DEEPAK N. SUBRAMANI

http://www.mit.edu/~deepakns | +1-857-253-9750 | deepakns@mit.edu, deepakns89@gmail.com

EDUCATION

Massachusetts Institute of Technology, Cambridge, MA

Ph.D. in Mechanical Engineering and Computation	Feb. 2018			
Thesis: Probabilistic Regional Ocean Predictions: Stochastic Fields and Optimal Path Planning				
Major: Computational Engineering and Stochastic Systems				
Minors: Data Analytics; Ocean Sciences; Technology and Public Policy;				
Development in Resource Constrained Economies (set of three courses in each)				
S.M. in Computation for Design and Optimization	2014			
Thesis: Energy Optimal Path-Planning using Dynamically Orthogonal Level-Set Optimization	GPA: 4.8/5			
Indian Institute of Technology Madras, Chennai, India				
M.Tech and B.Tech in Mechanical Engineering	2012			
Nasteur en sislisation. En sur Taska slave	CDA . 0 1/10			

Masters specialization: Energy TechnologyGPA: 9.1/10Minor: Operations ResearchThesis: Bayesian Inference for Rainfall Estimation from TRMM/PR Observations

EXPERIENCE

Massachusetts Institute of Technology, Cambridge, MA

Postdoctoral Research Associate	Dec. 2017 –
Advisor: Prof. Pierre F.J. Lermusiaux	present
Graduate Research Assistant	Sept. 2012 –
Advisor: Prof. Pierre F.J. Lermusiaux	Nov. 2017
Research Goals: To develop and apply fundamental theory and computational systems for	

providing practical solutions to engineering problems

- Optimal path planning in dynamic environments
 - Developed novel optimal planning S-PDEs for energy- and stochastic time-optimal path planning of autonomous vehicles in strong and dynamic environments.
 - Developed software systems for time-optimal ship routing by integrating optimal planning S-PDEs and multi-model ocean wave, current and wind forecasts.
 - Completed multiple sea experiments for real-time validation of our path planning algorithms with REMUS 600 AUVs in Buzzard's Bay and Vineyard Sound Regions.
- Uncertainty quantification and probabilistic regional ocean predictions
 - Developed theory, schemes and implemented dynamically orthogonal ocean primitive equations for quantifying and predicting uncertainties in regional oceans.
 - First full-fledged ocean modeling system with probabilistic prediction capability, fully respecting nonlinear governing equations and non-Gaussian statistics.

- The above uncertainty quantification technologies are accurate and computationally faster—by 3-4 orders of magnitude—compared to existing approximate methods.
- Developing an advisory service for sustainable fisheries management in India combining coastal in-situ and remote sensing, and probabilistic ocean modeling.
- Tools:
 - Methodology development in scripting environments (MATLAB, R, Python) and production code development in FORTRAN and C++.
 - Hands-on experience with handling atmospheric and oceanic data from multiple sensors and sources.
- Member of a highly collaborative research team: contributed to development and troubleshooting of in-house computer codes for numerical ocean modeling and state of the art data assimilation schemes.

Indian Institute of Technology Madras, Chennai, India

Research Assistant	Aug. 2011 –
Advisor: Prof. C. Balaji	May 2012
• Developed a Bayesian inference algorithm for atmospheric state estimation from remote sensing data (TRMM) and models (WRF, radar models).	
Implemented an ensemble data assimilation scheme in WRF.	
University of Toronto, Toronto, Canada	
Summer Research Student	May 2011 –
Advisor: Prof. Timothy Chan	July 2011
 Contributed to development of an inverse linear programming framework to optimize radiative therapy for prostate cancer treatment. 	
GE Global Research, John F. Welch Technology Center, Bangalore, India	
Summer Intern	May 2010 –
Supervisor: Dr. Manoharan	July 2010
 Recommended cost-effective Non-Destructive Evaluation (NDE) strategies for fault detection in cogeneration power plants. 	
AWARDS	
Graduate Fellowship MIT-Tata Center	2015 – 2018
SNAME Graduate Travel Award in Ocean Engineering Department of Mechanical Engineering, MIT, Cambridge, MA	Dec. 2017
Wunsch Foundation Silent Hoist & Crane Award for Outstanding Research Department of Mechanical Engineering, MIT, Cambridge, MA	May 2017
First Place in Graduate Science De Florez Design Competition, MIT, Cambridge, MA	May 2017
Best Demonstration/Prototype Award Mechanical Engineering Research Exhibition 2016, MIT, Cambridge, MA	Sept. 2016
Esteemed Presenter Award for Best Computational Research Mechanical Engineering Research Exhibition 2015, MIT, Cambridge, MA	Sept. 2015

DEEPAK N. SUBRAMANI		PAGE 3
	Honorable Mention Award	May 2015
	Best Poster Award	Mar. 2015
	Runner-up Poster Award DvDESS 2014 Conference, Cambridge, MA	Nov. 2014
	Institute Merit Prize (Highest GPA in Energy Technology) Indian Institute of Technology Madras, India	2012
	MITACS Globalink Research Award MITACS Canada	2011
	GE Foundation Award GE Foundation Scholar-Leaders Program (Global)	2009-2011
	National Talent Search Scholar Government of India	2005

PROFESSIONAL ACTIVITY

- Participant at the NASA JPL-Caltech Climate Summer School 2017.
- Received the Kaufman Teaching Certificate in June 2015.
- Undergraduate Research Opportunities Program Mentor for L. Tsontos (2016) and Q.J. Wei (2015).
- Research mentor for high school students undertaking summer research (2014-17).
- Referee for The Sea (Monograph), Journal of Computational and Nonlinear Dynamics, Dynamic Data-Driven Environmental System Sciences Conference, IEEE International Conference on Robotics and Automation, International Journal of Thermal Sciences

PUBLICATIONS

Papers in Refereed Journals

- <u>Subramani, D.N.</u>, Q.J. Wei and P.F.J. Lermusiaux (2018). *Stochastic Time Optimal Path Planning in Uncertain, Strong, and Dynamic Flows.* Computer Methods in Applied Mechanics and Engineering. 333, pp 218-237. doi: 10.1016/j.cma.2018.01.004
- Lermusiaux, P.F.J., <u>D.N. Subramani</u>, J. Lin, C.S. Kulkarni, A. Gupta, A. Dutt, T. Lolla, P.J. Haley Jr., W.H. Ali, C. Mirabito, and S. Jana (2018). *A Future for Intelligent Autonomous Ocean Observing Systems*. The Sea. Volume 17, The Science of Ocean Prediction, Part 2, Special Issue, J. Marine Res. 75. In Press.
- 3. <u>Subramani, D. N.</u>, P. J. Haley, Jr., and P. F. J. Lermusiaux (2017). Energy-optimal path planning in the coastal ocean, Journal of Geophysical Research: Oceans, 122, 3981–4003, doi:10.1002/ 2016JC012231
- 4. Sun, W., P. Tsiotras, T. Lolla, <u>D.N. Subramani</u>, and P.F.J. Lermusiaux (2017). *Multiple-Pursuit/One-Evader Pursuit Evasion Game in in Dynamical Flow Fields*. Journal of Guidance, Control, and Dynamics. doi: 10.2514/1.G002125.
- Lermusiaux, P.F.J., P.J. Haley Jr., S. Jana, A. Gupta, C.S. Kulkarni, C. Mirabito, W.H. Ali, <u>D.N. Subramani</u>, A. Dutt, J. Lin, A. Y. Shcherbina, C. M. Lee, A. Gangopadhyay (2017). *Optimal Planning and Sampling Predictions for Autonomous and Lagrangian Platforms and Sensors in the Northern Arabian Sea* Oceanography 30(2), 172-185.

- 6. <u>Subramani, D.N.</u> and P.F.J. Lermusiaux (2016). *Energy Optimal Path Planning by Stochastic Dynamically Orthogonal Level-Set Optimization*. Ocean Modelling, 100, pp 57-77. doi: 10.1016/j.ocemod.2016.01.006
- Subramani, D., Chandrasekar, R., Ramanujam, K.S. and C. Balaji (2014). A new ensemble-based data assimilation algorithm to improve track prediction of tropical cyclones. Natural Hazards 71: 659. doi:10.1007/s11069-013-0942-1
- S. Ramanujam, C. Radhakrishnan, <u>D. Subramani</u> and C. Balaji (2012). On the Effect of Non-Raining Parameters in Retrieval of Surface Rain Rate Using TRMM PR and TMI Measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(3), pp. 735-743. doi: 10.1109/JSTARS.2012.2189557

Under review/in preparation

- 9. <u>Subramani, D.N.</u> and P.F.J. Lermusiaux (2018). *Risk Optimal Path Planning under Uncertainty.* CMAME. To Be Submitted.
- 10. <u>Subramani, D.N.</u>, P.J. Haley and P.F.J. Lermusiaux (2018). *Stochastic Dynamically Orthogonal Primitive Equations: Theory and Applications*. To Be Submitted.
- 11. Mannarini, G., <u>D.N. Subramani</u>, P.F.J. Lermusiaux, N. Pinardi (2018). Validation of VISIR with comparison to differential time-optimal planning. IEEE Journal of Transportation. To Be Submitted.

Proceedings of Refereed Conferences

- 1. <u>Subramani, D.N.</u>, T. Lolla, P.J. Haley and P.F.J Lermusiaux (2015). *A stochastic optimization method for energy-based path planning*. In: Ravela, S., Sandu, A. (Eds.), Vol. 8964 LNCS. Springer, pp. 347-358.
- Subramani, D. N., P. F. J. Lermusiaux, P.J. Haley, Jr., C. Mirabito, S. Jana, C. S. Kulkarni, A. Girard, D. Wickman, J. Edwards, J. Smith (2017). *Time-Optimal Path Planning: Real-Time Sea Exercises*. In: Oceans '17 MTS/IEEE Aberdeen, 19-22 June 2017, DOI: 10.1109/OCEANSE.2017.8084776.
- Mirabito, C., <u>D.N. Subramani</u>, T. Lolla, P.J. Haley, Jr., A. Jain, P.F.J. Lermusiaux, C. Li, D.K.P. Yue, Y. Liu, F.S. Hover, N. Pulsone, J. Edwards, K.E. Railey, and G. Shaw, (2017). *Autonomy for Surface Ship Interception*. In: Oceans '17 MTS/IEEE Aberdeen, 19-22 June 2017, DOI: 10.1109/OCEANSE.2017.8084817.
- Sun, W., P. Tsiotras, T. Lolla, <u>D. N. Subramani</u>, and P. F. J. Lermusiaux, (2017). *Pursuit-Evasion Games in Dynamic Flow Fields via Reachability Set Analysis*. 2017 American Control Conference. Seattle, WA, 2017, pp. 4595-4600. doi: 10.23919/ACC.2017.7963664
- Edwards, J., J. Smith, A. Girard, D. Wickman, P.F.J. Lermusiaux, <u>D.N. Subramani</u>, P.J. Haley, Jr., C. Mirabito, C.S. Kulkarni, and, S. Jana, (2017). *Data-driven Learning and Modeling of AUV Operational Characteristics for Optimal Path Planning*. In: Oceans '17 MTS/IEEE Aberdeen, 19-22 June 2017, DOI: 10.1109/OCEANSE.2017.8084779

PRESENTATIONS

Professional Conferences Without Proceedings

- 1. *Probabilistic Risk-Optimal Path Planning and Sampling in Uncertain Environments*, AGU Ocean Sciences Meeting 2018, Portland, OR, Feb '18.
- 2. Stochastic Ocean Predictions with Dynamically-Orthogonal Primitive Equations, AGU Fall Meeting 2017, New Orleans, LA, Dec '17.
- 3. Probabilistic Predictions of Regional Ocean Dynamics, AGU Fall Meeting 2016, San Francisco, CA, Dec '16
- 4. *Probabilistic Regional Ocean Prediction,* SIAM Conference on Uncertainty Quantification, Lausanne, Switzerland, 02 April 2016 [Presented by Prof. Pierre Lermusiaux]

5. *Energy-Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control,* AGU Ocean Sciences Meeting, New Orleans, LA 15 February 2016

Selected Talks

- 6. *Coastal Sensing and Modeling to aid Sustainable Fisheries Managements in India*, Tata Trusts-Sustainable Fisheries Group Meeting, UCSB, Santa Barbara, CA 20-21 July 2017.
- 7. *Probabilistic Ocean Prediction and Energy-Optimal Path Planning,* IEEE OES India Chapter and Ocean Society of India Lecture Series, National Institute of Ocean Technology, Chennai, India, 03 January 2016
- 8. *Coastal Forecasting for a Sustainable Fisheries Management System in India,* The First Annual Tata Fellows Poster Session, Cambridge, MA, 31 March 2016
- 9. *Optimal Path Planning and Nonlinear Non-Gaussian Data Assimilation,* Indian Institute of Technology Bhubaneswar, India 10 August 2015

PROFESSIONAL REFERENCES

- 1. Prof. Pierre F.J. Lermusiaux, Professor of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, <u>pierrel@mit.edu</u>
- 2. Prof. Avijit Gangopadhyay, Professor, School of Marine Science and Technology, University of Massachusetts, Dartmouth, MA <u>avijit.gangopadhyay@umassd.edu</u>
- 3. Dr. Glen Gawarkiewicz, Senior Scientist, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA ggawarkiewicz@whoi.edu