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In this paper we derive and exploit duality in general two-stage adaptive linear optimization models. The
equivalent dualized formulation we derive is again a two-stage adaptive linear optimization model. Therefore,

all existing solution approaches for two-stage adaptive models can be used to solve or approximate the dual
formulation. The new dualized model differs from the primal formulation in its dimension and uses a different
description of the uncertainty set. We show that the optimal primal affine policy can be directly obtained from
the optimal affine policy in the dual formulation. We provide empirical evidence that the dualized model in
the context of two-stage lot-sizing on a network and two-stage facility location problems solves an order of
magnitude faster than the primal formulation with affine policies. We also provide an explanation and associated
empirical evidence that offer insight on which characteristics of the dualized formulation make computations
faster. Furthermore, the affine policy of the dual formulations can be used to provide stronger lower bounds on
the optimality of affine policies.
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1. Introduction
Many applications for decision making under uncer-
tainty can be naturally modeled as two-stage adaptive
optimization models. In these models some of the deci-
sions have to be made here-and-now before the realiza-
tion of the uncertain parameter is known. The other
decisions are of a wait-and-see type, which are cho-
sen after the realization of the uncertain parameter is
known. One way of dealing with these problems is via
stochastic optimization. These methods assume that a
probabilistic description of the realization is known and
optimize for expected values. For references on these
techniques we refer to Birge and Louveaux (2011) and
Kali and Wallace (1994). Stochastic models, especially in
a two-stage setting, are known to suffer from the “curse
of dimensionality” and are therefore likely not tractable;
see e.g., Shapiro and Nemirovski (2005). A different
approach is to model these two-stage problems in a
robust setting. Robust optimization techniques do not
require a probabilistic description of the uncertainty
set and have proven to be very useful in a number of
practical applications. A selection of applications that
use a two-stage robust setting are: unit commitment in
the energy sector (Bertsimas et al. 2013, Wang et al.
2013, Zhao and Zeng 2012), emergency supply chain

planning (Ben-Tal et al. 2011), facility location problems
(Ardestani-Jaafari and Delage 2014, Atamtürk and
Zhang 2007, Gabrel et al. 2014a), capacity expansion
of network flows (Ordóñez and Zhao 2007, Yin et al.
2009), and many others; see e.g., the survey papers by
Bertsimas et al. (2011) and Gabrel et al. (2014b).

In the last decade or so, there has been a rise in solu-
tion techniques tailored to solve two-stage optimization
models in a robust setting. One of the first and very
popular methods is the use of affine policies for the
wait-and-see decisions proposed by Ben-Tal et al. (2004).
This method is appealing because it is computation-
ally tractable for problem instances of moderate to
large size. Furthermore, the affine policies appear to be
near optimal in practical applications (Ardestani-Jaafari
and Delage 2014; Ben-Tal et al. 2004, 2005). The use
of affine policies is even provably optimal in some
special cases (Bertsimas et al. 2010, Iancu et al. 2013).
Other methods designed to solve two-stage adaptive
optimization models are: approximation by static solu-
tions (Bertsimas and Goyal 2010), finite adaptability
(Bertsimas and Caramanis 2010), enumeration of ver-
tices of the uncertainty set (Bertsimas and Goyal 2012),
column generation algorithms (Zeng and Zhao 2013),
and iterative partitioning of the uncertainty set (Postek
and Den Hertog 2016, Bertsimas and Dunning 2016).
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In this paper we derive a new dualized formulation
of two-stage adaptive linear models that allow for faster
computations and stronger bounds. More specifically,
the main contributions of this paper can be summarized
as follows:

1. We provide a dualized two-stage adaptive model
for linear two-stage models with continuous wait-and-
see decisions. The new model is derived by consecu-
tively dualizing over the wait-and-see decisions and
the uncertain parameters. The new dualized formu-
lations have the same set of feasible (and optimal)
here-and-now decisions as the original two-stage mod-
els. It has different dimensions, uncertain parameters,
wait-and-see decisions, and constraints than the orig-
inal two-stage adaptive model. Since the model is
again a two-stage adaptive model, all existing solution
techniques for two-stage adaptive models can be used
to solve it.

2. We show that both formulations also have the
same set of feasible and optimal here-and-now decisions
when we solve the models using the popular method of
affine policies. Furthermore, we show how the original
affine policy can be obtained instantly from the affine
policy in the dualized formulation.

3. We describe an algorithm to strengthen the lower
bound method from Hadjiyiannis et al. (2011) to asses
the (sub)optimality of affine policies described using
both affine policies from the original and the dualized
formulation.

4. We provide empirical evidence that the dual-
ized model in the context of two-stage lot-sizing on
a network and two-stage facility location problems
solves an order of magnitude faster than the primal
formulation with affine policies and provides stronger
lower bounds. Furthermore, we provide an explanation
and associated empirical evidence that offer insight on
which characteristics of the dualized formulation make
computations faster.

Our dualized formulation can be used for general
two-stage adaptive linear models with both contin-
uous and integer here-and-now decisions. However,
since we dualize over the second stage variables, the
new dualized formulation only works for continuous
second stage decisions. Furthermore, to end up with
tractable models, our method focuses on polyhedral
uncertainty sets.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the two-stage adaptive optimiza-
tion model and derive the new dualized two-stage
model. We explain the use of affine policies in the
primal and dual formulation in Section 3. Section 4
gives the computational algorithm to obtain stronger
bounds on the optimal value of the fully adaptive
model. In Sections 5 and 6, we present our numerical
results and show the computational advantage of the
dualized formulation. Section 7 gives some concluding
remarks.

Notation. Throughout the paper we write vectors
and matrices in bold font and scalars in normal font.
We use the vector e to denote the vector of all ones
and I for the identity matrix. The vector 0 and matrix
O consist of only zero entries. All inequality signs
represent componentwise inequalities.

2. Duality in Two-Stage Adaptive
Formulations

We first state the usual two-stage formulation in Sec-
tion 2.1. The new dualized formulation is given in
Section 2.2. We also indicate similarities in structure
with the primal formulation and the differences in the
two formulations.

2.1. The Primal Formulation
We consider a general two-stage adaptive optimization
model with continuous wait-and-see decisions. In the
first stage we set the value of the here-and-now deci-
sions x that have to be decided before the realization
of the uncertain parameter is known. The continuous
wait-and-see decisions y ≥ 0 have to be chosen after
the value of the uncertain parameter is revealed. We
take a polyhedral description of the uncertainty set of
the form

U= 8Æ≥ 02 DÆ≤ d91 (1)

with D ∈ �p×L and d ∈ �p. This type of uncertainty
sets includes popular sets such as the box-uncertainty
and budget uncertainty set (Bertsimas and Sim 2004).
The two-stage adaptive optimization problem has a
linear objective and a set of linear uncertain constraints.
With this general setting we can state the following
description of a two-stage adaptive linear optimization
model:

min
x

c>x

s.t. ∀Æ ∈U2 ∃y ≥ 02 Ax + By ≥ RÆ+ r

x ∈X1

(2)

where X⊂�n is a set with additional constraints on the
here-and-now decisions (some of the x variables may be
integer). The wait-and-see variable y has dimension k
and we denote the number of constraints in the model
by m. The matrix R is chosen constant in this model,
so the model only has uncertainty in the right-hand
side. This is mainly done for exposition and all our
results can be extended to the case where R depends
on the here-and-now decision x, for example by taking

R4x5= R0 +

n
∑

i=1

Rixi

for some matrices R01R11 0 0 0 1Rn. For our dual deriva-
tion to work, we must have the matrix B to be fixed
independent of Æ. Hence, we only consider the case

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

17
1.

23
3.

82
] 

on
 2

4 
M

ay
 2

01
6,

 a
t 1

3:
22

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Bertsimas and de Ruiter: Duality in Two-Stage Adaptive Linear Optimization
502 INFORMS Journal on Computing 28(3), pp. 500–511, © 2016 INFORMS

of fixed recourse. Without loss of generality, there is
no uncertainty in the objective function and it only
includes here-and-now decisions. Objectives including
uncertain parameters and wait-and-see decisions can
be modelled as an instance of (2) using an epigraph
formulation; see Ben-Tal et al. (2009, pp. 10–11). These
epigraph formulations are also used in the models of
our numerical examples in Sections 5 and 6.

2.2. The New Dualized Formulation
The main contributions of this paper come from
Theorem 1, giving a dual formulation of (2).

Theorem 1. The here-and-now decision x is feasible (and
optimal) for (2) with nonempty uncertainty set U as in (1)
if and only if x is feasible (and optimal) for

min
x

c>x

s0t0 ∀w ∈V2 ∃Ë≥ 02

{

w>4Ax − r5− d>Ë≥ 01
D>Ë≥ R>w1

x ∈X1 (3)

where V= 8w ≥ 02 B>w ≤ 01 e>w = 19.

The proof of this theorem is split into two parts.
The first part comes from a result known in the lit-
erature and the second part is the new contribution
leading to the dualized formulation. The result from
the literature transforms (2) into a bilinear optimiza-
tion model by applying duality to the wait-and-see
variables. The result from this part is used frequently
in the literature, in various settings, to solve two-stage
adaptive optimization problems using column gen-
eration and Benders decomposition type algorithms
(see e.g., Bertsimas et al. 2013, Minoux 2011, Thiele
et al. 2009, Zeng and Zhao 2013, and Zhao and Zeng
2012) or to derive an exact solution for special cases
(Ordóñez and Zhao 2007). This known result is given
in Lemma 1.

Lemma 1. The here-and-now decision x is feasible (and
optimal) for (2) if and only if x is feasible (and optimal) for

min
x∈X

max
Æ∈U

max
w≥0

{

c>x + w>4RÆ+ r − Ax5 � B>w ≤ 0
}

0 (4)

Proof. For a given x ∈X we can write (2) as

min
x∈X

max
Æ∈U

min
y≥0

8c>x � Ax + By ≥ RÆ+ r90

The result then follows by dualizing over y. �
Note that for every Æ the variable w ensures that

the problem returns � whenever there exists a Æ that
violates the constraints in the original model (2). The
result from Lemma 1 is also used in Kuhn et al. (2011)
to assess the suboptimality of affine policies in a two-
stage stochastic setting. Their bound can also be used in

robust settings, but one has to assign a distribution
to the uncertainty set a priori. The authors explain
that in that case the quality of the bound depends on
the a priori distribution that is chosen. For the rest
of the proof we first dualize (4) further to end up
with an equivalent two-stage adaptive optimization
formulation.

Proof of Theorem 1. Consider, for fixed w, the inner
maximization problem in (4). Dualizing over Æ gives

min
x∈X

max
w≥0

min
Ë≥0

{

c>x + w>4r − Ax5+ d>Ë � D>Ë≥ R>w1

B>w ≤ 0
}

= min
x∈X

max
w∈Ṽ

min
Ë≥0

{

c>x + w>4r − Ax5

+ d>Ë � D>Ë≥ R>w
}

1 (5)

where in the last line we introduced Ṽ = 8w ≥ 0:
B>w ≤ 09. Introducing a variable � we write the model
using an epigraph formulation

min
x1�

{

c>x+�
}

s.t. ∀w∈Ṽ2 ∃Ë≥02

{

w>4r−Ax5+d>Ë≤�1

D>Ë≥R>w1

x∈X0 (6)

To end up with our final result (3) we have to prove
that � = 0 for any optimal solution and that we can
add the additional restriction e>w = 1 to bound the
uncertainty set Ṽ without affecting the set of feasible
solutions. From (5) it follows that there has to be an
optimal adaptive policy Ë∗4w5 that satisfies

d>4Ë∗4w55= min
Ë≥0

8d>Ë � D>Ë≥ R>w90

Note that this policy is not only worst-case optimal,
but chooses the best wait-and-see decision Ë4w5 for
every scenario w. For the scenario 0 ∈ Ṽ we have

d>4Ë∗4055 = min
Ë≥0

8d>Ë � D>Ë≥ 09

= min
Ë≥0

max
Æ≥0

8Ë>4d − DÆ59= 01

where the last equality holds since U = 8Æ ≥ 02
DÆ≤ d9 is nonempty. Using this optimal decision for
the parameter 0 ∈ Ṽ, we see that

� ≥ 0>4r − Ax5+ d>Ë∗405= 00 (7)

Now, let t ≥ 0 and w ≥ 0. Then we have

d>4Ë∗4tw55 = min
Ë≥0

{

d>Ë �D>Ë≥R>4tw5
}

= min
Ë≥0

{

d>4tË5 �D>Ë≥R>w
}

=d>4tË∗4w550

Hence, we can impose scalar multiplicity on the
adaptive policy Ë∗4w5 without affecting the value of
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Table 1 Comparing Dimensions of Uncertainty Parameters, Variables,
and Number of Constraints in the Original Two-Stage
Adaptive Formulation (2) and Our New Dualized
Formulation (3)

Primal Dual
formulation (2) formulation (3)

No. of uncertain parameters L m

No. of wait-and-see decisions k p

No. of constraints on variables m L+ 1
No. of constraints on uncertain parameter p k + 1

d>4Ë∗4w55. That is, for every w ∈ Ṽ and scalar t ≥ 0
we impose Ë∗4tw5 = tË4w5. From (7) we have that
� ≥ 0. Suppose for the sake of contradiction that for an
optimal here-and-now decision 4x1�5 we have � > 0.
Then there exist an w ∈ Ṽ, w 6= 0 such that

w>4r − Ax5+ d>Ë∗4w5= � > 00

Since Ṽ is a cone, we have that 4tw5 ∈ Ṽ for every t ≥ 0
and w ∈ Ṽ. Therefore, we have by scalar multiplicity
of Ë∗4w5:

4tw5>4r − Ax5+ d>Ë∗4tw5= t� > �1 for all t > 10

This contradicts the assumption that � > 0 is feasible.
Hence, we must have � = 0. Finally, consider a solution
that is feasible for all values in the further restricted
uncertainty set

V = 8w ≥ 02 B>w ≤ 01 �w�1 = 19

= 8w ≥ 02 B>w ≤ 01 e>w = 190

Then, by scalar multiplicity of Ë∗4w5, we can directly
construct the other feasible wait-and-see decisions for
all other w ∈ Ṽ (with �w�1 6= 1). �

Any two-stage adaptive optimization model with
fixed recourse, continuous wait-and-see decisions and
a polyhedral uncertainty set can be readily formulated
as an instance of (2). Theorem 1 then directly provides
practitioners with the alternative dual formulation (3).
Table 1 highlights some differences such as the number
of wait-and-see variables, uncertain parameters and
constraints in the primal and dual formulation. In our
numerical examples in Section 5 and 6 we clarify these
differences with explicit values for m, k, L, and p.

3. Solving the Primal and Dual
Formulation with Affine Policies

The model (3) is again a two-stage adaptive optimiza-
tion model with a nonnegative bounded polyhedral
uncertainty set and is therefore another instance of (2).
Hence, we can directly apply all exact and approxima-
tion methods to solve adaptive optimization problems

mentioned in the introduction. We first show the equiv-
alence of the dual formulation with the nonadaptive
robust counterpart in the static case. We then continue
to show that the optimal solutions of both formulations
are the same when we solve the models with affine
policies.

3.1. Static Robust Optimization
If we take B = O, then (2) is the following robust
optimization model without wait-and-see decisions:

min
x

c>x

s.t. ∀Æ ∈U2 Ax ≥ RÆ+ r1

x ∈X1 (8)

where U is as in (1). This problem is hard to solve in
its current form since each constraint has to hold for
an infinite number of values for Æ. To reformulate the
problem, we can consider the uncertainty constraint-
wise (see Ben-Tal et al. 2009), i.e., we only have to look
at one row

∀Æ ∈U2 Aix ≥ RiÆ+ ri (9)

at a time, where Ai1Ri1 and ri are respectively the
ith row of A1R1 and r. To make this model tractable
we can reformulate each constraint using standard
duality techniques to obtain the robust counterpart; see
e.g., Ben-Tal et al. (2009).

Lemma 2 (Robust Counterpart). Constraint (9) is
satisfied if and only if there exists a � i ∈�p such that

Aix −� i>d ≥ ri1

D>� i
≥ Ri1

� i
≥ 00

Note that this dualization approach can also be used
for any other polyhedral uncertainty set. For notational
convenience we shall use matrix variables for the rest
of the section. If we write ç= 6� i1 0 0 0 1�m7, then by
Lemma 2 we have that (8) is equivalent to

min
x1ç

c>x1

s.t. Ax −ç>d ≥ r1

D>ç≥ R>1

x ∈X1 ç≥ O0 (10)

We can also find a dual formulation for the static
model (8) using the dual formulation that is derived
in Theorem 1. In that way, we end up with the same
dual formulation as in (3), but with the simple uncer-
tainty set

V= 8w ≥ 02 e>w = 190 (11)
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For these robust models with B = O the uncertainty
set (11) has only m extreme points e11e21 0 0 0 1em. As
shown in Bertsimas and Goyal (2012, Lemma 1), linear
policies are optimal if there are only m extreme points,
where m is the size of the uncertainty set. Furthermore,
by taking the linear policy Ë4w5=çw in (3) we end
up with the same robust counterpart as (10).

3.2. Solving the Two-Stage Formulations with
Affine Policies

Let us now return to the general case in which B 6= O,
so we do need to take the wait-and-see decisions y into
account. In principle, an optimal policy y4Æ5 in (2) can
be any function of the uncertain parameter Æ. However,
this results in an intractable model where we would
have to optimize over all possible functions. To come
up with tractable models, Ben-Tal et al. (2004) suggest
restricting the wait-and-see decisions to be affine in Æ:

y4Æ5= u + VÆ1

where u ∈�m and V ∈�m×L are respectively a vector
and a matrix of here-and-now variables. Although
this restriction might seem very severe, it performs
very well in practical applications (Ben-Tal et al. 2004,
2005), and is even provably optimal in some specific
cases (Bertsimas et al. 2010, Iancu et al. 2013). With
this decision rule, we obtain the following robust
counterpart for (2) with affine policies:

min
x1u1V

c>x

s.t. ∀Æ ∈U2

{

Ax + B4u + VÆ5≥ RÆ+ r1
u + VÆ≥ 01

x ∈X0 (12)

This model does not have wait-and-see variables. There-
fore, we can apply Lemma 2 to reformulate each
constraint and obtain the robust counterpart. Intro-
ducing the auxiliary (matrix) variables ç ∈�p×m and
æ ∈�p×k we can write down the robust counterpart as

min
x1u1V1ç1æ

c>x

s.t. Ax + Bu −ç>d ≥ r1

BV ≥ R −ç>D1

u −æ>d ≥ 01

D>æ+ V> ≥ O1

ç1æ≥ O1

x ∈X0 (13)

For the dualized formulation we can also impose
linear restrictions, i.e.,

Ë4w5= Qw1 (14)

where we now introduce here-and-now variables
Q ∈�p×m to construct the decision rule. Note that we
restricted ourselves to linear policies in the dual formu-
lation instead of affine policies. However, leaving out
the constant term does not restrict the set of feasible
and optimal here-and-now decisions as follows from
the next proposition.

Proposition 1. If 4x, Ë4w5 = q + Qw5 is feasible
for (3), then 4x1 �̃4w5= Q̃w5 with Q̃ = qe> + Q is also
feasible.

Proof. For all w ∈V we have e>w = 1. Therefore,
for all w ∈V the following relation holds

�̃4w5= Q̃w = 4qe>
+ Q5w = q + Qw =Ë4w50

Hence, if Ë4w5 is a feasible policy for (15), then so
is �̃4w5. �

Substituting the linear policy (14) in (3), we obtain
the following model:

min
x1Q

c>x

s.t. ∀w ∈V2











w>4Ax − r5− d>4Qw5≥ 01
D>Qw ≥ R>w1

Qw ≥ 01

x ∈X0 (15)

A robust counterpart for (15) can be derived using stan-
dard linear programming dualization as in Lemma 2.
With the introduction of the auxiliary variables Ø ∈�k,
å ∈�k×L1 and ì ∈�k×p, the resulting robust counter-
part can be written as

min
x1Q1Ø1ì1å

c>x

s.t. Ax + BØ− Q>d ≥ r1

Bå≥ R − Q>D1

Bì+ Q> ≥ O1

Ø≥ 01 å1 ì≥ O1

x ∈X0 (16)

Theorem 2 shows that the primal and dual formulation
have the same set of feasible (and optimal) here-and-
now decisions.

Theorem 2. The solution 4x1Q1Ø1ì1å5 is feasible for
(16) if and only if 4x1u1V1ç1æ5 is feasible for (13), where

u = Ø+ìd1

V = å−ìD1

ç = ì>B>
+ Q1

æ = ì>0
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Table 2 Comparing the Number of Affine Constraints and Sign
Restrictions in (13) and (16)

Primal Dual
formulation (13) formulation (16)

No. of affine constraints 41 + L54m+ k5 m41 + L+ p5

No. of sign restrictions p4m+ k5 k41 + L+ p5

The proof is direct and therefore omitted. Theorem 2
is not only useful because it proves equivalence of
the primal and dual formulation with affine policies.
It also allows us to solve the dual formulation (16)
with affine policies and directly obtain the optimal
affine policy of the original formulation (or vice versa).
Despite this equivalence there may be significant com-
putational benefits from solving two stage problems
using the dualized formulation rather than the primal
formulation. This can be seen by comparing the two
robust counterparts (13) and (16). We compare the
number of affine constraints and the number of sign
restrictions in Table 2. We use the same parameters as
in Table 1 for the number of uncertain parameters (L),
the number of wait-and-see decisions (k), the number
of affine constraints on the variables (m) and the num-
ber of affine constraints in the uncertainty set (p). We
observe that the total number of constraints (affine
constraints and sign restrictions) is the same in both
formulations. However, there is a difference in the
break down into the number of affine constraints and
the number of sign restrictions. This is important since
sign restrictions are much easier to handle by solvers
than affine constraints. From Table 2 we see that for a
large number of wait-and-see decisions k, relative to
the number of constraints in the original model and
uncertainty set (m and p), the dual formulation (16)
can most likely be solved more efficiently than the pri-
mal formulation (13). We observe these computational
benefits in our numerical examples in Section 5 and 6
where we present Table 2 with some explicit values for
L1k1m, and p.

Finally, we note that the models (12) and (15) can
also be solved via cutting plane methods (Mutapcic
and Boyd 2009). There have been extensive numerical
studies that show that in some cases cutting plane
algorithms require slightly less computation time than
solving the robust counterpart constructed by Lemma 2
(Fischetti and Monaci 2012, Bertsimas et al. 2016). We
have also solved our numerical examples with the
cutting plane algorithm described in those papers.
As with the reformulation approach, we observe that
the dual formulation (15) can be solved an order
of magnitude faster than the primal problem. This
approach is, however, not elaborated further for two
reasons. First, to construct the primal solution from
the dual solution by Theorem 2, we need the auxiliary
variables that are introduced by the reformulation.

Second, initial findings showed that the cutting plane
algorithm is much slower for the problems considered
Sections 5 and 6. We were only able to solve the smaller
instances in reasonable time via cutting planes.

4. Stronger Bounds on the Optimality
Gap of Affine Policies

In general, the restriction from fully adaptive policies to
affine policies is an approximation of the fully adaptive
solution, for both the primal and dual formulation. It
is important to provide methods that can efficiently
determine bounds on the (sub)optimality of affine
policies. Here we extend a method that was first
presented in Hadjiyiannis et al. (2011) to provide
bounds on the optimality gap of affine policies. We
first explain the initial idea from Hadjiyiannis et al.
(2011) and then describe the algorithm that provides
stronger bounds.

The main idea is to solve the fully adjustable model (2)
only for a finite subset of the uncertainty set. Clearly,
any optimal solution to this model results in a lower
bound since we only guarantee feasibility for a strict
subset of the uncertainty region. If we denote the finite
subset by 8Æ11Æ21 0 0 0 1ÆN̄ 9, then we end up with the
following equivalent deterministic optimization model

min
x1y110001yN̄

c>x

s.t. Ax + Byi ≥ R� i + r1 ∀ i = 11 0 0 0 1 N̄ 1

x ∈X1 y11 0 0 0 1yN̄ ≥ 00 (17)

The crucial question is, of course, which scenarios to
include. It is shown by Bertsimas and Goyal (2012) that
the lower bound is tight if we include all extreme points
of the uncertainty set. This is in practice undoable
since there can be a huge number of extreme points,
each resulting in extra variables and constraints in (17).
Another straightforward way would be to sample N̄
scenarios uniformly at random from V. The model (17)
remains tractable for relatively large N̄ , but for all our
examples we obtain useless bounds, even when the
number of random samples N̄ is as big as 105. We
therefore have to pick the scenarios in a more specific
way. To do so, we first introduce the notion of binding
scenarios.

Definition 1 (Binding Scenarios). Let f 2 U × X
→� be a function of the uncertain parameter Æ∈U
and here-and-now decision x ∈X. For a given x ∈X the
parameter Æ̂ is called binding for the robust constraint

f 4Æ1x5≤ 01 ∀ � ∈U

if f 4Æ̂1x5= 0.
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In the primal formulation with affine policies we only
have here-and-now decisions x1u and V. Furthermore,
each robust constraint is linear in the here-and-now
decision and the uncertain parameter. Therefore, a
binding scenario can easily be found for each constraint
by solving a small linear optimization model Æ̂ =

arg maxÆ∈U f 4Æ1x5 and checking whether the maximum
is equal to zero (up to a certain precision). The hope is
that scenarios that are binding the solution with affine
policies are also binding the fully adaptive solution.

The method by Hadjiyiannis et al. (2011) only uses
the information derived from the primal formula-
tion with affine policies (2). Using Theorem 2 we can
directly construct the optimal affine policy in the dual
formulation once the optimal affine policy in the primal
formulation is known. Using this other affine policy
we can construct another subset of V consisting of
binding scenarios in the dual formulation. The resulting
deterministic model of the dual formulation with a
finite subset 8w11w21 0 0 0 1wM̄ 9 is given by

min
x1Ë11 0001�M̄

c>x

s.t. 4wj5>4Ax−r5−d>Ëj ≥01 ∀ j=110001M̄1

D>Ëj ≥R>wj1 ∀ j=110001M̄1

x∈X1Ë110001ËM̄ ≥00 (18)

Combining the constraints from (17) and (18) results
in a model that provides a stronger lower bound than
the one that only uses the binding scenarios from the
primal formulation. We now provide Algorithm 1,
which provides the strengthened bound on the optimal
value of the fully adaptive model. Step 1 provides
us with a feasible solution and an upper bound on
the optimal value of the fully adaptive problem. The
objective value of the model in step 4 gives us the new
lower bound. A binding scenario for each constraints
in (12) and (15) can be found directly using the opti-
mal affine policies from steps 1 and 2. We omit here
the elaborate description of a more efficient way to
finding the set of binding scenarios in step 3 via KKT
conditions, which is described in Hadjiyiannis et al.
(2011). However, step 3 is not the most time consuming
step, because solving the model with affine policies in
step 1 takes by far the most time. Finally, we note that
we can also solve the dual formulation (16) with affine
policies in step 1 and obtain the primal affine policy in
step 2 using Theorem 2.

Algorithm 1 (Stronger bounds on optimality of affine
policies)
1. Solve (13) to get optimal here-and-now x, affine

policy y4Æ5= u + VÆ and auxiliary variables ç1æ.
2. Construct the dual affine policy Ë4w5= Qw using

Theorem 2.

3. Find the binding scenarios 8Æ11Æ21 0 0 0 1ÆN̄ 9 in (12)
and 8w11w21 0 0 0 1wM̄ 9 in (15).

4. Solve the sampled problem with binding scenarios
for the primal and dual

min
x1 y110001yN̄1Ë110001ËM̄

c>x

s.t. Ax + Byi ≥ RÆi + r1 ∀ i = 11 0 0 0 1 N̄ 1

y11 0 0 0 1yN̄ ≥ 01

4wj5>4Ax − r5− d>�j ≥ 01
∀ j = 11 0 0 0 1 M̄1

D>Ëj ≥ R>wj1 ∀ j = 11 0 0 0 1 M̄1

Ë11 0 0 0 1ËM̄ ≥ 01

x ∈X0

5. Example 1: Lot-Sizing on a Network
In this section we present a natural example in which
(15) takes an order of magnitude less time to solve than
the primal formulation (12). The new lower bound on
the fully adaptive model (2) derived from Algorithm 1
is much stronger than the lower bound from Hadjiyian-
nis et al. (2011) that only used the binding scenarios
from the primal formulation.

5.1. Problem Setting
In lot sizing on a network we have to determine
the stock allocation xi for i = 11 0 0 0 1N stores prior to
knowing the realization of the demand at each location.
The demand Æ is uncertain and assumed to be in a
budget uncertainty set

U= 8Æ2 0 ≤ Æ≤ �̂e1 e>Æ≤ â90

After we observe the realization of the demand we
can transport stock yij from store i to store j at cost tij
in order to meet all demand. The aim is to minimize
the worst case storage costs (with unit costs ci) and
the cost arising from shifting the products from one
store to another. This network flow model can now be
written as a specific instance of the primal problem (2)
as follows:

min
x1�

�

s.t. ∀Æ∈U2 ∃y≥02



































�≥

N
∑

i=1

cixi+
N
∑

i=1

N
∑

j=1

tijyij1

�i ≤
N
∑

j=1

yji−
N
∑

j=1

yij +xi1

i=110001N1

0≤xi ≤Ki i=110001N1 (19)

where the first line in (19) is for the epigraph formula-
tion. The second line contains the balance equations:
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we have to shift stock to and from node i such that the
initial storage plus the net shift in stock still exceeds
the demand at node i. The last constraints restrict the
capacity of the stock at each node. Note that this model
can be seen as a network flow model with multiple
sources and multiple sinks.

5.2. Test Case and Numerical Results
We pick N ∈ 8101201301 0 0 0 11009 locations uniformly at
random from 6011072. Let tij , the cost to transport one
unit of demand from location i to j , be the Euclidean
distance and the unit storage cost ci be equal to 20. The
individual maximum demand �̂ and the capacity Ki of
each store is set to 20 units. The total demand in the
network is set to â = 20

√
N . This is to avoid trivial and

unrealistic cases where either all demand can occur at
a single store (â = 20) or where the demand in each
store is independent (â = 20N ). All computations were
carried out with Gurobi 6.0.3 (Gurobi Optimization
2015) on an Intel i7-4770 3.40 GHz Windows computer
with 8 GB RAM. All modeling was done using the
modeling language JuMP (Lubin and Dunning 2015).

We solve both (13) and (15) and depict the average
solution times over 10 runs in Table 3, as well as the
objective value and the lower bounds. The stock alloca-
tion (the here-and-now decision) for an instance with
N = 30 is depicted in Figure 1. The lower bound from
the primal is obtained using the method from Had-
jiyiannis et al. (2011). The primal/dual bound is the
strengthened bound resulting from Algorithm 1. Solv-
ing the model via the new dualized formulation (16)
reduces the computation an order of magnitude com-
pared with the original primal formulation (13). For
the larger instances we see that the primal formulation
is approximately 20 times slower. These results are
averaged over 10 runs to avoid random peak perfor-
mances, but in each individual run we observed the

Table 3 Compare Performance of Primal and Dualized Formulation
with Affine Policies for the Lot-Sizing Example

Solver time (sec) Lower bound (gap%)
Objective

N Primal Dual value Primal Primal/Dual

10 < 001 < 001 928 797 (14.0%) 824 (11.1%)
20 003 001 11353 1,113 (17.7%) 1,190 (12.0%)
30 206 008 11670 1,356 (18.8%) 1,465 (12.3%)
40 1108 206 11947 1,562 (19.8%) 1,728 (11.3%)
50 4200 703 21188 1,728 (21.0%) 1,934 (11.6%)
60 14202 2005 21421 1,912 (21.0%) 2,160 (10.8%)
70 36600 4103 21598 1,996 (23.2%) 2,312 (11.0%)
80 82609 8807 21781 2,136 (23.2%) 2,495 (10.3%)
90 1164701 17908 21953 2,252 (23.8%) 2,641 (10.6%)
100 4102602 23100 31130 2,408 (23.1%) 2,799 (10.6%)

Notes. The percentages in the last columns depict the optimality gap derived
from each lower bound compared to the objective value. All results are
averaged over 10 runs.

0 2 4 6 8 10

0

2

4

6

8

10

Figure 1 Stock Allocation for an Instance with 30 Stores on the
Grid 6011072

Notes. The filled dots have stock, and the larger the dots, the more stock is
allocated. The open dots are stores that do not have any stock allocated.

significant decrease in computation time. The strength-
ened primal/dual bound from Algorithm 1 is much
tighter than the primal bound, more than halving the
optimality gap for the larger instances.

5.3. Why Is the Dual Formulation Faster?
To understand the significantly faster computation
time of the dual formulation displayed in Table 3, we
look at the dimensions (number of uncertain parame-
ters, wait-and-see decisions, constraints on variables,
and constraints on uncertain parameters) for the case
N = 20. We give the values of these dimensions in
Table 3 using the same format as is in Table 1. We
observe that the primal and dual formulation have the
same characteristics, except for the number of wait-
and-see decisions and the number of constraints on
the uncertain parameter in the uncertainty set. Given
these values, we can explicitly calculate the number
of affine constraints and the number of sign restric-
tions using the formulas from Table 2. The resulting
number of constraints and sign restrictions are given

Table 4 Comparing Dimensions of Variables, Uncertainties, and
Number of Constraints in the Primal and Dual Formulation
for the Lot-Sizing Instance with N = 20 Stores

Primal Dual
formulation (2) formulation (3)

No. of uncertain parameters 20 21
No. of wait-and-see decisions 400 21
No. of constraints on variables 21 21
No. of constraints on uncertain parameter 21 401
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in Table 5. We observe that the primal formulation
(13) has about 50 times more affine constraints than
the dual formulation (16). The dual formulation does
have more sign restrictions on its variables, but these
are significantly simpler for solvers. To investigate the
claim that the number of affine constraints are indeed
the cause of the reduction in computation time, we
adapt the N = 20 instance from the network lot-sizing
model (19). From Table 2 we see that increasing p, the
number of affine constraints in the uncertainty set U,
leads to an increase of affine constraints in the dual
formulation with affine policies. At the same time,
the value of p does not affect the number of affine
constraints in the primal formulation. To increase p, we
add nonredundant constraints of the following type to
the polyhedral description of U:

∑

i∈S

�i ≤ 20
√

�S�1 (20)

where S ⊂ 811 0 0 0 1N9 is a random subset of size 1
2N .

The number of constraints p can be increased at will by
adding more of these constraints. Note that increasing p
also increases the total number of variables and the
number of sign constraints, but these grow in more or
less the same order of magnitude in both formulations.
If we consider the case N = 20, then we find that the
number of affine constraints in (13) and (16) is equal
when the number of constraints in the uncertainty
set U equals p = 400. Note that p ≥ 21, since we need 21
constraints to describe the budget uncertainty set. The
case with p = 21 is therefore just our original network
lot-sizing problem (19). We measure the difference in
computation time between the primal and the dual
formulation by the quotient

Solver time for (13)
Solver time for (16)

0

In Figure 2, we plotted this quotient for each random
instance with p ∈ 8211221 0 0 0 1110009 constraints in the
uncertainty set. We already know from Table 3 that the
dual formulation with affine policies solves the original
instance three or more times faster than the primal
formulation. If we start adding constraints, the compu-
tational advantage progressively decreases and, after a
certain point, disappears.

Table 5 Comparing the Number of Affine Constraints and Sign
Restrictions in (13) and (16) for the Lot-Sizing Instance
with N = 20 Stores

Primal Dual
formulation (13) formulation (16)

No. of affine constraints 81841 882
No. of sign restrictions 81841 161800
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Figure 2 The Computation Time of the Primal
Formulation (13) Divided by the Time Needed to Solve the
Primal Formulation (13) for N = 20 and Various Number of
Affine Constraints in the Uncertainty Set p

Notes. For p = 400 both (13) and (16) have the same number of affine
constraints. Values above the horizontal line at 1 indicate that the dual
formulation is solved faster than the primal formulation and vice versa for
values smaller than 1.

6. Example 2: Facility Location Problem
The second example we consider is a facility location
problem that has also been studied in Ardestani-Jaafari
and Delage (2014) and Baron et al. (2011). Similar
two-stage adaptive models can be found in Zeng
and Zhao (2013). In our results we again observe a
significant reduction in computational time required for
solving the dualized formulation with affine policies
over the primal formulation with affine policies. For
this problem, however, the strengthened bounds from
Algorithm 1 only slightly improve the bounds obtained
from the primal formulation.

6.1. Problem Setting
We consider a facility location problem where we can
build factories at candidate sites s ∈ S = 811 0 0 0 1 S9,
which have to serve customers c ∈C= 811 0 0 0 1C9 in the
area. The uncertain demand for customer c is modelled
as 41−�c5d̄c, with d̄c the nominal demand of customer c
and �c the uncertain shock in the demand. We take
again a budget uncertainty set of the form

U=
{

Æ2 0 ≤ Æ≤ �̂e1 e>Æ≤ â
}

1

where â is our budget parameter.1 There are two types
of decisions in this model. First, there are strategic

1 In fact, Ardestani-Jaafari and Delage (2014) also consider negative
values of the uncertainty parameter. It is not hard to see that these
are nonbinding scenarios and we can therefore use this uncertainty
set instead.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

17
1.

23
3.

82
] 

on
 2

4 
M

ay
 2

01
6,

 a
t 1

3:
22

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Bertsimas and de Ruiter: Duality in Two-Stage Adaptive Linear Optimization
INFORMS Journal on Computing 28(3), pp. 500–511, © 2016 INFORMS 509

here-and-now decisions that have to be decided before
the demand is known. We have a binary variable xs to
decide whether the facility at site s is opened and a
continuous variable ps to set the capacity level at each
opened facility site. Second, there are wait-and-see
decisions ysc on the production at facility s, which
is transported to customer c. Each unit of demand
can generate a revenue of �. There are also several
costs incurred for the various strategic and operations
decisions. Opening a facility s has a fixed cost fs and a
cost of bs per unit of capacity installed. The production
of one unit at facility s has cost gs and transporting
the goods to customer c bears an additional cost hsc.
The goal is to maximize the total profit. This problem
can be modelled as a two-stage adaptive optimization
model (Ardestani-Jaafari and Delage 2014):

max
t1x1p

{

�−
∑

s∈S

4bsps+fsxs5

}

s.t. ∀Æ∈U2 ∃y≥02











































∑

s∈S1c∈C

4�−gs−hsc5ysc ≥�1

∑

c∈C

ysc ≤ps1 ∀s∈S1

∑

s∈S

ysc ≤ d̄c−�cd̄c1 ∀c∈C1

p≤Mx1x∈80119N 0 (21)

Note that we have a maximization objective, but this
can easily be turned into a minimization objective
by the relation maxx∈X f 4x5= −minx∈X4−f 4x55 before
applying Theorem 1.

6.2. Test Case and Numerical Results
We consider the same setting as in Ardestani-Jaafari and
Delage (2014), which is based on the setup of an earlier
paper on robust facility location planning by Baron et al.
(2011). We randomly generate C customers and S sites
on a unit square. For the cost parameters we take fs =

501000, bs = 001, gs = 001, � = 1. The nominal demand
is drawn uniformly at random from 6175001225007
and �̂ = 0015. The transportation cost tij is just the
Euclidean distance between two points i and j . We take
S = 10 possible sites and C ∈ 8101201301401509. The
cases with C = 10 and C = 20 are in Ardestani-Jaafari
and Delage (2014) referred to as small and medium
instances. For the larger instances the computational
time vastly increased and they did not report results
on the models with affine policies. We use the same
computer and optimization software as mentioned
in Section 5.

The results for various numbers of customers C
and various percentage levels of uncertainty â are
given in Table 6. We use the standard notion of budget
uncertainty where a budget of 30% means that 30%

Table 6 Numerical Results for Facility Location Problem with
Affine Policies

Solver time (sec) Upper bound (gap%)
Objective

C â% Primal Dual value Primal Combined P/D

10 10 002 007 301946 32,233 (3.3%) 32,167 (3.1%)
30 008 102 271894 30,474 (8.0%) 29,835 (6.1%)
50 101 103 251409 28,763 (10.5%) 27,897 (7.9%)
70 200 105 231416 24,895 (5.6%) 24,430 (3.6%)
90 206 009 211889 26,511 (18.3%) 26,353 (17.5%)

100 109 007 211516 29,136 (28.4%) 26,803 (19.6%)
20 10 704 306 851895 87,264 (1.3%) 87,264 (1.3%)

30 1004 402 791996 82,235 (2.3%) 81,883 (2.0%)
50 1800 502 751404 77,060 (1.8%) 76,827 (1.6%)
70 2304 504 711872 77,473 (6.4%) 76,854 (5.6%)
90 2102 407 691104 69,874 (0.9%) 69,712 (0.7%)

100 1108 101 681226 80,301 (14.7%) 79,810 (14.1%)
30 10 5502 3003 1731069 174,547 (0.7%) 174,004 (0.5%)

30 11205 3504 1631953 168,422 (2.3%) 166,642 (1.4%)
50 14403 3508 1561451 160,911 (2.3%) 157,913 (0.7%)
70 22001 4008 1501070 156,881 (3.6%) 153,511 (1.8%)
90 25102 3109 1441873 150,741 (3.4%) 149,310 (2.6%)

100 11108 604 1431010 164,214 (12.4%) 159,182 (9.5%)
40 10 30704 11405 2431639 244,628 (0.3%) 244,219 (0.2%)

30 78708 22007 2301556 234,272 (1.3%) 233,557 (1.1%)
50 98602 19704 2191446 222,396 (1.1%) 221,665 (0.8%)
70 1173504 19900 2091942 212,479 (1.0%) 211,588 (0.7%)
90 1176108 15409 2021456 203,607 (0.5%) 203,011 (0.2%)

100 87707 2507 2001044 223,373 (9.7%) 222,408 (9.3%)
50 10 1104900 32603 3411060 341,951 (0.2%) 341,859 (0.2%)

30 2115302 53004 3231989 327,184 (0.8%) 325,526 (0.4%)
50 2176605 55701 3081882 312,840 (1.1%) 311,457 (0.7%)
70 4154205 53608 2951599 298,961 (1.0%) 298,129 (0.7%)
90 5183009 46906 2841574 292,716 (2.3%) 291,174 (1.8%)

100 3158201 6802 2801704 304,575 (7.1%) 302,579 (6.5%)

Notes. The percentages in the last columns depict the optimality gap derived
from each upper bound compared to the objective value. All results are
averaged over 5 runs.

of the uncertain parameters can be at their extreme
value of �̂ = 0015. A graph indicating the location and
the facilities that are opened for one case is given in
Figure 3.

The most striking result is that the dual formula-
tion with affine policies is again solved an order of
magnitude faster than the primal formulation with
affine policies. This holds especially true for the larger
instances and larger values of â . We again look at the
dimensions of the primal and the dual formulation
using Table 1 for its dimensions and Table 2 for the
different constraints. For the the case with C = 50
customers we present these results in Tables 7 and 8.

Again we see a smaller number of difficult affine
constraints in the dual version in exchange for a larger
number of easy-to-handle sign restrictions.

If we take a look at the bounds we see they are very
close to the objective value, which shows that the use of
affine policies is nearly optimal. This observation was
also made for the smaller instances in Ardestani-Jaafari
and Delage (2014). For â = 100%, the lower bound is
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Figure 3 Solution for One Facility Location Instance with S = 10
Possible Sites and C = 50 Customers on 600172

Notes. The uncertainty level is set at â = 50%. Facility locations are indicated
by triangles, customers by open circles. The filled triangles are the locations
that are picked to be open.

the most far away from the objective value. This is
surprising, because for this case (box uncertainty) we
know that affine (in fact, static) policies are provably
optimal (Ben-Tal et al. 2009, Theorem 14.2.4).

7. Concluding Remarks
In this paper, we have used duality for second-stage
decisions and uncertain parameters to derive an equiva-
lent formulation of a primal two-stage adaptive model.
The resulting dualized formulation is again a two-stage

Table 7 Comparing Dimensions of Variables, Uncertainties, and
Number of Constraints in the Primal and Dual Formulation
for the Facility Location Problem (21) with C = 50
Customers

Primal Dual
formulation (2) formulation (3)

No. of uncertain parameters 50 61
No. of wait-and-see decisions 500 51
No. of constraints on variables 61 51
No. of constraints on uncertain parameter 51 501

Table 8 Comparing the Number of Affine Constraints and Sign
Restrictions in (13) and (16) for the Facility Location
Problem (21) with C = 50 Customers

Primal Dual
formulation (13) formulation (16)

No. of affine constraints 281661 61222
No. of sign restrictions 281661 511000

adaptive model. We show that optimal affine policies
for the primal formulation can be directly constructed
from optimal affine policies in the dual formulation.
Two examples of lot-sizing and a facility location prob-
lem show that the dualized models, when coupled
with affine policies, can reduce computational time to
solve adaptive problems by an order of magnitude.
Furthermore, we provide an algorithm that uses the
affine policies in the dual model to strengthen bounds
on the optimality gap of affine policies.
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