concluded that

the assimilation of satellite observations has a positive impact on the typhoon track

forecast. From the above, it is clear that assimilating satellite observations particularly

from a microwave, sounder or radiometer holds the key to improving forecast skill, as

satellite observations can give us a better estimate of the initial vortex location and

intensity of the cyclone. Singh et al. (2008) assimilated QuickSat satellite wind obser-

vations for the simulation of the track of the Orissa super cyclone by using 3DVAR and

concluded that wind observations from QuickSat have great impact and improving the

cyclone predictions. The focus of this study is the assessment of the impact of assimi-

lating the hydrometeors profiles, viz., cloud liquid water (CW), cloud ice (CI), precipi-

tationwater (PW) and precipitation ice (PI) retrieved from tropical rainfall measuring

mission (TRMM) microwave imager (TMI) brightness temperatures (BT) using a WRF-

Radar-Radiometer combined algorithm in ensemble-based data assimilation.

The introduction and governing equations of the WRF and model domain, physics and

dynamic option details are given in Sect. 2. Section 3 details the data that have been used

in this study. The ensemble sampling and the retrieval algorithm are discussed in Sects. 4

and 5, respectively. The details of equations pertaining to the observation operator are

discussed in Sect. 6. Section 7 elucidates the data assimilation technique. Sections 8 and 9

present the results and conclusions of this study, respectively.
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2 Weather research and forecasting

The WRF model is a popular community mesoscale weather model developed by the

NCAR. The WRF, as like other mesoscale models, obtains its initial and boundary con-

ditions from the GFS and downscales them into the required grid resolution.

2.1 Governing equations

In general, the WRF dynamic solver solves the following equations in the region of

interest, with specified grid resolution and time step.

The momentum equations
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Energy equation
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Continuity equation of moisture
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The above equations are also known as Euler equations for the basic prognostic

equations which govern the dynamics of the atmosphere. The WRF also uses the following

diagnostic relations.

Equation of state
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p ¼ p0

Rdhm
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Inverse density
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Linear relations

p ¼ pþ p0 ð13Þ

/ ¼ /þ /0 ð14Þ

a ¼ aþ a0 ð15Þ

ld ¼ ld þ l0d ð16Þ

where

p pressure (pa)

p0 reference sea-level pressure (105pa)

p reference state pressure (pa)

p0 perturbation pressure (pa)

/ geopotential (m2/s2)

/ geopotential for reference state (m2/s2)

/0 perturbation geopotential (m2/s2)

a inverse density of air (m3/kg)

ad inverse density of dry air (m3/kg)

ad inverse density of dry air for the reference state (m3/kg)

a0d perturbation inverse density of dry air (m3/kg)

l hydrostatic pressure difference between surface and top of the model (pa)

ld dry hydrostatic pressure difference between surface and top of the model (pa)

ld reference state dry hydrostatic pressure difference between surface and top of the

model (pa)

l0d perturbation hydrostatic pressure difference between surface and top of the model (pa)

h is potential temperature (K)

H coupled potential temperature (l h)

ðH� T0Þ perturbation potential temperature (K)

T0 reference sea-level temperature (usually 270–300 K)

hm virtual temperature or moist potential temperature (K);
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u horizontal component of velocity in x-direction (m/s)

v horizontal component of velocity in x-direction (m/s)

w vertical component of velocity (m/s)

U coupled horizontal component of velocity in x-direction (l u)

V coupled horizontal component of velocity in y-direction (l v)

W coupled vertical component of velocity (l w)

X coupled coordinate velocity

qm is the generic mixing ratios for moisture (kg/kg) and qm ¼ qv þ qc þ qr þ qi þ . . .
qv, qc, qr, qi are mixing ratios for water vapor, cloud, rain and ice, respectively, and all

are in (kg/kg)

Qm generic coupled moisture variable (ld qm)

mx, my are map scale factors (m)

Rd, Rv are gas constants of dry air 287 J/kg k and vapor 461.6 J/kg k, respectively

q, qd are density (kg/m3) of air and dry air, respectively

g acceleration due to gravity (9.81 m/s2)

c is heat capacity ratio of air(c = cp/cv)

FU ;FV ;FW ;FH and FQm
are forcing terms arising from model physics

Equations 2–9 are integrated by the WRF dynamic solver using a third-order Runge-

kutta (RK3) time integration scheme, detailed in Skamarock and Klemp (2008). The model

physics and other details are clearly described in the NCAR technical report by Skamarock

et al. (2005).

2.2 Model domain, physics and dynamic options

Figure 1 shows the model domain that covers the region spanning 77E to 93E and 6N to

22N with a single domain. The grid resolution is 6 km, and 291 grid points are used in both

the East-West and North-South directions. A sensitivity of physics parameterizations for

cyclone JAL has been conducted by Chandrasekar and Balaji (2012) for both track and

wind prediction. The set of physics parameterization schemes for the best wind prediction

from (Chandrasekar and Balaji 2012) has been used in this study. Incidentally, the same set

of physics parametrization schemes has been used for developing the in-house algorithm of

retrieval of geophysical parameters from satellite microwave radiances and radar reflec-

tivities. Table 1 indicates the set of physics schemes, and Table 2 lists the dynamic options

used in this study.

3 Data

The United States Geological Survey (USGS) 30‘‘ resolution terrain topographical data

have been used in the WRF preprocessing system (WPS). Data based on 0.5� resolution

GFS real-time prediction from the National Center for Environmental prediction (NCEP)

have been used as initial and boundary conditions. Simulations were initiated on 06th Nov

2010 00 UTC with lateral boundary conditions up to 08 Nov 2010 06 UTC. The Joint

Typhoon Warning Center(JTWC) observed cyclone track data are used to compare the

model simulated track, and TMI 1B11 (10.65, 19.35, 21, 37, and 85.5 GHz) BT data are

used to retrieve hydrometeors profiles that are assimilated simultaneously.
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4 Ensemble sampling

The Empirical Orthogonal function (EOF) technique helps in synthetically generating a

random atmospheric profile that is thermodynamically and physically consistent with a

database of profiles. Zhang and Krishnamurti (1997, 1999) used the EOF technique to

perturb the initial and conditions (only temperature and wind fields) and ran the Florida

State University Global Spectral Model(FSUGSM) with different perturbed initial condi-

tions. They concluded that the ensemble technique reduces the uncertainty in the initial

conditions and that the average of ensemble forecast gives better results when compared

with the control run in terms of track and intensity forecast. The EOF is a powerful

technique to obtain synthetic profiles that double up as ensembles and uses principal

component analysis to reduce the randomness in the generated profiles, thereby giving

better control of ensembles generated in the family. The EOF requires a database to start

the ensemble generation process. In this study, the database comes from the NCEP GFS

Fig. 1 Model domain employed in this study

Table 1 Best combination of physics schemes for wind prediction

S. no. Parametrization Scheme

1 Cumulus parameterization Grell-Devenyi ensemble scheme (GD)

2 PBL Mellor-Yamada-Janjic (Eta) TKE scheme (MYJ)

3 Microphysics WRF single moment 3-class simple ice scheme (WSM3)

4 Surface layer physics Monin-Obukhov (Janjic Eta) scheme (JAN)

5 Land surface model Pleim-Xu scheme (PLEIM)

6 Longwave radiation physics Rapid radiative transfer model (RRTM)

7 Shortwave radiation physics Rapid radiative transfer model for global (RRTMG)
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data(2010 Nov 06 00 UTC) which is used as initial conditions for the WRF. For a fuller

discussion of generation of ensembles using the EOF technique, please refer to Tatarskaia

et al. (1998).

The generation of synthetic profiles involves the following steps:

1. Extracting the shape information from a database through the covariance matrix.

2. Calculating principal components of this covariance matrix by performing an

eigenvalue analysis.

3. Generating the synthetic profile by using random number vectors and eigenvectors and

eigenvalues of principal components.

Let X be the variable profile for which EOF is to be used to generate synthetic profile. X is

of the form NPROF 9 NGATE, where NGATE is the number of vertical levels of the

profile and NPROF is the number of profiles in the database. Each profile is contained in

each row of matrix X. First, the covariance matrix, B of X is calculated as follows

Bik ¼ EðX0iX0kÞ ð17Þ

X0i ¼ Xi � EðXiÞ
i; k ¼ 1 � � �NGATE

ð18Þ

B is a NGATE 9 NGATE matrix. Next, this covariance matrix is used to set up an

eigenvalue problem as follows

B/ ¼ k/ ð19Þ

/ is the matrix of eigenvectors, and k is the vector of eigenvalues. To reduce the

dimensionality and the randomness in the synthetic profile, a principal component analysis

is performed. Negative eigenvalues are discarded, and the positive eigenvalues are

arranged in descending order. The ratio of eigenvalue to the sum of all eigenvalues gives

the contribution of the corresponding eigenvector to the covariance matrix, B. The

cumulative sum of the eigenvalues thus obtained gives the contribution of those many

eigenvectors to B. A threshold of 0.99 is set, and the number of eigenvectors required for

explaining 99 % variation in the data is obtained. After performing the principal compo-

nent analysis(PCA), the number of principal components is determined as N. The new

vector X is calculated as follows

Table 2 Model dynamics and
domain details

Dynamics

Equation Non-hydrostatic

Time integration scheme Third-order Runge-Kutta scheme

Horizontal grid type Arakawa-C grid

Domain

Map projection Lambert conformal mapping

Central point of the domain 85 E, 14 N

No of domains 1

No of vertical layers 27 sigma levels

Horizontal grid distance 6 km

Time step 18 sec

No of grid points 291 in both (E-W) and (N-S)
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Xperturbed ¼ Xunperturbed þ
XN

v¼1

fv

ffiffiffiffiffi
kv

p
/v ð20Þ

fv is a normal random number and Xunperturbed is the vector of initial conditions obtained

from NCEP. Depending on the requirement, any ensemble family size can be obtained by

this technique.

4.1 Variables perturbed

From Eqs. 2–8, one can see that the WRF dynamic solver solves the set of equations with

the following prognostic variables.

1. Perturbation geopotential (/,m2/s2)

2. Perturbation potential temperature (h, K)

3. X-wind(U, m/s) and Y-wind velocity (V, m/s)

4. Water vapor mixing ratio (qv, kg/kg)

The above variables are perturbed using the EOF technique explained above, and the

vertical structure of the unperturbed and perturbed ensembles are shown in Figs. 2, 3, 4 and

5. Figure 6 shows the surface contour plots of water vapor mixing ratio, and Fig. 7 shows

the maximum sustained wind speed at 10 m height of the unperturbed and the random

perturbed ensembles.

5 Retrieval algorithm

The methodology followed here is to first invert the BT’s measured by the TMI to obtain

the state of the atmosphere at a particular instant of time and space, corresponding to the

cyclone for which track improvement is desired, that can be assimilated into WRF. For this

inversion a combined WRF-radar-radiometer physics-based retrieval algorithm is used.

The algorithm looks at an a priori of a high-quality database prepared from WRF simu-

lations matched up with TRMM Precipitation Radar (PR) and TMI. From the retrieved

state of atmosphere, four hydrometeors are used for assimilation.

5.1 Overview

The procedure used to retrieve the state of the atmosphere is outlined in Figure 8. The

strength of this Bayesian algorithm used here is the availability of a high-quality database

of geophysical profiles and a forward model, viz., Micro-tropiques which can simulate BT

corresponding to nine channels of TMI. Micro-tropiques is an in-house polarized radiative

heat transfer equation detailed in Deiveegan et al. (2008). The algorithm, itself, consists of

four steps.

1. The BT’s for each pixel in the a priori database are simulated by Micro-tropiques

(BTmt,j, 1 \ j \ 400).

2. The BT’s of the pixel for which inversion is to be performed (BTtmi are obtained from

1B11 data products from Mirador).

3. The simulated BT of each and every pixel from the database is compared with TMI BT

of the pixel to be retrieved to obtain the likelihood of the pixels (Xj) under

consideration being the pixel to be retrieved (Xtmi).
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4. The likelihood is calculated as follows:

LðXtmijXjÞ ¼ exp �
P14

i¼1ðBTmt;j � BTtmiÞ2

2r2

 !
ð21Þ

The posterior probability density function (PPDF) is constructed using the likelihoods

calculated above. The fourth step is to take an expected value of the a-posteriori to obtain

the retrieved profile.

5.2 Database

The algorithm, as explained in previous section, uses a database which is made using a

judicious combination of WRF model predictions, radar reflectivity measured by PR and

the BT measured by TMI. It is because of this combination that this algorithm is referred to

as combined WRF-radar-radiometer algorithm. The formation of this database involves

two match-up procedures using two different forward models. The initial database is

formed from simulations of WRF which uses the best known physics and dynamics

options. However, the thermodynamic and hydrometers profiles simulated by WRF still

Fig. 2 Vertical structure of perturbation geopotential (a) unperturbed GFS initial condition (b–d) are
random samples of perturbed initial conditions. All are at 2010 Nov 06 00UTC
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have some model errors due to assumption of the same set of physics and dynamics options

for all pixels irrespective of the inhomogeneity observed within the field of observation.

5.2.1 WRF profiles

Vertical profiles of pressure (P), temperature (T), relative humidity (RH), CW, CI, PW and

PI for 14 severe cyclonic storms that originated in north Indian Ocean region bounded

between 0�–25�N and 60�–100�E during 2003–2010 are simulated by WRF to give these

parameters corresponding to the time of TRMM overpass. In total, there were 31 such

overpasses during these 14 cyclones covering the cyclone at various stages of develop-

ment. The profiles are generated at 6 km pixel resolution in 72 pressure levels corre-

sponding to TRMM PRs vertical resolution. WRF simulations are available at the entire

domain under consideration. However, TMI and PR have limited footprint due to instru-

ment capabilities. Therefore, a collocation procedure is required to identify common

pixels. Here a minimum distance strategy is adopted to perform a two way collocation

between WRF, TMI, and PR pixels. At the end of collocation, a total of 1,124 common

pixels are identified. Now the database consists of WRF simulations, PR reflectivity, and

TMI BT for some common 1,124 pixels. Using this information, rain and ice profiles can

be matched up in two steps to obtain a high-quality database.

Fig. 3 Vertical structure of perturbation potential temperature (a) unperturbed GFS initial condition (b–
d) are random samples of perturbed initial conditions. All are at 2010 Nov 06 00UTC
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5.2.2 Liquid profile match-up

The 1,124 pixels are split into two sets of 600 and 524 each. Another 400 heavy rain WRF

pixels are added to the set of 600 to form a diverse a priori of 1,000 WRF profiles. These

profile are input to QuickBeam, a radar simulator package and the radar reflectivities at 72

PR levels (250–18,000 m) are simulated at 13.8 GHZ frequency corresponding to the PR.

TRMM PR measured reflectivities from the set of 524 profiles are compared with the a

priori reflectivities to estimate the likelihoods, and the PPDFs are obtained. The expected

values from the PPDF form the matched-up cloud and rain profiles.

5.2.3 Ice profile match-up

The TRMM PR is not sensitive to CI and PI contents, and hence, there is a need to use the TMI

scattering channels to match up the ice profiles. The 524 PI matched-up profiles are converted

to 14 TMI levels. The data is further split into two sets of 124 and 400 each. The first set of 124

matched-up WRF profiles in used for matching up the ice profiles, while the remaining are

used for testing. The match-up is done by computing the BT corresponding to the scattering

channels 37 and 85 GHz and using the Bayesian approach outlined Sect. 5.2.2. Figure 9

shows typical distributions of the four retrieved hydrometeors retrieved from TMI obser-

vations. A fuller discussion of the retrieval algorithm is available in (Ramanujam et al. 2012).

Fig. 4 Vertical structure of the magnitude of velocity (a) unperturbed GFS initial condition (b–d) are
random samples of perturbed initial conditions. All are at 2010 Nov 06 00UTC
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6 Observation operator

For data assimilation techniques, in general, the observation operator consists of a set of

equations or a forward model which will convert the model atmospheric variables into

available observation form. In this study, Eqs. 26–29 are used as the observation operator

from which the four hydrometeors, viz., CW, CI, PW and PI are calculated from WRF

output variables, viz P, T, RH, cloud mixing ratio (Qc) and rain mixing ratio (Qr).

Psat ¼ 61:078
7:5T � 2048:625

T � 25:85

� �
ð22Þ

Pv ¼ RH� Psat

100
ð23Þ

Pair ¼ P� Pv ð24Þ

q ¼ 100
Pd

Rd � T
þ Pv

Rv � T

� �
ð25Þ

where Psat is saturation pressure, Pv is vapor pressure and Pd is dry air pressure Rv is gas

constant of vapor(461.495)and (Rd) is gas constant of dry air (287.058).

Fig. 5 Vertical structure of water vapor mixing ratio (a) unperturbed GFS initial condition (b–d) are
random samples of perturbed initial conditions. All are at 2010 Nov 06 00UTC
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If height� 5 km CW ¼ 1000� Qc � q CI ¼ 0 ð26Þ

If height� 5 km CI ¼ 1000� Qc � q CW ¼ 0 ð27Þ

If height� 5 km PW ¼ 1000� Qr � q PI ¼ 0 ð28Þ

If height� 5 km PI ¼ 1000� Qr � q PW ¼ 0 ð29Þ
At a height of 5 km, the temperature is around 273 K. Hence, below 5 km, the cloud

and precipitation contents are in the form of water, and above 5 km, they are in the form of

Fig. 6 First level water vapor mixing ratio (a) unperturbed GFS initial condition (b–d) are random samples
of perturbed initial conditions. All are at 2010 Nov 06 00UTC
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ice. Figure 10 shows the basic atmospheric variables which are converted into observations

variables. Figure 11 indicates the basic four hydrometeors that are calculated from the

observation operator. The ordinate of the figures represents the vertical layer used in the

TRMM retrieval algorithm and does not correspond to the actual height.

7 Data assimilation methodology

7.1 Motivation

The availability of the ‘‘observed’’ state of atmosphere data retrieved from TRMM

observations using a ‘‘high-quality’’ database provides unprecedented application oppor-

tunities. The motivation of the present study is to use optimization techniques to perform

data assimilation with the retrieved hydrometeors to reduce the track error. Of the various

data assimilation techniques available natively in WRF, there is no scope to assimilate

Fig. 7 Maximum sustained wind at 10 m (a) unperturbed GFS initial condition (b–d) are random samples
of perturbed initial conditions. All are at 2010 Nov 06 00UTC
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Fig. 8 Flow chart of the
algorithm developed for retrieval
of hydrometeors

Fig. 9 Retrieved hydrometeors from TMI. a Cloud water, b cloud ice, c precipitation water, d precipitation
ice. All are at 2010 Nov 6 7.30UTC
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hydrometeors information, and so, a new algorithm is required for assimilating the hy-

drometeors. A stochastic Monte Carlo based ensemble algorithm using a Bayesian like-

lihood estimator is proposed and tested here.

7.2 Overview

The flowchart of the algorithm developed in this study is shown in Figure 12. The algo-

rithm is essentially a Monte Carlo technique. First at 7.30 h before a TRMM overpass over

Fig. 10 Basic atmospheric variables from WRF. a Pressure, b temperature, c relative humidity, d cloud
water mixing ratio, e rain water mixing ratio. All are at 2010 Nov 6 7.30UTC
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the cyclone under consideration, the time is set to t = 0. This is the initial condition with

which WRF will start predicting the cyclone track. From here, the algorithm consists of six

steps.

1. Preparation of a family of ensembles (with N ensembles) of initial conditions of

variables considered. The ensemble sampling is performed using the EOF already

discussed.

2. The WRF is initialized with the prepared N ensembles and simulations are carried out

for a time period of 7.30 h corresponding to the TRMM overpass. The WRF simulates

N sets of atmosphere in the entire domain under consideration at t = 7.30 h.

3. Retrieval the state of the atmosphere from TMI BT at TMI pixels for this instance of

time using the WRF-radar-radiometer algorithm.

4. Identification of common pixels for TMI and WRF through a collocation procedure

performed between TMI pixels and WRF pixels. A minimum distance strategy is used

for this collocation.

5. A comparison of the hydrometers data at these common pixels obtained by two

ways—WRF and retrieved atmosphere to obtain likelihoods of the initial condition

ensembles. A Bayesian likelihood estimator is used in this step and a PPDF is

constructed.

6. Completion of the data assimilation procedure by finding the best set of initial

conditions that agrees well with observation retrieved from satellite. The expected

Fig. 11 Calculated hydrometeors from the observation operator. a Cloud water, b cloud ice, c precipitation
water, d precipitation ice. All are at 2010 Nov 6 7.30UTC
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value of the a posteriori is the best estimate of initial conditions. At the end of these six

steps, a ‘‘best’’ set of assimilated initial condition is obtained using which subsequent

54-h forecasts are performed using WRF.

7.3 Bayesian likelihood estimation

The Bayesian likelihood of the ensemble forecasts is calculated by comparing the four

hydrometers data at collocated pixels. The likelihood is calculated as follows:

LðensembleÞ ¼ exp � 1

2

Xn

i¼1

X14

j¼1

X4

k¼1

HMðkÞret:i;j � HMðkÞens:i;j

HMðkÞret:i;j � HMðkÞctr:i;j

 !2
2
4

3
5 ð30Þ

Here HM(k),k = 1:4 represents the 4 hydrometeors. n is the number of collocated pixels

for which retrieved and WRF profiles are both available. j is the index for vertical levels

which are 14 in number. The denominator of the right side of Eq. 30 is the standard

variance, r2 of the study. The value r2 is of the order of the squared error between the

Fig. 12 Flow chart of the new ensemble-based assimilation algorithm developed in this study
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unperturbed WRF forecast and the retrieved atmosphere. This stems from considering the

unperturbed WRF forecast as the background information in this assimilation problem. The

goal is to maximize L(ensemble). This is the same as minimizing -ln(L(ensemble)). This

problem corresponds to a weighted least squares problem in the parlance of optimization.

All the ensembles of a family are given uniform probability and the likelihoods are

transferred to Bayesian probabilities and the PPDF is obtained using the following formula:

PðensembleiÞ ¼
LðensembleiÞ
PN
j¼1

LðensemblejÞ
ð31Þ

where N is the number of ensemble to be considered. The expected a-posteriori gives the

best set of initial conditions for the variable(s) under consideration. More details of the

Bayesian likelihood estimation and PPDF are available in Balaji (2011). This best set of

initial conditions is used to run WRF again from t = 0 to t = 54 h for the assimilated 54-h

forecast. When the corrected set of initial conditions is used, the corresponding boundary

conditions have to be updated using WRF Data assimilation (DA) update boundary con-

ditions script. The key novelties of the present work are

1. Assimilation of hydrometeors from rainy pixels using RTE simulations and measured

radiances with Bayesian retrievals.

2. Back correction of prognostic variables using the ensemble technique in a Bayesian

framework.

3. Estimation of likelihoods from only the collocated pixels thereby considerably

reducing interpolation error.

8 Results and discussion

Cyclone JAL (2010) is considered here for testing the data assimilation algorithm. To

evaluate the efficacy of the assimilation, the simulated cyclone track is compared with the

JTWC observed track which is considered as the gold standard in this study. To fine-tune

the algorithm, detailed sensitivity studies that include a detailed ensemble study and a

variable sensitivity study were performed. The results of these are reported in the ensuing

sub sections.

8.1 Ensemble sensitivity study

A study was conducted to test the sensitivity of the number of ensembles on the reduction

in track errors. The data assimilation algorithm is tested with 25, 50, 75 and 100 ensembles

by perturbing the initial conditions of all variables simultaneously. Figure 13 shows the

PPDF of the four above-mentioned four different set ensembles of 25, 50, 75 and 100

ensembles, respectively. The abscissa on these plots shows the index of the profile, and the

ordinate shows the probability density from the PPDF plots; it is clear that use of the mean

of the PPDF is a much better strategy than seeking only the maximum of the posterior.

Figure 14 shows the propagation of the simulated cyclones with the JTWC observed and

the control run tracks. Table 3 presents the error of the forecast cyclone with respect to the

JTWC observed track. Also, shown in the table are 24- and 54-h average errors in the four

simulations. From the results of the 25, 50, 75 and 100 ensembles reported in the table, it is
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seen that all ensembles give better results than the control run. Furthermore, ensemble sizes

of 25 and 50 give better results compared with ensembles 75 and 100. The average forecast

error between an ensemble sizes of 25 and 50 is only 2.3 km for the case of a 24-h forecast

and 2.5 km for the case of a 54-h forecast. In view of this, an ensemble family size of 25

ensembles is adequate for assimilating hydrometeors to improve track prediction.

Fig. 13 PPDF’s of the samples in the ensemble sensitivity study for ensemble size a 25, b 50, c 75, d 100

Fig. 14 Track propagation of
cyclone Jal in the ensemble
sensitivity study
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8.2 Variable sensitivity study

The data assimilation algorithm is also tested by correcting the initial conditions of one

variable at a time. Figures 15a–d show the track propagation of simulated track along with

JTWC and control run track for perturbation of (a) /, (b) h, (c) U, V and (d) qv, respec-

tively. From the figures, it is clear that large differences arise in the track skill, depending

Table 3 Error in track (km) in the ensemble sensitivity study

Time UTC Forecast hour Ctrl En25 En50 En75 En100

600 0 20.5 26.4 26.4 26.4 26.4

606 6 29.5 24.4 29.5 37.9 46.4

612 12 33.8 47.3 25.9 33.8 37.6

618 18 68.6 44.0 58.6 54.0 63.5

700 24 70.8 40.6 53.7 49.8 45.0

706 30 99.9 102.8 89.2 86.3 99.9

712 36 161.2 146.8 139.5 147.8 152.9

718 42 171.8 156.3 151.0 186.3 169.7

806 54 228.4 190.8 183.2 193.6 194.4

24 h avg 44.6 36.5 38.8 40.4 43.8

54 h avg 98.3 86.6 84.1 90.6 92.9

a b

c d

Fig. 15 Track propagation of cyclone Jal in the variable’s sensitivity study perturbation only in a PH, b T,
c UV, d QV
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on the variable that is assimilated. Table 4 presents the track errors resulting from the

assimilation of one of these variables one at a time. From the table, it is seen that there is

no significant difference in the 54-h average forecast error between them including the one

where all variables are assimilated. However, all the simulations produce better results

compared with the control run. The 24-h average forecast error, it seem that the pertur-

bation of only the / gives a track error of 29.9 km error with while the perturbation of h
gives an error of 28.9 km, which are very close to each other. Large track errors are seen

when only the qv is perturbed, where in the resulting error is equal to that of the control run.

Table 4 also shows that assimilation of all the variables at a time gives a 24-h average

forecast error the 36.5 km that lies between the error obtained by assimilating only h
(lower) and only qv (highest). So, for a short-term forecast, it is better to assimilate all the

variables. However, for a long-term forecast, assimilation of any or all variables leads to

similar errors, all of which are lower than the error associated with the control run.

9 Conclusions

This study attempted to improve the forecast skill of track prediction in numerical weather

prediction models by a Monte Carlo, ensemble-based Bayesian assimilation algorithm. The

proposed algorithm was then tested on cyclone JAL. The algorithm assimilates hy-

drometeors from a combined WRF-radar-radiometer algorithm that was developed in-

home based on observations from TRMM. The results are encouraging and show that it is

possible to reduce forecast errors significantly in the short term when assimilation is based

on microwave observations. From the ensemble sensitivity study, it was seen that the

assimilation can reduce track error up to 12 % in a 54-h forecast and up to 18.16 % in a

24-h forecast with an ensemble family size of 25. From a study of sensitivity of the

variable to be assimilated it was concluded that the track forecast can be further reduced to

35.20 % in a 24-h forecast with the same ensemble family size of 25. This study has also

brought to focus of the impact of GFS boundary conditions on the simulations. From the

variable sensitivity study, it was seen that the 54-h average forecast error shows no sig-

nificant sensitivity to the variables being assimilated because of the strong influence of

GFS boundary conditions. Even so, this algorithm can improve the track forecast up to

Table 4 Track propagation error in the variable sensitivity study

Time UTC Forecast hour Ctrl PH T UV QV ALL

600 00 20.5 20.0 20.5 20.5 44.7 26.4

606 06 29.5 33.0 24.4 27.0 33.0 24.4

612 12 33.8 18.7 45.2 36.8 31.9 47.3

618 18 68.6 22.9 29.3 57.4 57.4 44.0

700 24 70.8 54.8 24.9 33.1 53.6 40.6

706 30 99.9 105.4 87.1 91.7 97.1 102.8

712 36 161.2 151.2 156.2 156.2 121.2 146.8

718 42 171.8 177.3 171.5 150.7 156.3 156.3

806 54 228.4 185.5 226.7 192.7 185.8 190.8

24 h Avg 44.6 29.9 28.9 35.0 44.1 36.5

54 h Avg 98.3 85.4 87.3 85.1 86.8 86.6
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35 % in a 24-hour forecast, and a potency of full assessment of it can only be ascertained

with more studies. This study mainly demonstrated the efficacy of combining an algorithm

with a Monte Carlo ensemble-based Bayesian assimilation algorithm for track reduction

with a NWP model. Further studies are required to accurately assess the real impact of this

assimilation algorithm in cyclone predictions that can be applied in a variety of situations.
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