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Abstract. We propose an approach to address data uncertainty for discrete optimization and network flow
problems that allows controlling the degree of conservatism of the solution, and is computationally tractable
both practically and theoretically. In particular, when both the cost coefficients and the data in the constraints
of an integer programming problem are subject to uncertainty, we propose a robust integer programming
problem of moderately larger size that allows controlling the degree of conservatism of the solution in terms
of probabilistic bounds on constraint violation. When only the cost coefficients are subject to uncertainty and
the problem is a 0 − 1 discrete optimization problem on n variables, then we solve the robust counterpart
by solving at most n + 1 instances of the original problem. Thus, the robust counterpart of a polynomially
solvable 0 − 1 discrete optimization problem remains polynomially solvable. In particular, robust matching,
spanning tree, shortest path, matroid intersection, etc. are polynomially solvable. We also show that the robust
counterpart of an NP -hard α-approximable 0 − 1 discrete optimization problem, remains α-approximable.
Finally, we propose an algorithm for robust network flows that solves the robust counterpart by solving a
polynomial number of nominal minimum cost flow problems in a modified network.
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1. Introduction

Addressing data uncertainty in mathematical programming models has long been rec-
ognized as a central problem in optimization. There are two principal methods that have
been proposed to address data uncertainty over the years: (a) stochastic programming,
and (b) robust optimization.

As early as the mid 1950s, Dantzig [9] introduced stochastic programming as an
approach to model data uncertainty by assuming scenarios for the data occurring with
different probabilities. The two main difficulties with such an approach are: (a) Knowing
the exact distribution for the data, and thus enumerating scenarios that capture this distri-
bution is rarely satisfied in practice, and (b) the size of the resulting optimization model
increases drastically as a function of the number of scenarios, which poses substantial
computational challenges.

In recent years a body of literature is developing under the name of robust optimi-
zation, in which we optimize against the worst instances that might arise by using a
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min-max objective. Mulvey et al. [14] present an approach that integrates goal program-
ming formulations with scenario-based description of the problem data. Soyster, in the
early 1970s, [17] proposes a linear optimization model to construct a solution that is
feasible for all input data such that each uncertain input data can take any value from
an interval. This approach, however, tends to find solutions that are over-conservative.
Ben-Tal and Nemirovski [3–5] and El-Ghaoui et al. [11, 12] address the over-conserva-
tism of robust solutions by allowing the uncertainty sets for the data to be ellipsoids, and
propose efficient algorithms to solve convex optimization problems under data uncer-
tainty. However, as the resulting robust formulations involve conic quadratic problems
(see Ben-Tal and Nemirovski [4]), such methods cannot be directly applied to discrete
optimization. Bertsimas and Sim [7] propose a different approach to control the level
of conservatism in the solution that has the advantage that leads to a linear optimization
model and thus, as we examine in more detail in this paper, can be directly applied to
discrete optimization models. We review this work in Section 2.

Specifically for discrete optimization problems, Kouvelis and Yu [13] propose a
framework for robust discrete optimization, which seeks to find a solution that minimiz-
es the worst case performance under a set of scenarios for the data. Unfortunately, under
their approach, the robust counterpart of many polynomially solvable discrete optimi-
zation problems becomes NP-hard. A related objective is the minimax-regret approach,
which seeks to minimize the worst case loss in objective value that may occur. Again,
under the minimax-regret notion of robustness, many of the polynomially solvable dis-
crete optimization problems become NP -hard. Under the minimax-regret robustness
approach, Averbakh [2] showed that polynomial solvability is preserved for a specific
discrete optimization problem (optimization over a uniform matroid) when each cost
coefficient can vary within an interval (interval representation of uncertainty); however,
the approach does not seem to generalize to other discrete optimization problems. There
have also been research efforts to apply stochastic programming methods to discrete
optimization (see for example Schultz et al. [16]), but the computational requirements
are even more severe in this case.

Our goal in this paper is to propose an approach to address data uncertainty for
discrete optimization and network flow problems that has the following features:

(a) It allows to control the degree of conservatism of the solution;
(b) It is computationally tractable both practically and theoretically.

Specifically, our contributions include:

(a) When both the cost coefficients and the data in the constraints of an integer pro-
gramming problem are subject to uncertainty, we propose, following the approach
in Bertsimas and Sim [7], a robust integer programming problem of moderately
larger size that allows to control the degree of conservatism of the solution in terms
of probabilistic bounds on constraint violation.

(b) When only the cost coefficients are subject to uncertainty and the problem is a 0−1
discrete optimization problem on n variables, then we solve the robust counterpart
by solving n + 1 nominal problems. Thus, we show that the robust counterpart of
a polynomially solvable 0 − 1 discrete optimization problem remains polynomi-
ally solvable. In particular, robust matching, spanning tree, shortest path, matroid
intersection, etc. are polynomially solvable. Moreover, we show that the robust
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counterpart of an NP -hard α-approximable 0 − 1 discrete optimization problem,
remains α-approximable.

(c) When only the cost coefficients are subject to uncertainty and the problem is a mini-
mum cost flow problem, then we propose a polynomial time algorithm for the robust
counterpart by solving a collection of minimum cost flow problems in a modified
network.

Structure of the paper. In Section 2, we present the general framework and formu-
lation of robust discrete optimization problems. In Section 3, we propose an efficient
algorithm for solving robust combinatorial optimization problems. In Section 4, we
show that the robust counterpart of an NP -hard 0 − 1 α-approximable discrete opti-
mization problem remains α-approximable. In Section 5, we propose an efficient algo-
rithm for robust network flows. In Section 6, we present some experimental findings
relating to the computation speed and the quality of robust solutions. Finally, Section 7
contains some remarks with respect to the practical applicability of the proposed meth-
ods.

2. Robust formulation of discrete optimization problems

Let c, l, u be n-vectors, let A be an m × n matrix, and b be an m-vector. We consider
the following nominal mixed integer programming (MIP) on a set of n variables, the
first k of which are integral:

minimize c′x
subject to Ax ≤ b

l ≤ x ≤ u
xi ∈ Z, i = 1, . . . , k,

(1)

We assume without loss of generality that data uncertainty affects only the elements
of the matrix A and c, but not the vector b, since in this case we can introduce a new
variable xn+1, and write Ax − bxn+1 ≤ 0, l ≤ x ≤ u, 1 ≤ xn+1 ≤ 1, thus augmenting
A to include b.

In typical applications, we have reasonable estimates for the mean value of the coeffi-
cients aij and its range âij . We feel that it is unlikely that we know the exact distribution
of these coefficients. Similarly, we have estimates for the cost coefficients cj and an
estimate of its range dj . Specifically, the model of data uncertainty we consider is as
follows:

Model of Data Uncertainty U:

(a) (Uncertainty for matrix A): Let N = {1, 2, . . . , n}. Each entry aij , j ∈ N is mod-
eled as independent, symmetric and bounded random variable (but with unknown
distribution) ãij , j ∈ N that takes values in [aij − âij , aij + âij ].
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(b) (Uncertainty for cost vector c): Each entry cj , j ∈ N takes values in [cj , cj +dj ],
where dj represents the deviation from the nominal cost coefficient, cj .

Note that we allow the possibility that âij = 0 or dj = 0. Note also that the only
assumption that we place on the distribution of the coefficients aij is that it is symmet-
ric.

2.1. Robust MIP formulation

For robustness purposes, for every i, we introduce a number �i , i = 0, 1, . . . , m that
takes values in the interval [0, |Ji |], where Ji = {j | âij > 0}. �0 is assumed to be
integer, while �i , i = 1, . . . , m are not necessarily integers.

The role of the parameter �i in the constraints is to adjust the robustness of the
proposed method against the level of conservatism of the solution. Consider the ith con-
straint of the nominal problem a′

ix ≤ bi . Let Ji be the set of coefficients aij , j ∈ Ji that
are subject to parameter uncertainty, i.e., ãij , j ∈ Ji independently takes values accord-
ing to a symmetric distribution with mean equal to the nominal value aij in the interval
[aij − âij , aij + âij ]. Speaking intuitively, it is unlikely that all of the aij , j ∈ Ji will
change. Our goal is to be protected against all cases in which up to ��i� of these coeffi-
cients are allowed to change, and one coefficient ait changes by at most (�i − ��i�)âit .
In other words, we stipulate that nature will be restricted in its behavior, in that only a
subset of the coefficients will change in order to adversely affect the solution. We will
then guarantee that if nature behaves like this then the robust solution will be feasible
deterministically. We will also show that, essentially because the distributions we allow
are symmetric, even if more than ��i� change, then the robust solution will be feasible
with very high probability. Hence, we call �i the protection level for the ith constraint.

The parameter �0 controls the level of robustness in the objective. We are interested
in finding an optimal solution that optimizes against all scenarios under which a num-
ber �0 of the cost coefficients can vary in such a way as to maximally influence the
objective. Let J0 = {j | dj > 0}. If �0 = 0, we completely ignore the influence of
the cost deviations, while if �0 = |J0|, we are considering all possible cost deviations,
which is indeed most conservative. In general a higher value of �0 increases the level of
robustness at the expense of higher nominal cost.

Specifically, the proposed robust counterpart of Problem (1) is as follows:

minimizec′x + max
{S0 | S0⊆J0,|S0 |≤�0}






∑

j∈S0

dj |xj |





subject to
∑

j

aij xj + max
{Si∪{ti }| Si⊆Ji ,|Si |≤��i �,ti∈Ji\Si }






∑

j∈Si

âij |xj | + (�i − ��i�)âiti |xti |




≤ bi , ∀i

l ≤ x ≤ u

xi ∈ Z, ∀i = 1, . . . , k. (2)

We next show that the approach in Bertsimas and Sim [7] for linear optimization
extends to discrete optimization.
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Theorem 1. Problem (2) has an equivalent MIP formulation as follows:

minimize c′x + z0�0 +∑
j∈J0

p0j

subject to
∑

j

aij xj + zi�i +
∑

j∈Ji

pij ≤ bi ∀i

z0 + p0j ≥ djyj ∀j ∈ J0
zi + pij ≥ âij yj ∀i 
= 0, j ∈ Ji

pij ≥ 0 ∀i, j ∈ Ji

yj ≥ 0 ∀j

zi ≥ 0 ∀i

−yj ≤ xj ≤ yj ∀j

lj ≤ xj ≤ uj ∀j

xi ∈ Z i = 1, . . . , k.

(3)

Proof. We first show how to model the constraints in (2) as linear constraints. Given a
vector x∗, we define:

βi(x∗) = max
{Si∪{ti }| Si⊆Ji ,|Si |≤��i�,ti∈Ji\Si }






∑

j∈Si

âij |x∗
j | + (�i − ��i�)âiti |x∗

ti
|




. (4)

This equals to:

βi(x∗) = maximize
∑

j∈Ji

âij |x∗
j |zij

subject to
∑

j∈Ji

zij ≤ �i

0 ≤ zij ≤ 1 ∀i, j ∈ Ji.

(5)

Clearly the optimal solution value of Problem (5) consists of ��i� variables at 1 and one
variable at �i−��i�. This is equivalent to the selection of subset {Si∪{ti}|Si ⊆ Ji, |Si | ≤
��i�, ti ∈ Ji\Si} with corresponding cost function

∑
j∈Si

âij |x∗
j |+ (�i −��i�)âiti |x∗

ti
|.

We next consider the dual of Problem (5):

minimize
∑

j∈Ji

pij + �izi

subject to zi + pij ≥ âij |x∗
j | ∀j ∈ Ji

pij ≥ 0 ∀j ∈ Ji

zi ≥ 0 ∀i.

(6)

By strong duality, since Problem (5) is feasible and bounded for all �i ∈ [0, |Ji |], then
the dual problem (6) is also feasible and bounded and their objective values coincide.
We have that βi(x∗) is equal to the objective function value of Problem (6).
Similarly we can covert the objective function of Problem (2) to a linear one as follows:

β0(x∗) = max
{∑

j∈S0
dj |x∗

j | : |S0| ≤ �0, S0 ⊆ J0

}

= max
{∑

j∈J0
dj |x∗

j |z0j :
∑

j∈J0
z0j ≤ �0, 0 ≤ z0j ≤ 1, ∀j ∈ J0

}

= min
{∑

j∈J0
p0j + �0z0 : z0 + p0j ≥ dj |x∗

j |, z0 ≥ 0, p0j ≥ 0, ∀j ∈ J0

}

(7)
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Substituting to Problem (2), we obtain that Problem (2) is equivalent to
Problem (3). �

While the original Problem (1) involves n variables and m constraints, its robust
counterpart Problem (3) has 2n + m + l variables, where l = ∑m

i=0 |Ji | is the number
of uncertain coefficients, and 2n + m + l constraints.

As we discussed, if less than ��i� coefficients aij , j ∈ Ji participating in the ith
constraint vary, then the robust solution will be feasible deterministically. We next show
that even if more than ��i� change, then the robust solution will be feasible with very
high probability.

Theorem 2. [Bertsimas and Sim [7]] Let x∗ be an optimal solution of Problem (3).
(a) Suppose that the data in matrix A are subject to the model of data uncertainty U, the
probability that the ith constraint is violated satisfies:

Pr




∑

j

ãij x
∗
j > bi



 ≤ B(n, �i) = 1

2n





(1 − µ)

n∑

l=�ν�

(
n

l

)

+ µ

n∑

l=�ν�+1

(
n

l

)




, (8)

where n = |Ji |, ν = �i+n
2 and µ = ν − �ν�. Moreover, the bound is tight.

(b) The bound (8) satisfies

B(n, �i) ≤ (1 − µ)C(n, �ν�) +
n∑

l=�ν�+1

C(n, l), (9)

where

C(n, l) =






1

2n
, if l = 0 or l = n,

1√
2π

√
n

(n − l)l
exp

(

n log

(
n

2(n − l)

)

+ l log

(
n − l

l

))

, otherwise.

(10)
(c) For �i = θ

√
n,

lim
n→∞ B(n, �i) = 1 − �(θ), (11)

where

�(θ) = 1√
2π

∫ θ

−∞
exp

(

−y2

2

)

dy

is the cumulative distribution function of a standard normal.

Remarks.
(a) The bound (8) is independent of x∗.
(b) While Bound (8) is best possible it poses computational difficulties in evaluating

the sum of combination functions for large n. For this reason, we have calculated
Bound (9), which is simple to compute and, as Bertsimas and Sim [7] show, very
tight.
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(c) Eq. (11) is a formal asymptotic theorem that applies when �i = θ
√

n. We can use
the De Moivre-Laplace approximation of the Binomial distribution to obtain the
approximation

B(n, �i) ≈ 1 − �

(
�i − 1√

n

)

, (12)

that applies, even when �i does not scale as θ
√

n.
(d) We make no theoretical claims regarding suboptimality given that we made no prob-

abilistic assumptions on the cost coefficients. In Section 6.1, we apply these bounds
in the context of the zero-one knapsack problem.

3. Robust combinatorial optimization

Combinatorial optimization is an important class of discrete optimization whose decision
variables are binary, that is x ∈ X ⊆ {0, 1}n. In this section, the nominal combinatorial
optimization problem we consider is:

minimize c′x
subject to x ∈ X.

(13)

We are interested in the class of problems where each entry c̃j , j ∈ N = {1, 2, . . . , n}
takes values in [cj , cj + dj ], dj ≥ 0, j ∈ N , but the set X is fixed. We would like to
find a solution x ∈ X that minimizes the maximum cost c′x such that at most � of the
coefficients c̃j are allowed to change:

Z∗ = minimize c′x + max
{S| S⊆N,|S|≤�}

∑

j∈S

dj xj

subject to x ∈ X.

(14)

Without loss of generality, we assume that the indices are ordered in such that d1 ≥
d2 ≥ . . . ≥ dn. We also define dn+1 = 0 for notational convenience. Examples of such
problems include the shortest path, the minimum spanning tree, the minimum assign-
ment, the traveling salesman, the vehicle routing and matroid intersection problems.
Data uncertainty in the context of the vehicle routing problem for example, captures the
variability of travel times in some of the links of the network.

In the context of scenario based uncertainty, finding an optimally robust solution
involves solving the problem (for the case that only two scenarios for the cost vectors
c1, c2 are known):

minimize max(c′
1x, c′

2x)

subject to x ∈ X.

For many classical combinatorial problems (for example the shortest path problem),
finding such a robust solution is NP -hard, even if minimizing c′

ix subject to x ∈ X is
polynomially solvable (Kouvelis and Yu [13]).

Clearly the robust counterpart of an NP -hard combinatorial optimization problem
is NP -hard. We next show that surprisingly, the robust counterpart of a polynomially
solvable combinatorial optimization problem is also polynomially solvable.
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3.1. Algorithm for robust combinatorial optimization problems

In this section, we show that we can solve Problem (14) by solving at most n+1 nominal
problems min f ′

i x, subject to x ∈ X, for i = 1, . . . , n + 1.

Theorem 3. Problem (14) can be solved by solving the n + 1 nominal problems:

Z∗ = min
l=1,...,n+1

Gl, (15)

where for l = 1, . . . , n + 1:

Gl = �dl + min

(

c′x +
l∑

j=1

(
dj − dl

)
xj

)

subject to x ∈ X.

(16)

Proof. Problem (14) can be rewritten as follows:

Z∗ = min
x∈X

(

c′x + max
∑

j∈N

djxjuj

)

subject to 0 ≤ uj ≤ 1, j ∈ N
∑

j∈N

uj ≤ �.

Given a fixed x ∈ X, we consider the inner maximization problem and formulate its
dual. Applying strong duality to this problem we obtain:

Z∗ = min
x∈X

c′x + min

(

�θ +
∑

j∈N

yj

)

subject to yj + θ ≥ djxj , j ∈ N

yj , θ ≥ 0,

which can be rewritten as:

Z∗ = min c′x + �θ +
∑

j∈N

yj

subject to yj + θ ≥ djxj , j ∈ N

yj , θ ≥ 0,

x ∈ X.

(17)

Clearly an optimal solution (x∗, y∗, θ∗) of Problem (17) satisfies:

y∗
j = max(dj x

∗
j − θ∗, 0),

and therefore,

Z∗ = min
x∈X,θ≥0

(

�θ + c′x +
∑

j∈N

max(dj xj − θ, 0)

)

.
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Since X ⊂ {0, 1}n,

max(dj xj − θ, 0) = max(dj − θ, 0) xj , (18)

Hence, we obtain

Z∗ = min
x∈X,θ≥0

(

�θ + c′x +
∑

j∈N

max(dj − θ, 0)xj

)

. (19)

In order to find the optimal value for θ we decompose �+ into the intervals [0, dn],
[dn, dn−1], . . . , [d2, d1] and [d1, ∞). Then, recalling that dn+1 = 0, we obtain

∑

j∈N

max(dj − θ, 0)xj =






l−1∑

j=1

(dj − θ)xj , if θ ∈ [dl, dl−1], l = n + 1, . . . , 2,

0, if θ ∈ [d1, ∞).

Therefore, Z∗ = min
l=1,...,n+1

Zl , where for l = 1, . . . , n + 1:

Zl = min
x∈X,θ∈[dl ,dl−1]

(

�θ + c′x +
l−1∑

j=1

(dj − θ)xj

)

,

where the sum for l = 1 is equal to zero. Since we are optimizing a linear function of θ

over the interval [dl, dl−1], the optimal is obtained for θ = dl or θ = dl−1, and thus for
l = 1, . . . , n + 1:

Zl = min

(

�dl + min
x∈X

(

c′x +
l−1∑

j=1

(dj − dl)xj

)

, �dl−1

+ min
x∈X

(

c′x +
l−1∑

j=1

(dj − dl−1)xj

))

= min

(

�dl + min
x∈X

(

c′x +
l∑

j=1

(dj − dl)xj

)

, �dl−1

+ min
x∈X

(

c′x +
l−1∑

j=1

(dj − dl−1)xj

))

.

Thus,

Z∗ = min

(

�d1 + min
x∈X

c′x, . . . , �dl + min
x∈X

(

c′x +
l∑

j=1

(dj − dl)xj

)

, . . . ,

min
x∈X

(

c′x +
n∑

j=1

djxj

))

.

�
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Remark. Note that we critically used the fact that the nominal problem is a 0-1 discrete
optimization problem, i.e., X ⊆ {0, 1}n, in Eq. (18). For general integer optimization
problems Eq. (18) does not apply.

Theorem 3 leads to the following algorithm.

Algorithm A

1. For l = 1, . . . , n + 1 solve the n + 1 nominal problems Eqs. (16):

Gl = �dl + min
x∈X

(

c′x +
l∑

j=1

(dj − dl)xj

)

,

and let xl be an optimal solution of the corresponding problem.
2. Let l∗ = arg min

l=1,...,n+1
Gl .

3. Z∗ = Gl∗ ; x∗ = xl∗ .

Note that Zl is not in general equal to Gl . If f is the number of distinct values among
d1, . . . , dn, then it is clear that Algorithm A solves f + 1 nominal problems, since if
dl = dl+1, then Gl = Gl+1. In particular, if all dj = d for all j = 1, . . . , n, then Algo-
rithm A solves only two nominal problems. Thus, if τ is the time to solve one nominal
problem, Algorithm A solves the robust counterpart in (f +1)τ time, thus preserving the
polynomial solvability of the nominal problem. In particular, Theorem 3 implies that the
robust counterpart of many classical 0-1 combinatorial optimization problems like the
minimum spanning tree, the minimum assignment, minimum matching, shortest path
and matroid intersection, are polynomially solvable.

4. Robust approximation algorithms

In this section, we show that if the nominal combinatorial optimization problem (13)
has an α-approximation polynomial time algorithm, then the robust counterpart Problem
(14) with optimal solution value Z∗ is also α-approximable. Specifically, we assume that
there exists a polynomial time Algorithm H for the nominal problem (13), that returns
a solution with an objective ZH : Z ≤ ZH ≤ αZ, α ≥ 1.

The proposed algorithm for the robust Problem (14) is to utilize Algorithm H in
Algorithm A, instead of solving the nominal instances exactly. The proposed algorithm
is as follows:

Algorithm B

1. For l = 1, . . . , n + 1 find an α-approximate solution xl
H using Algorithm H for the

nominal problem:

Gl − �dl = min
x∈X



c′x +
l∑

j=1

(dj − dl)xj



 . (20)
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2. For l = 1, . . . , n + 1, let

Zl
H = c′xl

H + max
{S| S⊆N,|S|≤�}

∑

j∈S

dj (xl
H )j .

3. Let l∗ = arg min
l=1,...,n+1

Zl
H .

4. ZB = Zl∗
H ; xB = xl∗

H .

Theorem 4. Algorithm B yields a solution xB with an objective value ZB that satisfies:

Z∗ ≤ ZB ≤ αZ∗.

Proof. Since Z∗ is the optimal objective function value of the robust problem, clearly
Z∗ ≤ ZB . Let l the index such that Z∗ = Gl in Theorem 3. Let xl

H be an α-optimal
solution for Problem (20). Then, we have

ZB ≤ Zl
H

= c′xl
H + max

{S| S⊆N,|S|≤�}
∑

j∈S

dj (xl
H )j

= min
θ≥0





c′xl

H +
∑

j∈N

max(dj − θ, 0)(xl
H )j + �θ





(from Eq. (19))

≤ c′xl
H +

l∑

j=1

(dj − dl)(xl
H )j + �dl

≤ α(Gl − �dl) + �dl (from Eq. (20))

≤ αGl (since α ≥ 1)

= αZ∗. �

Remark. Note that Algorithm A is a special case of Algorithm B for α = 1. Note that it
is critical to have an α-approximation algorithm for all nominal instances (20). In partic-
ular, if the nominal problem is the traveling salesman problem under triangle inequality,
which can be approximated within α = 3/2, Algorithm B is not an α-approximation
algorithm for the robust counterpart, as the instances (20) may not satisfy the triangle
inequality.

5. Robust network flows

In this section, we apply the methods of Section 3 to show that robust minimum cost flows
can also be solved by solving a collection of modified nominal minimum cost flows.
Given a directed graph G = (N , A), the minimum cost flow is defined as follows:
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minimize
∑

(i,j)∈A
cij xij

subject to
∑

{j :(i,j)∈A}
xij −

∑

{j :(j,i)∈A}
xji = bi ∀i ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

(21)

Let X be the set of feasible solutions of Problem (21).
We are interested in the class of problems in which each entry c̃ij , (i, j) ∈ A takes

values in [cij , cij + dij ], dij , cij ≥ 0, (i, j) ∈ A. From Eq. (14) the robust minimum
cost flow problem is:

Z∗ = min c′x + max
{S| S⊆A,|S|≤�}

∑

(i,j)∈S

dij xij

subject to x ∈ X.

(22)

From Eq. (17) we obtain that Problem (22) is equivalent to solving the following
problem:

Z∗ = min
θ≥0

Z(θ), (23)

where
Z(θ) = �θ + min c′x +

∑

(i,j)∈A
pij

subject to pij ≥ dij xij − θ ∀(i, j) ∈ A
pij ≥ 0 ∀(i, j) ∈ A
x ∈ X.

(24)

We next show that for a fixed θ ≥ 0, we can solve Problem (24) as a network flow
problem.

Theorem 5. For a fixed θ ≥ 0, Problem (24) can be solved as a network flow problem.

Proof. We eliminate the variables pij from Formulation (24) and obtain:

Z(θ) = �θ + min c′x +
∑

(i,j)∈A
dij max

(

xij − θ

dij

, 0

)

subject to x ∈ X.

(25)

For every arc (i, j) ∈ A, we introduce nodes i′ and j ′ and replace the arc (i, j) with
arcs (i, i′), (i′, j ′), (j ′, j) and (i′, j) with the following costs and capacities (see also
Figure 1):

cii′ = cij uii′ = uij

cj ′j = 0 uj ′j = ∞
ci′j = 0 ui′j = θ

dij

ci′j ′ = dij ui′j ′ = ∞.

Let G′ = (N ′, A′) be the new direceted graph.
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Fig. 1. Conversion of arcs with cost uncertainties

We show that solving a linear minimum cost flow problem with data as above,
leads to the solution of Problem (25). Consider an optimal solution of Problem (25). If
xij ≤ θ/dij for a given arc (i, j) ∈ A, then the flow xij will be routed along the arcs
(i, i′) and (i′, j) an the total contribution to cost is

cii′xij + ci′j xij = cij xij .

If, however, xij ≥ θ/dij , then the flow xij will be routed along the arcs (i, i′), then
θ/dij will be routed along arc (i′, j), and the excess xij − (θ/dij ) is routed through the
arcs (i′, j ′) and (j ′, j). The total contribution to cost is

cii′xij + ci′j
θ

dij

+ ci′j ′

(

xij − θ

dij

)

+ cj ′j

(

xij − θ

dij

)

= cij xij + dij

(

xij − θ

dij

)

.

In both cases the contribution to cost matches the objective function value in Eq. (25).
�

Without loss of generality, we can assume that all the capacities uij , (i, j) ∈ A
are finitely bounded. Then, clearly θ ≤ θ = max{uij dij : (i, j) ∈ A}. Theorem 5
shows that the robust counterpart of the minimum cost flow problem can be converted
to a minimum cost flow problem in which capacities on the arcs are linear functions of
θ . Srinivasan and Thompsom [18] proposed a simplex based method for solving such
parametric network flow problems for all values of the parameter θ ∈ [0, θ ]. Using this
method, we can obtain the complete set of robust solutions for � ∈ [0, |A|]. However,
while the algorithm may be practical, it is not polynomial. We next provide a polynomial
time algorithm. We first establish some properties of the function Z(θ).
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Theorem 6. (a) Z(θ) is a convex function.
(b) For all θ1, θ2 ≥ 0, we have

|Z(θ1) − Z(θ2)| ≤ |A||θ1 − θ2|. (26)

Proof.
(a) Let (x1, p1) and (x2, p2) be optimal solutions to Problem (24) with θ = θ1 and
θ = θ2 respectively. Clearly, since the feasible region is convex, for all λ ∈ [0, 1],
(λx1 + (1 −λ)x2, λp1 + (1 −λ)p2) is feasible to the problem with θ = λθ1 + (1 −λ)θ2.
Therefore,

λZ(θ1) + (1 − λ)Z(θ2) = c′(λx1 + (1 − λ)x2) + e′(λp1 + (1 − λ)p2) + �(λθ1

+ (1 − λ)θ2) ≥ Z(λθ1 + (1 − λ)θ2),

where e is a vector of ones.
(b) By introducing Lagrange multiplies r to the first set of constraints of Problem (24),
we obtain:

Z(θ)

= max
r≥0

min
x∈X,p≥0





�θ + c′x +

∑

(i,j)∈A
pij +

∑

(i,j)∈A
rij (dij xij − pij − θ)






= max
r≥0

min
x∈X,p≥0





(� −

∑

(i,j)∈A
rij )θ +c′x +

∑

(i,j)∈A
pij (1 − rij ) +

∑

(i,j)∈A
rij dij xij






= max
0≤r≤e

min
x∈X





(� −

∑

(i,j)∈A
rij )θ + c′x +

∑

(i,j)∈A
rij dij xij





, (27)

where Eq. (27) follows from the fact that minp≥0

{∑
(i,j)∈A pij (1 − rij )

}
is unbounded

if any rij > 1 and equals to zero for 0 ≤ r ≤ e.Without loss of generality, let θ1 > θ2 ≥ 0.
For 0 ≤ r ≤ e, we have

−|A| ≤ � −
∑

(i,j)∈A
rij ≤ |A|.

Thus,

Z(θ1) = max
0≤r≤e

min
x∈X





(� −

∑

(i,j)∈A
rij )θ1 + c′x +

∑

(i,j)∈A
rij dij xij






= max
0≤r≤e

min
x∈X





(� −

∑

(i,j)∈A
rij )(θ2 + (θ1 − θ2)) + c′x +

∑

(i,j)∈A
rij dij xij






≤ max
0≤r≤e

min
x∈X





(� −

∑

(i,j)∈A
rij )θ2 + |A|(θ1 − θ2) + c′x +

∑

(i,j)∈A
rij dij xij






= Z(θ2) + |A|(θ1 − θ2).
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Similarly,

Z(θ1) = max
0≤r≤e

min
x∈X





(� −

∑

(i,j)∈A
rij )(θ2 + (θ1 − θ2)) + c′x +

∑

(i,j)∈A
rij dij xij






≥ max
0≤r≤e

min
x∈X





(� −

∑

(i,j)∈A
rij )θ2 − |A|(θ1 − θ2) + c′x +

∑

(i,j)∈A
rij dij xij






= Z(θ2) − |A|(θ1 − θ2). �
We next show that the robust minimum cost flow problem (22) can be solved by

solving a polynomial number of network flow problems.

Theorem 7. For any fixed � ≤ |A| and every ε > 0, we can find a solution x̂ ∈ X with
robust objective value

Ẑ = c′x̂ + max
{S| S⊆A,|S|≤�}

∑

(i,j)∈S

dij x̂ij

such that
Z∗ ≤ Ẑ ≤ (1 + ε)Z∗

by solving 2�log2(|A|θ/ε)�+3 network flow problems, where θ = max{uij dij : (i, j) ∈
A}.
Proof. Let θ∗ ≥ 0 be such that Z∗ = Z(θ∗). Since Z(θ) is a convex function (Theorem
6(a)), we use binary search to find a θ̂ such that

|θ̂ − θ∗| ≤ θ

2k
,

by solving 2k + 3 minimum cost flow problems of the type described in Theorem 5. We
first need to evaluate Z(0), Z(θ/2), Z(θ), and then we need two extra points Z(θ/4)

and Z(3θ/4) in order to decide whether θ∗ belongs in the interval [0, θ/2] or [θ/2, θ ] or
[θ/4, 3θ/4]. From then on, we need two extra evaluations in order to halve the interval
θ∗ can belong to.

From Theorem 6(b)

|Z(θ̂) − Z(θ∗)| ≤ |A||θ̂ − θ∗| ≤ |A| θ

2k
≤ ε,

for k = �log2(|A|θ/ε)�. Note that x̂ is the flow corresponding to the nominal network
flow problem for θ = θ̂ . �

6. Experimental results

In this section we consider concrete discrete optimization problems and solve the robust
counterparts.
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Table 1. Robust Knapsack solutions

� Violation Probability Optimal Value Reduction

0 0.5 5592 0%

2.8 4.49 × 10−1 5585 0.13%

36.8 5.71 × 10−3 5506 1.54%

82.0 5.04 × 10−9 5408 3.29%

200 0 5283 5.50%

6.1. The robust knapsack problem

The zero-one nominal knapsack problem is:

maximize
∑

i∈N

cixi

subject to
∑

i∈N

wixi ≤ b

x ∈ {0, 1}n.
We assume that the weights w̃i are uncertain, independently distributed and follow sym-
metric distributions in [wi − δi, wi + δi]. The objective value vector c is not subject to
data uncertainty. An application of this problem is to maximize the total value of goods
to be loaded on a cargo that has strict weight restrictions. The weight of the individual
item is assumed to be uncertain, independent of other weights and follows a symmetric
distribution. In our robust model, we want to maximize the total value of the goods but
allowing a maximum of 1% chance of constraint violation.

The robust Problem (2) is as follows:

maximize
∑

i∈N

cixi

subject to
∑

i∈N

wixi + max
{S∪{t}| S⊆N,|S|=���,t∈N\S}






∑

j∈S

δj xj + (� − ���)δtxt





≤ b

x ∈ {0, 1}n.
For this experiment, we solve Problem (3) using CPLEX 7.0 for a random knapsack
problem of size, |N | = 200. We set the capacity limit, b to 4000, the nominal weight, wi

being randomly chosen from the set {20, 21, . . . , 29} and the cost ci randomly chosen
from the set {16, 17, . . . , 77}. We set the weight uncertainty δi to equal 10% of the nom-
inal weight. The time to solve the robust discrete problems to optimality using CPLEX
7.0 on a Pentium II 400 PC ranges from 0.05 to 50 seconds.

Under zero protection level, � = 0, the optimal value is 5, 592. However, with full
protection, � = 200, the optimal value is reduced by 5.5% to 5, 283. In Table 1, we
present a sample of the objective function value and the probability bound of constraint
violation computed from Eq. (8). It is interesting to note that the optimal value is margin-
ally affected when we increase the protection level. For instance, to have a probability
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Fig. 2. The tradeoff between robustness and optimality in twenty instances of the 0-1 knapsack problem

guarantee of at most 0.57% chance of constraint violation, we only reduce the objec-
tive by 1.54%. It appears that in this example we do not heavily penalize the objective
function value in order to protect ourselves against constraint violation.

We repeated the experiment twenty times and in Figure 2 we report the tradeoff be-
tween robustness and optimality for all twenty problems. We observe that by allowing a
profit reduction of 2%, we can make the probability of constraint violation smaller than
10−3. Moreover, the conclusion did not seem to depend a lot on the specific instance we
generated.

6.2. Robust sorting

We consider the problem of minimizing the total cost of selecting k items out of a set of
n items that can be expressed as the following integer programming problem:

minimize
∑

i∈N

cixi

subject to
∑

i∈N

xi = k

x ∈ {0, 1}n.

(28)

In this problem, the cost components are subjected to uncertainty. If the model is deter-
ministic, we can easily solve the problem in O(n log n) by sorting the costs in ascending
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order and choosing the first k items. However, under the influence of data uncertainty,
we will illustrate empirically that the deterministic model could lead to large deviations
when the cost components are subject to uncertainty. Under our proposed Problem (14),
we solve the following problem,

Z∗(�) = minimize c′x + max
{S| S⊆J,|S|≤�}

∑

j∈S

dj xj

subject to
∑

i∈N

xi = k

x ∈ {0, 1}n.

(29)

We experiment with a problem of size |N | = 200 and k = 100. The cost and deviation
components, cj and dj are uniformly distributed in [50, 200] and [20, 200] respectively.
Since only k items will be selected, the robust solution for � > k is the same as when
� = k. Hence, � takes integral values from [0, k]. By varying �, we will illustrate
empirically that we can control the deviation of the objective value under the influence
of cost uncertainty.

We solve Problem (29) in two ways. First using Algorithm A, and second solving
Problem (3):

minimize c′x + z� +
∑

j∈N

pj

subject to z + pj ≥ djxj ∀j ∈ N
∑

i∈N

xi = k

z ≥ 0
pj ≥ 0
x ∈ {0, 1}n.

(30)

Algorithm A was able to find the robust solution for all � ∈ {0, . . . k} in less than a
second. The typical running time using CPLEX 7.0 to solve Problem (30) for only one of
the � ranges from 30 to 80 minutes, which underscores the effectiveness of Algorithm A.

We let x(�) be an optimal solution to the robust model, with parameter � and define
Z(�) = c′x(�) as the nominal cost in the absence of any cost deviations. To analyze the
robustness of the solution, we simulate the distribution of the objective by subjecting the
cost components to random perturbations. Under the simulation, each cost component
independently deviates with probability p from the nominal value cj to cj +dj . In Table
2, we report Z(�) and the standard deviation σ(�) found in the simulation for p = 0.2
(we generated 20,000 instances to evaluate σ(�)).

Table 2 suggests that as we increase �, the standard deviation of the objective, σ(�)

decreases, implying that the robustness of the solution increases, and Z(�) increases.
Varying� we can find the tradeoff between the variability of the objective and the increase
in nominal cost. Note that the robust formulation does not explicitly consider standard
deviation. We chose to represent robustness in the numerical results with standard de-
viation of the objective, since standard deviation is the standard measure of variability
and it has intuitive appeal.

In Figure 3 we report the cumulative distribution of cost (for ρ = 0.2) for various
values of � for the robust sorting problem. We see that � = 20 dominates the nominal
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Table 2. Influence of � on Z(�) and σ(�)

� Z(�) % Change in Z(�) σ(�) % Change in σ(�)

0 8822 0 % 501.0 0.0 %

10 8827 0.056 % 493.1 −1.6 %

20 8923 1.145 % 471.9 −5.8 %

30 9059 2.686 % 454.3 −9.3 %

40 9627 9.125 % 396.3 −20.9 %

50 10049 13.91 % 371.6 −25.8 %

60 10146 15.00 % 365.7 −27.0 %

70 10355 17.38 % 352.9 −29.6 %

80 10619 20.37 % 342.5 −31.6 %

100 10619 20.37 % 340.1 −32.1 %
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Fig. 3. The cumulative distribution of cost (for ρ = 0.2) for various values of � for the robust sorting problem

case � = 0, which in turn dominates � = 100 that appears over conservative. In
particular, it is clear that not only the robust solution for � = 20 has lower variability
than the nominal solution, it leads to a more favorable distribution of cost.

6.3. The robust shortest path problem

Given a directed graph G = (N ∪ {s, t}, A), with non-negative arc cost cij , (i, j) ∈ A,
the shortest {s, t} path problem seeks to find a path of minimum total arc cost from the
source node s to the terminal node t . The problem can be modeled as a 0 − 1 integer
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Fig. 4. Randomly generated digraph and the set of robust shortest {s, t} paths for various � values

programming problem:

minimize
∑

(i,j)∈A
cij xij

subject to
∑

{j :(i,j)∈A}
xij −

∑

{j :(j,i)∈A}
xji =






1, if i = s

−1, if i = t

0, otherwise,
x ∈ {0, 1}|A|,

(31)

The shortest path problem surfaces in many important problems and has a wide range
of applications from logistics planning to telecommunications [1]. In these applications,
the arc costs are estimated and subjected to uncertainty. The robust counterpart is then:

minimize
∑

(i,j)∈A
cij xij + max

{S| S⊆A,|S|=�}

∑

(i,j)∈S

dij xij

subject to
∑

{j :(i,j)∈A}
xij −

∑

{j :(j,i)∈A}
xji =






1, if i = s

−1, if i = t

0, otherwise,
x ∈ {0, 1}|A|.

(32)
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Fig. 5. Influence of � on the distribution of path cost for ρ = 0.1
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Fig. 6. The cumulative distribution of cost (for ρ = 0.1) for various values of � for the robust shortest path
problem
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Using Dijkstra’s algorithm [10], the shortest path problem can be solved in O(|N |2),
while Algorithm A runs in O(|A||N |2). In order to test the performance of Algorithm
A, we construct a randomly generated directed graph with |N | = 300 and |A| = 1475
as shown in Figure 4. The starting node, s is at the origin (0, 0) and the terminal node t

is placed in coordinate (1, 1). The nominal arc cost, cij equals to the euclidean distance
between the adjacent nodes {i, j} and the arc cost deviation, dij is set to γ cij , where γ is
uniformly distributed in [0, 8]. Hence, some of the arcs have cost deviations of at most
eight times of their nominal values. Using Algorithm A (calling Dijkstra’s algorithm
|A| + 1 times), we solve for the complete set of robust shortest paths (for various �’s),
which are drawn in bold in Figure 4.

We simulate the distribution of the path cost by subjecting the arc cost to random
perturbations. In each instance of the simulation, every arc (i, j) has cost that is inde-
pendently perturbed, with probability ρ, from its nominal value cij to cij + dij . Setting
ρ = 0.1, we generate 20, 000 random scenarios and plot the distributions of the path
cost for � = 0, 3, 6 and 10, which are shown in Figure 5. We observe that as � increases,
the nominal path cost also increases, while cost variability decreases.

In Figure 6 we report the cumulative distribution of cost (for ρ = 0.1) for various
values of � for the robust shortest path problem. Comparing the distributions for � = 0
(the nominal problem) and � = 3, we can see that none of the two distributions dominate
each other. In other words, even if a decision maker is primarily cost conscious, he might
still select to use a value of � that is different than zero, depending on his risk preference.

7. Conclusions

We feel that the proposed approach has the potential of being practically useful es-
pecially for combinatorial optimization and network flow problems that are subject to
cost uncertainty. Unlike all other approaches that create robust solutions for combinato-
rial optimization problems, the proposed approach retains the complexity of the nominal
problem or its approximability guarantee and offers the modeler the capability to control
the tradeoff between cost and robustness by varying a single parameter �. For arbitrary
discrete optimization problems, the increase in problem size is still moderate, and thus
the proposed approach has the potential of being practically useful in this case as well.
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