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Abstract. We present a novel stochastic optimization method to com-
pute energy–optimal paths, among all time–optimal paths, for vehicles
traveling in dynamic unsteady currents. The method defines a stochas-
tic class of instantaneous nominal vehicle speeds and then obtains the
energy–optimal paths within the class by minimizing the total time–
integrated energy usage while still satisfying the strong–constraint time–
optimal level set equation. This resulting stochastic level set equation is
solved using a dynamically orthogonal decomposition and the energy–
optimal paths are then selected for each arrival time, among all stochas-
tic time–optimal paths. The first application computes energy–optimal
paths for crossing a steady front. Results are validated using a semi–
analytical solution obtained by solving a dual nonlinear energy–time
optimization problem. The second application computes energy–optimal
paths for a realistic mission in the Middle Atlantic Bight and New Jersey
Shelf/Hudson Canyon region, using dynamic data–driven ocean field esti-
mates.

Keywords: Energy–optimal · Time–optimal · Dynamically orthogonal
equations · Level–set method · Autonomy · AUV · Dynamic data–driven

1 Introduction

Path planning refers to the navigation rules provided to autonomous mobile
agents operating in a dynamic environment while optimizing an objective cri-
terion. This criterion could be the travel time, energy utilized, quantity/quality
of data collected, safety or a combination of these [12,16]. In the recent years,
the growing usage of Autonomous Underwater Vehicles (AUVs) such as pro-
pelled vehicles and gliders in diverse applications (e.g. ocean exploration, secu-
rity, conservation, and research) has led to increased research in path planning
for underwater robotics [3,4,9,17,25,30]. As AUVs undertake complex tasks (e.g.
cooperative exploration and sampling [19]), they are required to operate for long
periods of time at sea by utilizing energy efficiently [4]. The dynamic environ-
ment in which these vehicles (and also other mobile agents such as land robots,
drones, airplanes etc.) navigate can be utilized to reduce their energy consump-
tion. In the case of AUVs, ocean currents can be comparable in magnitude to the
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average operational speed of propelled vehicles, and up to 2–3 times the typical
speed of gliders [26,28,29]. As such, there is an opportunity to reduce the energy
consumption by intelligently utilizing favorable currents while avoiding adverse
currents. The availability of numerical ocean prediction systems enables agents
to plan their motion using a forecast of the ocean currents (within predictability
limits). Dynamic data–driven re–planning of these trajectories may be performed
by utilizing open–loop planning algorithms which have short run–times. Using
this as a motivation, our goal here is to develop a computationally efficient and
rigorous path planning algorithm that computes energy–optimal paths, among
all time–optimal paths, of a vehicle navigating between two points in a dynamic
flow field. We show that this computation can be posed as a stochastic PDE–
based design/optimization problem. In this paper, we focus on addressing the
question of how to evaluate such a solution, and whether an analytical (or semi–
analytical) benchmark exists for validation. We also illustrate the applicability
of such an algorithm for path planning utilizing real ocean forecasts.

Most path planning algorithms for AUVs find their roots in robotics,
e.g. [2,5]. The A∗ search algorithm, quite popular in robotic motion planning,
has been applied to AUVs [6] to find near–optimal paths. These paths have
been shown to utilize substantially lower energy compared to straight line paths
when ocean currents are comparable to vehicle speeds [10]. Rapidly Exploring
Random Trees (RRTs) [16], also popular in robotic path planning have been
used for AUVs to obtain minimum work [14] and minimum energy (linear nom-
inal relative speed) [24] paths. However, A∗ and RRTs do not work well for
strong flows [24]. First, they are not well suited to computing exact solutions
in strong dynamic flows [21,22]. Second, the heuristics reported are for a lin-
ear energy cost function and do not readily extend to nonlinear cost functions.
[1] discusses a genetic algorithm to optimize the paths parameterized in space
and time. They minimize an energy cost function which is a path integral of
the cube of vehicle speed. In [15], the paths are computed using nonlinear opti-
mization, where a weighted cost function accounts for the energy to overcome
drag (proportional to square of nominal relative speed) and provide acceleration
(proportional to rate of change of nominal relative speed). As the success of
this optimization depends heavily on the parameterization, it cannot be easily
generalized to all types of flows and domains. [32] discusses potential field tech-
niques for obstacle avoidance and [34] reports a swarm optimization approach to
minimize an energy cost function on the parameterized paths. Other algorithms
utilize Lagrangian Coherent Structures (LCS) of the flow to design near–optimal
navigation paths [13,35]. They illustrate that the optimal energy (quadratic nom-
inal speed)-time-weighted paths computed using a heuristic receding–horizon
nonlinear programming method are close to the ridges of the LCS. Other non-
linear optimization methods and evolutionary algorithms have also been used
to obtain near–optimal paths by approximately solving the governing optimal
control problem. We encourage the reader to refer to [23,31] for an in-depth
literature survey.

The present work is inspired from [21,22], where a modified level set
methodology for rigorous time–optimal path planning is described. We extend
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this methodology to develop a novel energy optimal path planning algorithm,
based on stochastic dynamically orthogonal level set equations [27]. In what fol-
lows, we state the problem and describe the new path planning method. We then
consider a test case of a vehicle crossing a canonical steady front for a range of
arrival times. We validate our results for a range of arrival times by compar-
ing them to those of a dual energy and time optimization albeit for a single
chosen arrival time. The latter is a semi–analytical solution for that front cross-
ing problem, providing the energy and time optimal path(s) for a single arrival
time. Finally, we apply our methodology to plan the time–dependent headings
and energy usages of a vehicle undertaking a mission in the Middle Atlantic
Bight region.

2 Problem Statement

Let Ω ⊆ R
n be an open set. Consider a vehicle navigating from a start point (xs)

to an end point (xf ) with a specified instantaneous nominal speed F (t) ≥ 0. The
environmental flow is denoted by v(x, t) : Ω×(0,∞) → R

n. The heading function
is chosen such that when navigated at a relative time–dependent non–negative
speed of F (t), the vehicle reaches xf in optimal time T (xf ;F (•)). Among all of
these, we seek the F (•) that minimizes the energy cost function E, i.e.,

min
F (•)

E(•) =

T (xf ;F (•))∫

0

p(t) dt (1a)

s. t.
∂φ(x, t)

∂t
= −F (t)|∇φ(x, t)| − v(x, t) · ∇φ(x, t)

in (x, t) ∈ Ω × (0,∞) (1b)
T (xf ;F (•)) = min

t
{t : φ(xf , t) ≤ 0} , (1c)

φ(x, 0) = |x − xs| , (1d)
p(t) = F (t)n , where n ≥ 1 . (1e)

Here, the scalar field φ(x, t) is a reachability–front tracking level–set function
[31]. For a given F (•), the viscosity solution of the level set Hamilton–Jacobi
equation (1b) with initial conditions (1d) and the subsequent solution to the
backtracking Eq. (2),

dx∗

dt
= −v(x∗, t) − F (t)

∇φ(x∗, t)
|∇φ(x∗, t)| , 0 ≤ t ≤ T (xf ;F (•)) (2)

yield a continuous–time history of the time–optimal vehicle heading angles, θ∗(t)
[21]. These headings guarantee time–optimality for the particular choice of the
speed function F (t) [31]. Then, among all such time–optimal paths which reach
the target at relative speed F (t), we seek to find the F (t) that minimizes the
energy required (1a). We reiterate that all of our paths are time–optimal: the
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optimization is on the total energy usage (1a). In contrast to multi–objective
optimization formulations [1,15,34], in our method, the time–optimality is a
strong constraint.

3 New Stochastic Dynamically Orthogonal Level Set
Equations for Energy-Based Path Planning

Considering the nominal speed F (t) as a random variable belonging to a stochas-
tic class, i.e., F (t) → F (t;ω), and a deterministic flow field v(x, t), we obtain a
stochastic Langevin form of the level set equation (1b):

∂φ(x, t;ω)
∂t

= −F (t;ω)|∇φ(x, t;ω)| − v(x, t) · ∇φ(x, t;ω) , (3)

where (x, t) ∈ Ω × (0,∞) and ω denotes a random event. For F (t;ω) ≥ 0,
we solve the SPDE (3) until the first time instant t such that φ(xf , t;ω) ≤ 0,
starting from deterministic initial conditions φ(x, 0;ω) = |x − xs| with bound-
ary condition ∂2φ(x,t;ω)

∂n2 |δΩ = 0, where n denotes the outward normal to ∂Ω.
Such a stochastic simulation yields the distribution of the minimum time–to–
reach T (xf ;F (•;ω)) for an externally forced distribution of F (•;ω). Then, the
distribution of energy utilized is computed from F (•;ω) and T (xf ;F (•;ω)) as

E(ω) =
T (xf ;F (•;ω))∫

0

p(t) dt. The function p(t) can assume any power law depen-

dence on F (t). The power function p(t) that has a linear dependence on F (t)
results in a constant drag optimal path (also known as fuel–optimal, e.g. [2]).
It yields a linear drag optimal path when p(t) ∝ F (t)2, and a quadratic drag
energy optimal path when p(t) ∝ F (t)3. Finally, for any choice of the time–to–
reach (a particular time or a range of time), the speed function F (•;ω) which
minimizes the energy cost, E(ω), can be obtained by a search procedure. As we
will see, the approach can operate on classes of stochastic functionals F (•;ω) if
these functionals can be efficiently represented by a reduced basis.

The most straightforward method to solve the SPDE (3) is through a Monte
Carlo (MC) approach. The deterministic level set PDE (1b) can be solved for
different realizations of F (t;ω) to yield a distribution of T (xf ;F (•;ω)). Unfortu-
nately, the MC solution is expensive and the computational cost increases with
number of realizations used. Since in (3), v(x, t) is the flow field velocity, and we
consider ocean applications, an efficient solution method for solving (3) would be
a methodology that exploits the nonlinearities of the flow, which tend to concen-
trate the scalar level set field, φ, responses into specific dynamic patterns. Such
a methodology is offered by the Dynamically Orthogonal (DO) decomposition
[27]. To the best of our knowledge, this approach has never been utilized to deter-
mine the stochastic viscosity solution of (3). A numerical challenge in obtaining
the DO level set equations is the presence of the non–polynomial nonlinearity,
γ ≡ |∇φ|. We have considered several approaches for handling this term. One
such approach [31] does not invoke a specific DO decomposition for γ, but evalu-
ates it using an explicit Monte Carlo computation. This is the method we present
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in this paper. In what follows, the arguments (x, t) are dropped for the brevity
of notation. The decompositions F = F̄ + zF̃ , φ = φ̄ + Yiφ̃i are first substituted
in (3). Enforcing the DO condition [27] then yields the following new equations
for the mean φ̄, stochastic coefficients Yi and modes φ̃i, in terms of the mean
(F̄ ), stochastic coefficients (z) and modes (F̃ ) of the nominal relative speed:

∂φ̄

∂t
= −(F̄E[γ] + E[zγ]F̃ ) − v · ∇φ̄ , (4)

dYi

dt
= −

〈
F̄ (γ − E[γ]) + F̃ (zγ − E[zγ]) + Ykv · ∇φ̃k, φ̃i

〉
, (5)

∂φ̃i

∂t
= −C−1

YiYj
(F̄E[Yjγ] + F̃E[zYjγ]) + v · ∇φ̃i

−
〈
−C−1

YiYj
(F̄E[Yjγ] + F̃E[zYjγ]) + v · ∇φ̃i, φ̃n

〉
φ̃n , (6)

where 〈•, •〉 denotes the inner product. We have also developed methods where
a DO decomposition is considered for the non–polynomial nonlinearity γ. These
methods along with their derivations are provided in [31]. We note that an
equivalent formulation is possible through bi–orthogonal methods [8].

Algorithm. Our algorithm for energy optimal path planning has 5 main steps.
(i) The first step is to obtain a comprehensive sampling of the stochastic class
F (t;ω). In the DO sense, we obtain a comprehensive sample of FDO(t; r), where
r denotes realizations. (ii) Next, the new stochastic DO level set Eqs. (4)–(6) are
solved using the chosen samples of FDO(t; r). (iii) The energy utilized by each
sample is computed as E(r) =

∫ T (xf ;FDO(t;r))

0
p(t) dt. (iv) For a given time–to–

reach, the sample F ∗
DO(t; r) that leads to the minimum energy usage is identified

using a sorting algorithm. This F ∗
DO(t; r) is energy optimal within the class of

FDO(t; r) that reach xf at a given time. (v) Finally, the sample class can be
enriched and the algorithm iterated until no further refinement is required. The
computational cost for direct Monte Carlo solution of the SPDE is O(MN),
where M is the number of samples and N is the total size of discrete computa-
tional domain utilized. Our DO algorithm has a computational cost of O(SN),
where S is the size of the DO–subspace, where S is often such that S  M .

4 Applications

We first consider a simulated steady front test case and use it as a benchmark
to test and validate our approach. Specifically, we compare our results to that
of a nonlinear dual optimization approach that seeks a minimum energy path
among time optimal paths for a fixed arrival time. We solve this problem using
the iterated constrained nonlinear optimization toolbox of MATLAB. Next, we
employ our methodology for path planning of a glider released from Buzzard’s
Bay (offshore from WHOI) to reach a target in the region of the Autonomous
Wide Aperture Cluster for Surveillance (AWACS) experiment just south of the
Hudson Canyon.
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4.1 Energy Optimal Crossing of an Idealized Steady Front

Considering the test case of crossing a steady front, we first solve the energy
optimal problem using a semi–analytical approach. This serves as a benchmark
to test our new methodology. The schematic of the flow and the relevant nota-
tion is depicted in Fig. 1. The goal is to determine the optimal speed function
F (t), varying within limits Fmin and Fmax (Fmin ≤ F (t) ≤ Fmax for all t),
that minimizes the energy utilized while still reaching the end point in optimal
time. In what follows, we provide arguments that allow us to formulate a dual
minimization problem whose solution gives the energy–optimal trajectory in the
sense defined in Sect. 2, but only for a specific arrival time.

Fig. 1. Parameters involved in optimal crossing of a simulated steady front: steady
front speed V and width d; start (circle), end (star), distances, vehicle nominal speed
and headings are marked. Adapted from [23].

To start the arguments, we first consider the motion from the start point
to the steady front. During this time, the vehicle remains unaffected by the
environment and the corresponding zero–level–set expands radially outward at
a rate equal to F (t), the nominal instantaneous relative speed. The motion (e.g.
the total displacement) achieved by any choice of the time series F (t) over this
period can be synthesized as the motion achieved by the mean nominal speed
F̄ (t) over the same time window. However, the energy consumed by the vehicle
varies as a power function of F (t), with n ≥ 1 (see Sect. 3). As a result, that
energy consumption will be different for each time series F (t).

It can then be shown that the energy consumption is minimum when the
mean speed is used over a given time interval. For instance, let us suppose that
a vehicle (say v) travels at speed Fmin for a total time of t1 and at speed Fmax

for time t2. The final position of this vehicle coincides with that of a different
vehicle (say m), traveling at a uniform speed F̄ = (Fmint1 +Fmaxt2)/(t1 + t2) for
time t1 + t2. The energy expended by v is Ev = Fn

mint1 + Fn
maxt2. On the other

hand, m utilizes a total energy equal to Em = F̄n(t1 + t2). Hölder’s inequality
can now be used to show that Em ≤ Ev [31]. In fact, it can be shown that the
above result holds for any number of engine speed switches (≥ 2) and any n ≥ 1.
We also note that similar arguments can be made for the vehicle motion beyond
the steady front to the end point.

To continue the arguments, we now consider the motion of the vehicle within
the uniform and steady front proper. Inside this region, only the motion of
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vehicle in the x–direction is affected. Even here, it can be shown that using a
single speed results in lower energy consumption, and that any time series F (t)
has an equivalent single time–mean speed [31]. Therefore, for a given travel time,
the energy optimal path is executed by a vehicle that moves at a constant speed
from the start point to the steady front at some to–be–determined point, then
another speed (same or different) for the time optimal motion in the steady front
and finally another speed from the steady front to the target. This completes
the arguments that allow us to setup our dual minimization problem, ‘energy–
optimality subject to time–optimality’.

Using the above arguments, we set the time–variation of the unknown optimal
relative speed to be the uniform speeds of F1, Fd, and F2 from start to the steady
front, within the steady front, and from the exit of the steady front to the end
point, respectively.

Let U denote the total effective velocity of the vehicle in the flow, as seen
by a ground observer. Within the steady front, the component of U in the x–
direction is Ux = Fd sin α+V and in the y–direction, Uy = Fd cos α. The direction
of resultant velocity and heading angle are related through the relation, tanβ =
Ux

Uy
= tan α + V

Fd
sec α. Outside the steady front, the relations are the same, but

with V = 0. Now, let X be the total downstream displacement of the vehicle,
i.e. in the x direction. We have, from simple trigonometry, X = y1 tan θ1 +
d tan β + y2 tan θ2. Finally, the total travel time T can be written as the sum of
travel times in each individual region, T = y1

F1 cos θ1
+ d

Fd cosα + y2
F2 cos θ2

. Now, we
want to determine the energy optimal path, for each arrival time such that they
are also time–optimal. Hence, assuming for now, a general energy cost over dt,
dE = p(t) dt = F (t)n dt where n ≥ 1, we obtain the total energy expended from
the start point to the end point: E = Fn−1

1
y1

cos θ1
+ Fn−1

d
d

cosα + Fn−1
2

y2
cos θ2

. For
a fixed time–to–reach the target, the double optimal energy–time problem is

min
F1,Fd,F2

E = Fn−1
1

y1
cos θ1

+ Fn−1
d

d

cos α
+ Fn−1

2

y2
cos θ2

(7)

s.t. X = y1 tan θ1 + d

(
tan α +

V

Fd
sec α

)
+ y2 tan θ2 (8)

T = min
θ1,α,θ2

y1
F1 cos θ1

+
d

Fd cos α
+

y2
F2 cos θ2

(9)

θ1, θ2, α ≥ 0 , Fmin ≤ F1, Fd, F2 ≤ Fmax , n ≥ 1 (10)

where X, T , Fmin, and Fmax are inputs to the optimization problem. We note
that the time constraint for the outer energy optimization is another inner opti-
mization. This completes the derivation of a dual minimization problem whose
solution provides the energy-optimal path in the sense defined in Sect. 2, but
again, only for a fixed single arrival time at a time. For y1 = 0.2167, d = 0.2,
y2 = 0.2167, V = 3, Fmin = 2, Fmax = 3,X = 0.6334, and fixing the single tar-
get T to be T = 0.26, we obtain the numerical solution of our dual optimization
problem as presented in Table 1. The results shown in column 1 are computed
using the iterative nonlinear optimization toolbox of MATLAB.

Now, we compare this ‘semi–analytical’ solution to that obtained by our new
stochastic DO level–set optimization scheme. To do so, we need to select an
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Table 1. Parameters of the energy optimal path that reaches the end point at time
T = 0.26.

Parameter Using NonLinear Using new stochastic DO

Optimization level-set optimization

θ1 23.5o 22.4o

θ2 23.5o 20.7o

β 65.8o 65.9o

F1 2.9 2.8

Fd 2.6 2.5

F2 2.9 3.0

Fig. 2. The start point is marked as a circle and the end point is marked as a star.
The initial flow on Aug 28, 00 UTC is shown on the color axis in cm/s.

adequate stochastic class of F (t;ω). First, we remark that all vehicles will reach
faster than a vehicle which travels throughout the distance at Fmin. Hence, the
total time required will at most be the time required by this slowest vehicle.
Let this be denoted as Tmax. The number of F (t;ω) samples (i.e. FDO(t; r),
see Sect. 3) required grows with the resolution in time axis in an exponential
manner, i.e., even if only two engine speed choices are allowed, and if the time
axis that ranges from 0 to Tmax is divided into n intervals, a total of 2n FDO(t; r)
samples are required for an exhaustive search (in the bang–bang control sense).
With the available computing resources and reasonable run–time, we choose to
resolve the time axis into n = 26 intervals. The energy optimal path planning is
then performed using our new stochastic DO level set equations with this choice
of FDO(t; r), i.e. an exhaustive sample space but only for those two speeds and
26 time–intervals (25 speed switches). The result of this stochastic DO level–
set optimization with the same parameters as above is presented in Tabel 1.
Critically, we note that our stochastic solution provides answers for a wide range
of arrival times (instead of the single fixed time T ).
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Fig. 3. (a) Path that reaches in the shortest time, 12.96 days, but consumes the highest
energy. (b) Path that takes 6 more days to reach the end point (18.78 days), but utilizes
40% less energy. (c) Path that reaches in 16 days using a constant speed. (d) Path that
also takes 16 days but is energy optimal: it utilizes about 10% less energy than the
path at constant speed. The energy utilized by the vehicle along the path is plotted
in color. Flow field at arrival time is shown in blue. All paths are time optimal for the
F (t) utilized (Color figure online).

4.2 Realistic Dynamic Data–Driven Ocean Simulation

In this section we explore the application of our approach in realistic dynamic
data–driven ocean simulations. The mission is to start just offshore of Buzzard’s
Bay near WHOI and reach a target in the AWACS region, as shown in Fig. 2.
A glider that can travel at relative horizontal velocities between F = 10 cm/s and
30 cm/s is assumed to be released on Aug 28, 2006 at 00 UTC. The flow data is
obtained from the MSEAS free–surface primitive–equation model utilized in an
implicit two–way nested computational domain set–up [11], with both tidal and
atmospheric forcings. These simulated ocean flows assimilate real ocean data and
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correspond to a reanalysis of the real–time AWACS and SW06 exercises (Aug.-
Sep. 2006) in the Middle Atlantic Bight and shelfbreak front region [7,18,20,33].

All gliders are assumed to follow the same yo–yo pattern in the vertical and
the effects of the small vertical ocean velocities are assumed to be accounted for
in the forward motions of the vehicles. We consider yo–yo patterns from the near
surface to either the local near bottom or 400 m depth, whichever is shallower
(for the mission considered, a large portion of the paths occurs on the shelf,
within about 20 to 100 m). The horizontal currents that a glider encounters
during its yo–yo motion are then the horizontal currents integrated along its
path. Of course, it is the path to–be–determined that specifies the currents that
are actually encountered.

The new stochastic DO level–set based energy optimal path planning method
is employed to determine the time–optimal level sets for the class of relative
glider speeds FDO(t; r) considered. Within that class, the evolution of the level
sets corresponding to the minimum energy is obtained by sorting and the energy–
optimal paths are computed by backtracking. We note that our method computes
a large set of energy optimal paths, for a range of arrival times. Only a few of
such paths are shown in Fig. 3, three of which are energy–optimal.

We first show the path that reaches the end point in shortest time on Fig. 3(a),
corresponding to the glider with relative horizontal speed of F = 30 cm/s. Based
on [21], the fastest glider indeed travels at the largest relative speed considered.
The second path selected on Fig. 3(b) is one that takes 18.78 days to complete,
but utilizes 40 % less energy. The third path on Fig. 3(c) is a constant speed path
that is not energy–optimal and reaches in 16 days. The fourth path in Fig. 3(d)
also takes 16 days but is the result of our stochastic optimization and utilizes
about 10 % less energy than the path at constant speed.

5 Conclusion

A novel method for energy optimal path planning based on new stochastic
dynamically orthogonal level set equations was introduced. It was first used
to obtain an energy optimal path among time–optimal paths for crossing a
steady front. We showed that the results agreed with those of a semi–analytical
path obtained by solving a dual nonlinear optimization problem that minimizes
energy and time. We also applied our methodology to realistic dynamic data–
driven ocean flows and obtained promising results that illustrate that open–loop
energy–time optimal paths can be computed quickly. This opens up the possibil-
ity to use our methodology for dynamic data–driven re–planning. Environment
uncertainty was considered in [19] and this can be utilized in the future. Future
studies can investigate the methodology in greater detail, providing derivations
and algorithms for handling non–polynomial nonlinearities. Capabilities will also
be illustrated in a wider range of idealized and realistic scenarios.
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