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Deterministic mathematical programming models that capture network effects play a predominant role in the theory and
practice of airline revenue management. These models do not address important issues like demand uncertainty, nesting,
and the dynamic nature of the booking process. Alternatively, the network problem can be broken down into leg-based
problems for which there are satisfactory solution methods, but this approach cannot be expected to capture all relevant
network aspects. In this paper, we propose a new algorithm that addresses these issues. Starting with any nested booking-
limit policy, we combine a stochastic gradient algorithm and approximate dynamic programming ideas to improve the initial
booking limits. Preliminary simulation experiments suggest that the proposed algorithm can lead to practically significant
revenue enhancements.
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1. Introduction
After the deregulation of the airline industry in the 1970s,
airlines started offering a variety of fares for seats in the
same cabin. The question of how many seats should be
offered at each different rate is commonly referred to as the
airline revenue management (RM) problem. The economic
importance of RM is illustrated by Delta Airlines’ estimate
that selling only one seat per flight at full rather than at
discount rate adds over $50 million to its annual revenues
(Cross 1997).

The problem of optimizing the passenger mix on a
single-leg flight has received a lot of attention in the aca-
demic literature. The early model by Littlewood (1972) for
the basic case with only two fare classes is based on the
concept of the expected marginal seat revenue (EMSR).
This is the expected marginal revenue of holding an addi-
tional seat for a certain fare class. Belobaba (1987, 1989)
generalized this approach to a heuristic booking policy for
multiple fare classes, which was extended by Belobaba and
Weatherford (1996) to incorporate sell-ups. Brumelle et al.
(1990) examine the impact of demand correlation. More
recent models use stochastic dynamic programming (SDP)
to determine an optimal policy, e.g., Wollmer (1992),
Brumelle and McGill (1993), Robinson (1995), and Lee
and Hersh (1993). Lautenbacher and Stidham (1999) pro-
vide a unified model of this and related work. These
models have been extended to incorporate important prac-
tical issues such as overbooking, cancellations, and
no-shows (e.g., Chatwin 1996, 1998; Subramanian et al.
1999). See Weatherford (1998) for a discussion of the

issues related to RM and McGill and van Ryzin (1999)
for a comprehensive overview of the literature in this
field.

While booking policies such as Belobaba’s EMSR have
proven to be very profitable, it was recognized in the early
1990s that an airline should aim to optimize its book-
ings over its network as a whole, rather than on each
flight leg in isolation. Williamson (1992) used simulation
to show that explicitly addressing the network aspect of
the revenue management problem leads to a significant
increase of expected revenue over leg-based methods.
The implementation of such origin-destination based poli-
cies is still in progress at many major airlines (e.g.,
Saranathan et al. 1999 of United Airlines and Pagé 1999 of
Air Canada).

Although in theory the network aspect can easily be
added to an SDP model (e.g., Gallego and van Ryzin 1997),
in practice this is infeasible. Because the size of the state
space is determined by the number of available seats on
each flight of the network, the number of classes, and the
number of possible passenger itineraries, the problem size
explodes even for a moderate-size airline. This “curse of
dimensionality” of the SDP method necessitates the devel-
opment of alternative methods.

Mathematical programming (MP) models are especially
well suited to incorporate network effects, i.e., to recog-
nize which itineraries contribute most to the airline’s rev-
enue. Dimensionality problems, however, necessitate the
use of linear optimization models, which we discuss in the
next section. The solution of these models can be used
to implement two different forms of booking control that
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are used in practice, one based on booking limits and the
other based on bid prices. The focus of this research is on
booking-limit control.

The MP models that have been proposed, while effective
in addressing network effects, are deterministic, static, and
partitioned, thus ignoring the stochastic and dynamic nature
of the demand and the nested character of booking-limit
control in a network. As a result, policies based on the
MP seat allocations may only capture part of the potential
revenue gain. In practice, most RM systems only use the
dual solution of the MP to heuristically account for dis-
placement costs. The network problem can then be broken
down into leg-based problems for which there are satisfac-
tory solutions. However, this approach cannot be expected
to capture all relevant network aspects.
Our overall objective in this research is to propose a

new way to calculate booking limits that takes into account
the stochastic and dynamic nature of the demand and
the nested character of booking-limit control in a net-
work, is practically feasible for realistically sized prob-
lems, and leads to revenue enhancements. The basic idea
of our approach is to approximate the expected revenue of
any nested booking-limit policy by simulating the booking
process until the current booking limits are up for revision.
From there, a value function estimate is used to approx-
imate the revenue that would have been generated in the
remaining part of the booking period. This revenue approx-
imation scheme is embedded in a stochastic gradient-type
algorithm to iteratively improve any initial set of booking
limits. In particular, these could have been determined by
any of the methods referred to above. The contributions of
this research are:

1. We propose a new approach to airline RM that, build-
ing upon RM research in the last decade, combines linear
optimization models that successfully address the network
effects with the newer ideas in this field of simulation-based
optimization and approximate dynamic programming. To
the best of our knowledge, our method is the first to simul-
taneously address nesting as well as the stochastic and
dynamic nature of demand in a network environment.

2. We provide computational evidence that indicates that
the proposed method can lead to revenue enhancements
over current methodology and is computationally feasible
for realistically sized problems.

This paper is structured as follows. In §2, we discuss
the state of the art of origin-destination based seat inven-
tory control. We present the MP models that have been
proposed for this purpose and discuss booking-limit and
bid-price control. In particular, this section contains the first
step of our approach to the RM problem by determining an
initial booking-limit policy. In §3, we present the second
part of our overall approach, which uses simulation-based
optimization. In §4, we provide computational evidence of
the strength of our approach and its practical applicability.
Section 5 summarizes our conclusions.

2. Mathematical Programming-Based
Approaches to Network Revenue
Management

In what follows, we use the term booking class to refer
to the typical combination of origin, destination, and fare
class, which we index by odf. Glover et al. (1982) proposed
an integer programming model to determine the number of
seats that should be available to each booking class, with
the following linear programming relaxation:

maximize
∑
odf

fodf xodf

subject to xodf �E�Dodf � ∀odf �∑
odf∈Sl

xodf �Cl� l= 1� � � � �L� (1)

xodf � 0�

Here and in the remainder of this paper, fodf , E�Dodf �, and
xodf are the fare, expected demand, and the number of seats
allocated to booking class odf, respectively; Cl is the seat
capacity of leg l, L is the total number of legs, and Sl is
the set of booking classes that travel through leg l. Note
that Model (1) only encompasses a single flight complex in
a single time window. Many airlines operate several flights
per day between city pairs and offer multiple connections
between the same origin and destination. The indexing of
flights and odfs can easily be extended to incorporate this
aspect.

It is well known that if the itinerary between any origin
and destination is not fixed and the airline can route its
passengers over its network, Model (1) can be reformulated
as a network flow problem. In practice, however, this is not
the case, and even if the demand forecasts are integer, this
model does not necessarily have an integer solution. Given
that it is computationally unattractive to solve an integer
program, we focus on solving the relaxation. Its solution
can be used to implement two different types of booking
policies: one based on booking limits and another based on
bid prices.

2.1. Booking-Limit Control

Let x∗
odf be an optimal solution of Model (1). The pol-

icy represented by the model allocates up to �x∗
odf � seats

to class odf. A disadvantage of such a policy is that it
partitions the seat capacity of the airline’s network. When
seats for a booking class are sold out, additional booking
requests for this class will be declined, which can lead to
lost revenue. Intuitively, seats allocated to the least prof-
itable booking classes should be made available to more
profitable classes as well, which is called nesting. Smith
and Penn (1988) of American Airlines proposed the Dis-
placement Adjusted Virtual Nesting scheme to implement
nested booking-limit control in a network, which is outlined
below. The operational policy was not specified, but we
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include both methods that are used in practice (steps 4′ and
4′′). (We thank Dr. Peter Belobaba for insightful comments
on these methods.)

Displacement Adjusted Virtual Nesting (DAVN)
Step 1 (Nesting order). Let �l � l= 1� � � � �L� be an opti-

mal set of dual prices corresponding to the capacity con-
straints of Model (1). Calculate the displacement adjusted
leg revenues

f̄ l
odf = fodf −

∑
l′ �=l�odf∈Sl′ �

�l′ �l= 1� � � � �L��

This is a measure of profitability that determines a nesting
order of booking classes on each leg.
Step 2 (Clustering). Cluster booking classes of similar

adjusted leg revenue into a manageable number (in prac-
tice about 5–10) of leg buckets on each leg. These buckets
are ordered from high to low, such that bucket 1 on leg l
contains the most profitable booking classes on this leg, fol-
lowed by bucket 2, and so forth. In what follows, let Bl

i be
the set of booking classes odf in bucket i on leg l, let I lodf
be the bucket of booking class odf on leg l, let Nl be the
number of buckets defined on leg l, and let N =∑L

l=1 Nl be
the total number of leg buckets in the network. For com-
pleteness, the clustering algorithm we used in this research
is presented in the appendix.
Step 3 (Booking-limit calculation). Define a booking

limit bli for each leg bucket i on leg l, such that bli � bli+1

for i = 1� � � � �Nl − 1 and bl1 = Cl, because in the absence
of overbooking, the sale of booking classes in the high-
est bucket should only be restricted by capacity. In this
research, we have considered two booking-limit calculation
methods, one based on the LP seat allocations (LP-BL)
originally proposed by Williamson (1992), and the other
(EMSR-BL) based on the well-known EMSRb method pro-
posed by Belobaba (1992), which uses the displacement
adjusted leg revenues. For completeness, both methods are
described in the appendix.
Step 4′ (Operational policy 1: Standard nesting). Inter-

pret bli as the maximum number of seats we are willing to
sell on leg l for booking classes mapped into bucket i or
lower. Let dl

i�Nl
denote the accepted demand for buckets i

through Nl (i.e., bucket i and lower) on leg l since the
most recent booking-limit calculation. These variables are
updated continuously between reoptimizations of the book-
ing policy. Consider a request for booking class odf . If on
any of its legs l� odf ∈ Sl the booking limit for bucket i =
I lodf or any higher bucket i < Ilodf has been reached (i.e., dl

i�Nl

equals bli ), the booking request is declined; otherwise, it
is accepted and the accepted demand variables are updated
accordingly (dl

i�Nl
← dl

i�Nl
+ 1 for all legs l� odf ∈ Sl and

inventory buckets i� I lodf ).
Step 4′′ (Operational policy 2: Theft nesting). Stops sell-

ing seats on leg l to booking classes mapped into bucket i
after bli seats have been sold on this leg, regardless of

to whom. Let dl denote the accepted demand for seats on
leg l (i.e., for odf ∈ Sl) since the most recent booking-
limit calculation. These variables are updated continuously
between reoptimizations of the booking policy. Consider a
request for booking class odf. If on any of its legs l� odf ∈
Sl the booking limit for bucket i = I lodf has been reached
(i.e., dl equals bli ), the booking request is declined; other-
wise, it is accepted and the accepted demand variables are
updated accordingly (dl ← dl + 1 for all legs l� odf ∈ Sl).

Note that theft nesting is more restrictive than standard
nesting because low buckets will close earlier in the book-
ing process. This will lead to a higher yield, but a lower
load factor. To our knowledge, industry experts differ in
opinion about which policy is better, and both may be
found in practice.

As far as we know, DAVN in combination with EMSR-
BL is currently being used by only a handful of airlines
worldwide. The term virtual nesting was chosen by Smith
and Penn (1988) to reflect that the availability of a booking
class is never stored in the system, which given the dimen-
sions of the problem is impractical, but can be determined
when needed from the leg-bucket availabilities. As they
point out, it is not an optimization technique, but a control
framework that allows a reservation system to approximate
market class (odf ) control. In §3, we propose a new method
to calculate booking limits within the framework of DAVN.

2.2. Bid-Price Policy

An alternative booking policy is based on the general idea
of rejecting a request unless its fare exceeds the expected
opportunity cost of not being able to sell the requested
seats at a later time, which can be seen as the bid price
of a particular itinerary. There are several ways to approxi-
mate the “true” bid prices of itineraries on a flight network.
Simpson (1989) proposed the following method based on
the solution of Model (1).

Bid-Price Policy (BP)
Step 1. Solve Model (1) and, using an optimal set of

dual variables �l for each leg l, calculate the net contribu-
tions to network revenue f̄odf = fodf −

∑
l�odf∈Sl �l.

Step 2. If an incoming booking request has f̄odf � 0,
accept the request; otherwise, reject it.

One obvious disadvantage of this policy is that once a
booking class is open to bookings, there is no limit on the
number of booking requests that are accepted for this class.
This induces the risk of flights filling up with passengers
from booking classes that only marginally contribute to net-
work revenue. To prevent this, it is essential that the bid
prices are updated frequently during the booking period. An
alternative solution, which we have not considered in this
research, is to use dynamic bid prices that adjust as capac-
ity is consumed. Van Ryzin (1998) argues that dynamic
bid prices offer essentially the same level of control over
the booking process as booking limits do. Additional issues
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related to bid-price control are discussed in Williamson
(1992), Talluri and van Ryzin (1998), Chen et al. (1999),
and Bertsimas and Popescu (2000).

2.3. Modeling Issues

The LP-based booking limits clearly need not be optimal
for a given virtual nesting scheme, because they are based
on an inaccurate representation of the RM problem. Model
(1) is deterministic, static, and determines a seat partition-
ing, while in reality airline demand is stochastic, the book-
ing process is dynamic, and seat inventory control is nested.
There have been some proposals to address the first issue
and include stochastic demand. Wollmer (1986) proposes
an optimization model involving binary decision variables
xodf �i� that indicate whether i or more seats in the net-
work are allocated to a particular booking class. The objec-
tive coefficient of xodf �i� is the expected marginal revenue
of allocating an additional ith seat to the booking class
odf. The drawback of this model is the large number of
decision variables, which severely limits its practical appli-
cability. De Boer et al. (2002) propose a scenario-based
stochastic programming model to overcome these dimen-
sionality problems, while Talluri and van Ryzin (1999) pro-
pose a randomized linear programming approach. However,
numerical results by Williamson (1992) and de Boer et al.
(2002) show that, in fact, the deterministic model gives
the best input for the LP-BL heuristic. This suggests
that demand uncertainty and nesting need to be addressed
simultaneously in the booking-limit calculation step.

Curry (1990) proposes a two-step algorithm in this direc-
tion. First, a linear programming model with a piecewise
linear approximation of the expected revenue as a function
of the seat partitioning is used to determine seat alloca-
tions for each itinerary in the network. Then, given these
allocations, nested booking limits are calculated for each
fare class based on a single-leg method that incorporates
demand uncertainty. However, Curry’s method is not suited
to nest all booking classes on a flight leg simultaneously,
which, given the oftentimes large fare differences between
itineraries with common flight legs, is desirable.

The EMSR-BL method is another way to approach this
problem. The booking limits are calculated for each leg
individually, but the network aspect is to some extent
captured by the displacement adjusted leg revenues. How-
ever, by breaking up the problem we do lose some low-
level characteristics that could affect the optimal set of
booking limits for a given virtual nesting scheme. For
instance, the optimal mix of local and connecting traffic
should depend on the probability of an accepted connect-
ing passenger displacing local passengers on all his flight
legs simultaneously, which cannot be captured properly by
an average displacement measure. In addition, the EMSR
method is based on the assumption that there is a strict
low-before-high arrival order of booking requests for dif-
ferent fare classes. Although this is generally believed to be
a workable assumption for practical RM purposes, there is

no reason that there would be a particular arrival order of
booking requests for the different itineraries that make up
the buckets in the virtual nesting scheme. Note that in that
case, the choice between standard and theft nesting affects
revenue, but this is not included in the model. This may
affect the performance of the EMSR-based booking limits
in a network environment as well.

2.4. Other Methods

Several other methods have been proposed to implement
booking control in a network. The first such approach,
somewhat similar to DAVN, is to break up the network
problem into leg-based problems by allocating the revenue
of a multileg flight over its legs, which is called prorating.
For these subproblems, we do have satisfactory stochastic
and dynamic solution methods. Smith and Penn (1988) and
Williamson (1992) consider prorating based on the mileage
of the individual flight legs, while Bratu (1999) stud-
ies an iterative prorating algorithm based on the expected
marginal seat revenue of the last seat on each leg. However,
despite some promising test results by Bratu, there is no
intuitive explanation of why the prorating approach should
correctly take into account network effects.

The second approach is approximate dynamic program-
ming (ADP). Given that exact SDP is not applicable
due to dimensionality problems, Bertsimas and Popescu
(2000) propose to approximate the SDP value function by
Model (1). This is a form of certainty equivalent con-
trol, which is one of the heuristic solution techniques for
complex dynamic programming problems discussed in
Bertsekas (1995).

Chen et al. (1998) show that the objective value of
Model (1) is in fact an upper bound on the optimal expected
revenue, while any nonnested probabilistic model such as
Wollmer’s (1986) provides a lower bound. They argue that
the opportunity costs of selling a particular itinerary are
actually underestimated by the stochastic model, whereas
they are overestimated by the deterministic model. This
insight leads to an algorithm in which the revenue of every
booking request is compared to both estimates of the oppor-
tunity costs. The idea is to diminish the number of wrong
decisions resulting from the biased estimates of the oppor-
tunity costs that are based on any such single model. Simu-
lation experiments indicate that this approach indeed leads
to higher revenues than the BP policy, but further numerical
testing is required to gather more conclusive evidence.

3. Simulation-Based Optimization
In this section, we show how to improve the booking limits
of any particular BL policy (for instance, EMSR-BL or
LP-BL) by taking into account the stochastic and dynamic
nature of the demand. We use a combination of simulation-
based optimization (a stochastic gradient algorithm) and
approximate dynamic programming ideas.
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The idea of simulation-based optimization in a revenue-
management context was introduced by Robinson (1995).
For the single-leg problem under the assumption that
demand for different fare classes arrives sequentially, he
derives optimality conditions for the booking limits. He
then proposes to solve these using Monte Carlo integra-
tion, based on simulation of the demand. Van Ryzin and
McGill (2000) propose an adaptive method to solve the
same set of optimality conditions, but using historical book-
ing data instead of simulated demand. The convergence of
this method is shown using stochastic approximation the-
ory. Karaesmen and van Ryzin (1998) develop a numerical
algorithm to determine joint overbooking levels for partly
substitutable inventory classes. This takes the use of sim-
ulation one step further, because no optimality conditions
are known for this problem.

The reason that simulation-based optimization has not
been applied more generally is most likely the enormous
size of the problem. The combination with mathematical
programming models that we propose here significantly
reduces the problem size by efficiently dealing with the
combinatorial aspects of the problem, i.e., the nesting order.
As Williamson (1992, p. 127) nicely puts it: “Without first
knowing the “correct” nesting hierarchy of different odf’s
over a network, a network optimization which explicitly
accounts for nesting of ODF’s is, to date, both theoretically
infeasible and impractical.”

3.1. Problem Definition

Model (1) is a static optimization model in the sense that
it determines a booking policy that is implemented until
flight departure. However, as the booking process proceeds,
the airline finds out the actual realization of demand. This
information can be used to improve the booking policy, for
instance, by holding additional seats for profitable booking
classes with higher than average demand. Hence, in prac-
tice the booking policy is revised several times, most often
in overnight runs of the optimization algorithm. It is impor-
tant that these future revisions are taken into account when
determining a booking policy. For instance, such revisions
allow an airline to protect more seats for business travelers
in the early stages of the booking period because it will be
able to offer additional discount seats later on if necessary.
We have added a numerical example in §4.3 that illustrates
this point.

We assume that the booking period is divided into T time
windows, not necessarily of the same length. Whenever the
booking process enters a new time window t, the booking
policy is reoptimized. During each time window, the nesting
order and bucket mapping are fixed and based on Model (1).
In what follows, let bt be the set of booking limits used in
time window t, let Ct be the remaining capacity vector at
the beginning of time window t, and let qt�bt�Ct� be the
corresponding revenue generated during time window t. Let
Qt�bt�Ct� be the total revenue generated during time win-
dows t to T if the airline uses the booking limits bt in time

window t and the optimal (maximizing expected revenue)
booking-limit policy thereafter. Note that, given the demand
model and the virtual nesting scheme, this notion is well
defined, because the number of allowable sets of booking
limits is finite (cf. §2.1). Finally, let Rt�Ct� be the total
revenue generated from time window t to T if the airline
implements the optimal booking-limit policy during each of
these, given the intermediate state Ct of the booking pro-
cess. By definition, qt�·�, Qt�·�, and Rt�·� are all random
functions whose values depend on the realization of the
demand process. At the beginning of time window t, the
airline needs to solve

E�Rt�Ct��≡max
bt

E�Qt�bt�Ct�� (2)

≡max
bt

E�qt�bt�Ct�+Rt+1�Ct+1�� (3)

for the optimal set of booking limits, where the expectation
is taken with respect to the demand process. Note that (3)
explicitly formulates the booking-limit optimization prob-
lem as a dynamic program.

For any realistic model of demand, E�Qt�bt�Ct�� cannot
be expressed in closed form and needs to be evaluated
numerically. We propose to simulate the booking process
to determine the revenue qt�·� generated during time win-
dow t, which directly depends on bt . We then use an esti-
mate of the value function E�Rt+1�Ct+1�� to account for the
revenue that would have been generated in the remainder of
the booking period. As we shall see, we can then attempt
to solve problem (2) by a stochastic gradient algorithm.
Alternatively, the booking process could be simulated over
all remaining time windows to evaluate Qt�bt�Ct� directly.
However, then the booking limits would have to be recalcu-
lated multiple times during each simulation run, which for a
large number of runs and realistically sized problems would
be intractable.

In §3.2, we define a computationally efficient stochastic
gradient algorithm that approximates a solution to prob-
lem (2). In §3.3, we develop a recursive algorithm to esti-
mate the value functions E�Rt�Ct�� that are needed for
this. In §3.4, we combine these algorithms and propose a
simulation-based method for booking-limit calculation.

3.2. The Stochastic Gradient Algorithm

In this section, we propose a stochastic gradient algorithm
to approximate a solution to problem (2), given an approx-
imation of E�Rt+1�Ct+1��. EMSR-BL or LP-BL provide an
initial solution. The algorithm iteratively improves the set
of booking limits, using numerical estimates of the first
finite differences of E�Qt�bt�Ct��. First, we briefly review
the principles of stochastic gradient algorithms to prepare
the ground for what follows. Then, we adapt the stochastic
gradient algorithm to problem (2).

3.2.1. A Generic Stochastic Gradient Algorithm.
Let � be the set of realizations of a random process. Let
F �x��� be a function of some variable x ∈ �m, whose
value depends on the random outcome � ∈ �. Possibly,
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the function F �·� can only be evaluated using simulation.
In the RM context, x is a vector of parameters that char-
acterize a policy (either booking limits or bid prices), F �·�
is the revenue as a function of these parameters, while �
is the particular realization of the stochastic and dynamic
demand. We are interested in maximizing E��F �x����
over x ∈X, where X ⊆�m denotes the set of feasible solu-
tions. The stochastic gradient algorithm is as follows.

Generic Stochastic Gradient Algorithm
Step 0. Pick a starting value x0 ∈X and let k= 0.
Step 1. Let xk+1 = �X�x

k + $k�
k�, where �k ∈ Rm is

defined by

%k
i =

n∑
j=1

F �xk +(ke
i��kj �− F �xk��kj �

(k

�i= 1� � � � �m��

and �X�x� denotes the projection of a vector x on the fea-
sible region X.
Step 2. Let k= k+ 1. Return to Step 1.
Here, �k is a finite difference approximation of the gra-

dient )E��F �x
k���� based on n independent samples �kj

of the random process, (k is small positive scalar, and $k

is the stepsize that typically is decreasing in k. Note that
this algorithm is well defined, even if the objective function
E��F �x���� is not differentiable. Under certain regularity
conditions for the function F �·�, the sequences $k and (k,
and the feasible region X, this algorithm can be shown to
converge to an optimal solution with probability 1 (e.g.,
Ermoliev 1988, Gaivoronski 1988). However, as discussed
in §3.2.3, these conditions are not met for our particular
application.

3.2.2. A Stochastic Gradient Algorithm for Booking-
Limit Improvement. We now adapt the stochastic gra-
dient algorithm to problem (2). To facilitate notation, we
have suppressed the dependence of Qt�bt�Ct� on the time
window t and the remaining capacity Ct in this subsection.

By our definition of booking-limit control, even if the
integrality of booking limits is relaxed, E�Q�b�� is a func-
tion of the integral part of b only. As a result, the objective
function in problem (2) has discontinuities at the integer
values of b and is not differentiable. In our implementation
of the stochastic gradient algorithm, we therefore have to
work with numerical estimates of the first finite differences

(l
iE�Q�b��=E�Q�b+eli ��−E�Q�b�� for 1� i�Nl� (4)

where eli is the unit vector corresponding to bli . These
can be interpreted as the expected revenue change when
a booking limit is increased by exactly one seat. Note
that (l

1E�Q�b�� = 0, because we assume that bl1 = Cl.
Even if this booking limit is increased, this does not affect
which booking requests are accepted due to the capacity
constraint. The vector of first finite differences (E�Q�b��
of the expected revenue function is defined by

(E�Q�b��= �(l
iE�Q�b���l=1�����L* i=1�����Nl

�

To estimate (E�Q�b��, we could simply randomly gen-
erate n sequences of booking requests, evaluate Q�b� and
Q�b+eli � for each of these for all buckets i� l, and substitute
the averages into (4). Cf. Step 2 of the stochastic gradient
algorithm. However, accurate estimation of the first finite
differences requires a large number of simulation runs and
the evaluation of nN booking-limit policies may be time
consuming. We propose a more efficient approach here,
based on the insight that the increase of a single booking
limit does not necessarily affect which booking requests
are accepted. Demand might simply be too low to be con-
strained by any booking limit, an inventory bucket might
be closed for further bookings because the booking limit of
a higher bucket is reached, or accepting a booking request
might violate the booking limits of several inventory buck-
ets at the same time, in which case increasing just one
of them makes no difference. Thus, in many cases Q�b�
equals Q�b+eli �. This insight motivated the following algo-
rithm to estimate (E�Q�b��.

Finite Differences Estimation Algorithm
Step 1. FOR j = 1 TO n

(1a) Simulate the booking process in time window t;
that is, generate a sequence of time-ordered booking
requests according to some demand model, such as the one
defined in §4. Starting with the earliest one, these requests
are then worked through one at a time, either accept-
ing or rejecting them as dictated by some prespecified
policy—in this case the booking limits b—and the capacity
constraints.

(1b) Let Q�b� j� be the revenue estimate of using the
booking limits b in time window t and some periodically
revised booking-limit policy thereafter, based on the rev-
enue generated in simulation j and the approximation of
E�Rt+1�Ct+1��.

(1c) Whenever a booking request is declined because
the booking limit of exactly one inventory bucket, say Bl

i ,
would be violated, start keeping track of what would have
happened if this booking limit would have been one seat
higher given the same future sequence of booking requests.
Note that the booking request in that case would have
been accepted. Do this at most once for each inventory
bucket. Let the resulting revenue estimate be denoted by
Q�b+ eli � j�.

(1d) If Q�b+ eli � j� has been defined, let (l
iQ�b� j�=

Q�b+ eli � j�−Q�b� j�. Otherwise, let (l
iQ�b� j�= 0.

END FOR
Step 2. Let (l

iE�Q�b�� = �1/n�
∑n

j=1 (
l
iQ�b� j� be the

final estimate of (l
iE�Q�b�� and let (E�Q�b�� denote the

corresponding estimate of (E�Q�b��.
Note that we only generate n sequences of booking

requests, because Step (1c) is simply a matter of “paral-
lel bookkeeping.” “Parallel simulations” only branch off
the main simulation; hence, their number remains limited.
The point is that for each realization of demand, we only
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evaluate the booking-limit policy b+ eli if the result would
differ from b. This can be significantly more efficient
than evaluating each of these N policies consecutively, for
instance, given low demand. The sample size n needs to be
tuned beforehand. Larger values give more accurate esti-
mates at the cost of more computation time.

Using these estimates of the first finite differences, the
booking limits will now be iteratively adjusted until no fur-
ther improvement seems possible or the maximum number
of iterations kmax is reached. Any feasible set of booking
limits b has to satisfy the constraint

0� bli+1 � bli � bl1 =Cl for 2� i�Nl − 1�

Experimental evidence has shown that booking limits
should only be moderately increased during a single iter-
ation of the stochastic gradient algorithm. For this reason,
we have introduced an upper bound (max on the change of
any particular booking limit in each iteration. To address
these issues, we have modified the stochastic gradient algo-
rithm as follows.

Numerical Booking-Limit Improvement Step
Step 0. Let k = 1; let b1 be an initial set of booking

limits. Let b0 = b1 and (E�Q�b0��= 0.
Step 1. Estimate (E�Q�bk��.
Step 2. FOR l= 1 TO L

FOR i= 2 TO Nl

IF (l
iE�Q�bk�� > 0 AND (l

iE�Q�bk−1��� 0
(clearly increase the booking limit)
(l

i =minint�(l
iE�Q�bk��$k + 0�5��(max�

ELSE IF (l
iE�Q�bk�� < 0 AND

(l
iE�Q�bk−1��� 0 (decrease the
booking limit)
(l

i =maxint�(l
iE�Q�bk��$k

− 0�5��−(max�
ELSE (next booking limit between current

and previous solution)
-l
i = �(l

iE�Q�bk���/��(l
iE�Q�bk���

+ �(l
iE�Q�bk−1���� (with 0

0 � 0)
�(l

i�prev = �bli �k − �bli �k−1

(l
i = int�−-l

i ∗ �(l
i�prev

− 0�5 ∗ sign��(l
i�prev��

ENDIF
�bli �k+1 = �bli �k +(l

i

END FOR
END FOR

Step 3. Make new solution feasible:
FOR l= 1 TO L

FOR i= 2 TO Nl

�bli �k+1 =min�bli �k+1� �b
l
i−1�k+1�

�bli �k+1 =max�bli �k+1�0�
END FOR

END FOR

Step 4. IF (l
i = 0 for all leg-buckets OR k= kmax

TERMINATE
ELSE

k= k+ 1
GOTO Step 1

ENDIF
The starting point b1 can be determined by EMSR-BL

or LP-BL, whichever works best. The stepsize functions
$k, (max, and kmax are optimization parameters that need
to be tuned, in conjunction with the number of samples n
for the first differences estimation algorithm. For instance,
our experience with this algorithm suggests that because
larger values of n give more accurate estimations of the first
finite differences, this allows a larger stepsize $k. Given
that there are no theoretical performance guarantees for this
algorithm, extensive tuning is especially important.

3.2.3. Theoretical Considerations. Given the discrete
nature of booking limits, the expected revenue func-
tion E�Qt�bt�Ct�� is nonsmooth and nondifferentiable.
Attempting to solve this type of optimization problem with
a stochastic gradient method has no theoretical justifica-
tion, but is a heuristic based on the intuition behind gra-
dient descent methods. The algorithm based on first finite
differences is well defined, but does not necessarily con-
verge (Ermoliev 1988). For this reason, we have introduced
a maximum on the number of iterations.

Even if the algorithm would converge, this would not
necessarily be at a “local optimum.” To see this, consider
a two-leg flight that only carries through-passengers at two
different rates. Assume that the booking limit for the dis-
count rate is the same on both legs. Then, given the BL
policy of §2.1, increasing only one of these booking limits
will not affect ticket sales. Thus, both first finite differ-
ences are zero and the random search will terminate, while
increasing both booking limits simultaneously might have
increased expected revenue. However, this is an unrealistic
example given the absence of local traffic, and we do not
expect problematic cases like this to occur in practice.

Because the expected revenue function may not be con-
vex, the final set of booking limits may strongly depend on
the starting point. We have found that the EMSRb heuristic
generally gave a better starting point than the LP solution,
especially for large-scale examples (see §4.4).

Summarizing, the algorithm cannot be guaranteed to ter-
minate at an optimal set of booking limits for a given vir-
tual nesting scheme, but intuition and practical experience
gained in the experiments of the next section suggest that
they can at least be improved significantly.

3.3. Estimation of the Value Function

In this section, we propose an algorithm to estimate the
value functions E�Rt�Ct��, which are used as input for
the Numerical Booking-Limit Improvement Step. Because
the dimension of the capacity vector can be large, we pro-
pose to evaluate the value function only on a small number



Bertsimas and de Boer: Simulation-Based Booking Limits for Airline Revenue Management
Operations Research 53(1), pp. 90–106, © 2005 INFORMS 97

of carefully selected discretization points. This set of data is
then used to estimate the value function as a whole. We first
define an algorithm to determine the discretization points
and then propose an interpolation method.

3.3.1. Selection of the Discretization Points. The do-
main of the value function is the Cartesian product of

0�1�2�����C1�⊗0�1�2�����C2�⊗···⊗0�1�2�����CL��

where L, as before, denotes the number of legs. Hence,
each dimension of the state-space corresponds to a spe-
cific leg in the network. A natural way of selecting the
discretization points is picking a small number, say q,
of capacity levels on each leg, and forming a complete
L-dimensional grid. However, the number of such grid
points would be exponential in L, which would be
intractable for large networks. In addition, it is questionable
whether the discretization points should really be homoge-
neously distributed over the state-space. For instance, at the
end of the first time window, remaining capacity is likely to
be relatively close to the original flight capacities, whereas
at the beginning of the final time window, flights are more
likely to be sold out. Hence, if we could somehow find
the most likely location of the remaining capacity vector in
the state-space at any given time, we could concentrate the
discretization points in this area. This would enable us to
get more accurate estimates of the value function at places
where it matters, with relatively few discretization points.
We propose the following algorithm for this purpose.

Discretization Points Selection Algorithm
Step 1. Simulate the booking process. Whenever a simu-

lation run enters a new time window, use a heuristic such as
EMSR-BL to determine a reasonable booking policy, and
save the remaining capacity of each leg of the network.
Step 2. Using the empirical distribution of Ct obtained

in Step 1, calculate the mean �Ct
l and standard deviation

.�Ct
l � of the remaining capacity of leg l at the beginning

of time window t.
Step 3. For the approximation of the value function at the

beginning of time window t, use the discretization points

{�Ct
l� i = � �Ct

1� � � � � �Ct
l−1� �Ct

l� i� �Ct
l+1� � � � � �Ct

L� � i= 1� � � � � q*

l= 1� � � � �L
}
�

where

�Ct
l� i = �Ct

l�min +
⌊

i

q+ 1
� �Ct

l�max − �Ct
l�min�

⌋

�i= 1� � � � � q* l= 1� � � � �L�

for

�Ct
l�min=max �Ct

l −/·.�Ct
l ��0� �i=1�����q*l=1�����L��

�Ct
l�max=min �Ct

l +/·.�Ct
l ��C

1
l � �i=1�����q*l=1�����L��

Here / is a predetermined constant defining a confidence
interval centered around �Ct

l , in which the discretization
points �Ct

l� i in dimension l are chosen. Multiples of dis-
cretization points may occur for small . but are removed
from the set.

For each time window t, the algorithm creates qL dis-
cretization points on the axes of an artificial coordinate
system in the state-space with origin �Ct = � �Ct

1� � � � � �Ct
L�,

that covers the area where the remaining capacity vector is
most likely to be. Working within this artificial coordinate
system facilitates the definition of the piecewise linear and
separable approximation of the value function that we have
used in this research. The number of discretization points q
and the size / of the confidence interval can only be cho-
sen by trial and error, given the usual trade-off between
accuracy and computation time. In the numerical examples
of §4 we have used /= 3, as this (roughly) corresponds to
a 99% confidence interval.

3.3.2. Interpolation of the Value Function. In this
section, we propose a method to estimate the value func-
tion E�Rt�Ct�� by approximating its value on the set of
discretization points. For simplicity, we have used a piece-
wise linear and separable approximation in this research.
This is somewhat similar to the bid-price approach, which
can be seen as a linear approximation of the value function.
Our approach utilizes first- and second-order information,
which should lead to more accurate estimates. First, we
develop an efficient algorithm to estimate the first finite
differences of the value function, which is again not dif-
ferentiable. Then, we propose a linear interpolation method
that is motivated by the concavity of the expected revenue
as a function of remaining capacity on a single leg (given
Poisson demand in the absence of group bookings, e.g.,
Lee and Hersh 1993). The proposed approach is recursive,
in the sense that the estimation of E�Rt�Ct�� requires that
an estimate of E�Rt+1�Ct+1�� is already available.

We propose the following algorithm to estimate the
value function E�Rt�Ct�� and its first finite differences
(lE�R

t�Ct�� for any given capacity vector Ct .

Value Function and First Finite Differences Estimation
Algorithm
Step 0. Use EMSR-BL or LP-BL (whichever works best)

in combination with the Numerical Booking-Limit Improve-
ment Step to determine a good set of booking limits bt .
Step 1. FOR j = 1 TO n

(1a) Simulate the booking process in time window t.
Let Rt�Ct� j� be the estimate of the future revenue given
capacity Ct at the start of time window t, based on the
revenue generated in the simulation and the approximation
of E�Rt+1�Ct+1��.

(1b) For each leg l, determine what the revenue would
have been if the capacity on this leg would have been
decreased by one seat, without changing the booking lim-
its. Let the revenue generated in that case be denoted by
Rt�Ct

l−� j�.
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(1c) Let the jth estimate of the lth first finite differ-
ence be (lR

t�Ct� j�=Rt�Ct� j�−Rt�Ct
l−� j�.

END FOR
Step 2. Let E�Rt�Ct�� = �1/n�

∑n
j=1 R

t�Ct� j� and
(lE�R

t�Ct�� = �1/n�
∑n

j=1 (lR
t�Ct� j� be the final esti-

mates of E�Rt�Ct�� and its lth first finite difference,
respectively.

Note that the reduction of capacity on a leg might also
affect the optimal set of booking limits, given the virtual
nesting scheme. However, because reoptimization would be
too time consuming, we have decided not to take this effect
into account. The algorithm requires the generation of only
n sequences of demand, because Step (1b) is again just a
matter of parallel bookkeeping. The number of samples n
is determined by tuning, the trade-off again being accuracy
and computation time.

We now define the interpolation method. To simplify
notation, we have suppressed the dependence on the time
window t. Let �Cl�1 < �Cl�2 < · · ·< �Cl� q be the discretization
points in dimension l, and let �Cl� i be the lth coordinate of
�Cl� i. Use the estimation method outlined above to approx-
imate the value function E�R��Cl� i�� and its lth first finite
difference (lE�R��Cl� i�� for each discretization point �Cl� i.
Approximate E�R��C�� as well. Let C = �C1� � � � �CL� and
let Cl = �C+ �Cl − �Cl�el be the projection of C on dimen-
sion l of the artificial coordinate system that contains the
discretization points. Then, the value function at point C
can be approximated by

Value Function Interpolation Algorithm
Step 1. For all legs l= 1� � � � �L:

(1a) If Cl � �Cl�1, let E�R�Cl�� � E�R��Cl�1�� −
(lE�R��Cl�1��� �Cl�1 −Cl�.

(1b) If Cl � �Cl�q , let E�R�Cl�� � E�R��Cl� q�� +
(lE�R��Cl� q���Cl − �Cl�q�.

(1c) If �Cl� i �Cl < �Cl� i+1 �1� i < q�, let

∗ E�R�Cl��ub�min




E�R��Cl�i��

+(lE�R��Cl�i���Cl− �Cl�i��

E�R��Cl�i+1��

−(lE�R��Cl�i+1��� �Cl�i+1−Cl�




∗ E�R�Cl��lb�E�R��Cl�i��

+ �Cl− �Cl�i�

�Cl�i+1− �Cl�i

(
E�R��Cl�i+1��−E�R��Cl�i��

)

∗ E�R�Cl���wE�R�Cl��ub+�1−w�E�R�Cl��lb

for 0�w�1�

Step 2. Let E�R�C�� = E�R��C�� + ∑L
l=1�E�R�Cl�� −

E�R��C���.

Figure 1. Illustration of the value function interpolation
algorithm.

True value function
Value function approximation
Bounds on approximation

Cl�i Cl�i+1 Cl

E
�R
�C

l�
�
−
E
�R
�
� C�
�

The interpolation algorithm is based on determining how
much of the difference between the value function at C and
�C can be attributed to the difference in remaining capacity
at each of the individual flight legs. For this purpose, we
have introduced the auxiliary capacity vectors Cl that are
equal to �C except on leg l. When Cl is between two dis-
cretization points in dimension l (Case (1c)), we determine
lower and upper bounds on its function value based on the
presumed concavity of the value function for a single-leg
flight. These bounds are illustrated in Figure 1. The upper
bound consists of the lower envelope of the tangent lines at
the discretization points, while the lower bound is given by
the convex combination of the value function at these two
points. We then combine these bounds by taking a weighted
average. When Cl falls outside the range of discretization
points (Cases (1a) and (1b)), linear extrapolation is used.
Based on this approximation, we determine the difference
between the value function at Cl and �C, which can be seen
as the change of the value function along dimension l. The
difference between the value function at C and �C is then
estimated by the sum of these changes.

We are now ready to define an algorithm that estimates
all value functions recursively. Let E�RT+1� ≡ 0. Then,
E�Rt�Ct�� �t = 1� � � � � T � can be estimated as follows.

Recursive Value Function Estimation Algorithm
Step 1. Use the Discretization Points Selection Algo-

rithm to select discretization points for each time window
t = 1� � � � � T .
Step 2. FOR t = T TO 1

(2a) Use the Value Function and First Finite Dif-
ferences Estimation Algorithm to approximate E�Rt��Ct��,
E�Rt��Ct

l� i��, and (lE�R
t��Ct

l� i�� for each discretization
point �Ct

l� i.
(2b) Use the Value Function Interpolation Algorithm

to approximate E�Rt�Ct�� for arbitrary Ct in the state-space.
END FOR

The estimation of the value function might be compu-
tationally expensive, but it can be done offline. After �Ct ,
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the discretization points �Ct
l� i, and the estimates of

E�Rt��Ct��, E�Rt��Ct
l� i��, and (lE�R

t��Ct
l� i�� have been cal-

culated and stored, the approximation of E�Rt�Ct�� reduces
to a single call of the Value Function Interpolation Algo-
rithm. It is important, however, that these estimates are
updated regularly during the booking process, even for a
given set of flight departures. As the airline learns more
about the actual realization of the demand process, it should
update its demand forecasts for the remaining part of the
booking period accordingly. For instance, if the number of
advance booking requests for a certain destination was sur-
prisingly high, this may indicate that there is a special event
taking place that will lead the number of last-minute book-
ing requests to be higher than usual as well. Ideally, the
value function estimates should depend on the number of
booking requests received for each ODF, but in that case
the dimension of the state-space would be too large. Regu-
lar updates of the value function estimates may at least help
to capture part of this effect. The current approximation
based on a stochastic demand model that is fixed through-
out the booking process is only intended to adjust the book-
ing policy for the effect of the statistical fluctuations of
demand on the remaining capacity, which we believe to be
an important factor in effective inventory control.

3.4. The Simulation-Based Booking-Limits
Approach

We now can define our proposal to determine a booking-
limit policy for an arbitrary time window t.

Simulation-Based Booking-Limit Policy (SBL)
Step 1. (offline, say weekly) Run the Recursive Value

Function Estimation Algorithm.
Step 2. (offline, say overnight) Run the Numerical

Booking-Limit Improvement Step on top of EMSR-BL or
LP-BL (whichever works best) to determine the booking
limits bt . Use the Value Function Interpolation Algorithm
to evaluate E�Rt�Ct�� when necessary.
Step 3. (online) Implement the booking-limit (BL) pol-

icy with the set of booking limits bt .
In the numerical experiments of §4, we have compared

both ways to determine a starting point for the Numeri-
cal Booking-Limit Improvement Step, which we refer to as
SBLEMSR and SBLLP, respectively. For Step 0 of the Value
Function and First Finite Differences Estimation Algo-
rithm, we have always used EMSR-BL. Note that the same
algorithms can be used with different nesting policies, both
standard and theft, which only affects the implementation
of the simulation program. For this reason, we have tested
the performance of the SBL approach for both methods.

We feel that the most important ideas underlying the SBL
method are:

1. The use of Model (1) to determine the nesting order,
hence solving the combinatorial aspect of the problem

efficiently. Because nesting can be combinatorially explo-
sive, Model (1) provides a feasible, and we think reason-
able, approximation to the optimal nesting order.

2. The combination of simulation and approximate
dynamic programming to estimate the expected revenue at
the end of each time window. This allows capturing the
effect of policy updates for the Numerical Booking-Limit
Improvement Step.

3. The stochastic gradient algorithm to improve a given
set of booking limits.

The SBL approach is clearly a heuristic, because the
stochastic gradient algorithm will most likely not have con-
verged to an optimal solution at its termination. Moreover,
much of its performance depends on the tuning of the
parameters of the subroutines it invokes. However, the algo-
rithm has been designed in such a way that it should always
lead to an improvement of the initial set of booking limits,
given the simulation model and the accuracy of the value
function approximation. The numerical evidence presented
in the next section supports this. In contrast, most of the
methods that have been proposed in the literature have a
better theoretical justification, but they either oversimplify
the problem or are directed at optimizing a different policy
than the one that is actually implemented.

4. Computational Results
In this section, we conduct computational experiments to
determine how much the SBL approach improves over
EMSR-BL and LP-BL and what factors affect the relative
performance of these policies. We consider some large-scale
examples to show that the SBL approach is tractable for
realistically sized problems. In addition, we briefly compare
the SBL approach with the BP policy for completeness.

4.1. The Simulation Environment

Following Weatherford et al. (1993), for our computa-
tional experiments we model the arrival process of booking
requests for class odf as a nonhomogeneous Poisson pro-
cess (NHPP) with arrival intensity

2odf �t�= 3odf �t�×Aodf � (5)

where 3odf �t� is the standardized beta distribution—

3odf �t�=
1
5

(
t

5

)-−1(
1− t

5

)3−1
6�-+3�

6�-�6�3�
�

in which 5 is the length of the booking period, and - and
3 are parameters defining the arrival pattern—and Aodf is
a random variable that obeys the gamma distribution. The
properties of this so-called Pólya process are studied in the
monograph by Grandell (1997) on the more general class
of mixed Poisson processes. Modeling the rate by the beta
distribution 3odf �t� allows for a wide range of unimodal
arrival patterns. The random variable Aodf , which has the
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interpretation of the total demand for booking class odf,
adds an extra level of randomness to the NHPP. In addition,
it introduces a positive correlation between the number of
bookings in separate parts of the booking horizon. As a
result, the current number of bookings provides information
about demand to come, which should be taken into account
for the policy updates.

Because the gamma distribution is the conjugate prior
of the Poisson distribution, it is easy to show that the
total demand Dodf generated by the Pólya process has the
negative binomial distribution. With a little extra work, it
can be shown that the conditional distribution of remain-
ing demand after each update is negative binomial as well.
This suggests that the arrival process of booking requests
after each update can again be modeled by a Pólya pro-
cess with arrival intensity (5), where the parameters of the
distribution of Aodf now depend on the number of booking
requests received up to that point. It is understood that, for
each policy update, Model (1) and the EMSR method are
based on the conditional demand distributions, and that the
Numerical Booking-Limit Improvement Step 2 of the SBL
approach is based on a conditional model of the arrival pro-
cess of booking requests. In contrast, as discussed in §3.3.2,
the estimate of the value function is based on the “uncon-
ditional” prior demand model (5).

Empirical studies by Lyle (1970) and de Boer (1999)
suggest that a Pólya process with arrival intensity (5) is
a reasonable high-level approximation of airline demand.
Note, however, that this model does not incorporate impor-
tant practical factors such as overbooking, cancellations,
and no-shows. In addition, the model assumes that each
customer requests a particular fare class and that no other
fare class, lower or higher, would do. Although air-
lines do try to fence off low fares from price-insensitive
customers—for instance, by requiring a Saturday night
stay—this is unrealistic. More likely, customers are looking
for the lowest available fare that meets their restrictions;
thus, the RM policy affects demand. In this case, the same
control framework (virtual nesting) can be used to deter-
mine the seat availability for each booking class, but the
booking-limit calculation step would have to be adjusted
to take this into account. Because it is hard to model such
a demand process in closed form, independent demand
for each booking class is a common assumption in the
RM literature. However, for the SBL method, this behav-
ior can easily be captured, because only the simulation
model would need to be adjusted. For instance, each simu-
lated customer could consecutively request the availability
of all fare classes that meet his restrictions, starting with the
cheapest one, and would buy the first available. We have
deliberately left out these factors in our numerical analysis
to concentrate on the effects of including nesting in a prob-
abilistic and dynamic model of demand. These simplifica-
tions limit the generality of our results, because we cannot
be sure how the SBL method would perform given a more
realistic model of the booking process. However, as far as

we know, no other method has been proposed to date to
address such a sophisticated representation of the problem
against which we could benchmark it.

We have implemented a computer program in C++ that
simulates the booking process according to the model we
outlined. We have implemented the policies EMSR-BL,
LP-BL, SBLEMSR, SBLLP, and BP, under both standard and
theft nesting, and allowing at most 10 buckets per leg in
the clustering step. Unless stated otherwise, different poli-
cies are tested on the same simulated sequence of booking
requests to get a more accurate estimate of the revenue
differential.

4.2. Sensitivity Analysis

We want to identify the factors that affect the relative per-
formance of the considered policies. In particular, we are
interested in under what conditions the SBL approach leads
to the most significant revenue gains. We consider a single-
leg flight and a small network. To isolate these factors from
the impact of policy updates and the value function estima-
tion, in the examples below the booking policy is calculated
only once at the beginning of the booking period �T = 1�.

4.2.1. Example 1: Single-Leg Flight. Our first exam-
ple is a single-leg flight with five fare classes. The factors
we consider here are the nominal load factor, the demand
variability, and the fare structure. The nominal load fac-
tor (LF) is defined as the total expected demand for seats
divided by the total number of available seats. Demand
variability is measured by the coefficient of variation (CV)
of the demand for each booking class. The fare structure is
determined by the relative difference (RDF) between two
consecutive fares for the same itinerary. For example, an
RDF of 50% implies that the difference between the lowest
and the highest fare in the market for the same itinerary
is roughly a factor of five. In addition, we have examined
the effect of the arrival order of booking requests, which is
determined by the parameters of the beta distribution. We
distinguish between time-homogeneous (HOM) arrivals for
each booking class, and the case that the lower-fare classes
tend to book early in the booking period, while the higher-
fare classes tend to book closer to departure time (LBH).

In Tables 1 and 2 we report the results of 100,000 sim-
ulation runs using standard nesting. Here as well as in all
other numerical examples, the reported improvement of
the SBL method over alternative booking-limit heuristics
is using the latter as the starting point for the random
search. For completeness, we also report the improvement
of EMSR-BL over LP-BL. The most relevant observations
from these examples are:
• The gain of SBL over LP-BL increases with demand

variability and varies significantly with the fare structure,
while the gain of SBL over EMSR-BL is less sensitive to
these factors. The reason is that the EMSR method takes
into account both demand uncertainty and the fare levels,
while the LP-based method does not.
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Table 1. Sensitivity gain SBL over EMSR and LP for RDF and CV (standard nesting).

SBLEMSR −EMSR SBLLP −LP EMSR−LP

RDF ⇓ \ CV⇒ 25% 50% 75% 25% 50% 75% 25% 50% 75%

25% 0�02% 0�05% 0�13% 0�67% 1�62% 2�94% 0�66% 1�56% 2�81%
50% 0�05% 0�11% 0�30% 0�12% 0�73% 1�20% 0�30% 0�61% 0�88%
75% 0�06% 0�11% 0�30% 0�43% 1�11% 1�60% 0�56% 0�99% 1�29%

Table 2. Sensitivity gain SBL over EMSR and LP for LF and arrival process (standard nesting).

SBLEMSR −EMSR SBLEMSR −LP EMSR−LP

LF ⇓ \ Arrivals⇒ LBH HOM LBH HOM LBH HOM

75% 0�01% 0�06% 0�09% 0�12% 0�08% 0�04%
100% 0�08% 0�48% 0�92% 0�90% 0�85% 0�42%
125% 0�11% 0�68% 0�69% 1�14% 0�59% 0�47%

• The gain of SBL over EMSR-BL and LP-BL generally
increases with the load factor, reflecting that a better RM
method is more important given heavy demand.
• The gain of SBL over EMSR-BL strongly depends

on the arrival process, while the gain of SBL over LP-
BL is less sensitive to this factor. The reason is that the
EMSR method implicitly assumes that the lowest classes
book first, thus the protection levels are off when this is
not the case.
• In most cases, the gain of EMSR-BL over LP-BL and

the gain of SBL over EMSR-BL add up to roughly the
gain of SBL over LP-BL, which suggests that the expected
revenue of the SBL approach is relatively insensitive to the
starting point of the random search. Note that the resulting
policies are not necessarily the same, which may lead to
different combinations of load factor and yield.

To investigate the effect of the nesting policy on the rela-
tive performance of the SBL approach, in Table 3 we report
the result of 100,000 simulation runs using theft nesting.
For completeness, we also compare the expected revenue
of the SBL approach (EMSR starting point) under standard
and theft nesting. The most relevant observations from this
example are:
• The gains of the SBL approach over EMSR-BL and

LP-BL are much more significant under theft nesting
than they were under standard nesting. Unlike the SBL
approach, these methods do not take the operational nest-
ing policy into account, while this clearly should affect the
booking limits.

Table 3. Sensitivity gain SBL over EMSR and LP for RDF and CV (theft nesting).

SBLEMSR −EMSR SBLLP −LP SBLEMSR Standard−Theft

RDF ⇓ \ CV⇒ 25% 50% 75% 25% 50% 75% 25% 50% 75%

25% 7�93% 3�20% 1�80% 11�79% 8�72% 8�00% −0�15% −0�24% −0�78%
50% 7�56% 3�78% 2�34% 8�80% 5�45% 4�03% −0�35% −0�40% −0�65%
75% 6�25% 3�36% 2�45% 7�09% 3�93% 3�06% −0�13% −0�45% −0�89%

• If the SBL approach is used to set the booking limits
under both standard and theft nesting, then theft nesting
performs better, and more so when the demand variance
increases.

Figure 2 shows the estimated objective values of the
sequence of booking limits produced by the SBL algorithm
with different starting points (EMSR-BL and LP-BL) for the
case that CV = RDF = 50%, under both standard and theft
nesting. The expected revenue estimates are again based on
100,000 simulation runs. In all cases, the stopping criterion
of the Numerical Booking-Limit Improvement Step was
met before the maximum number of iterations was reached.
Note that the improvement obtained by the SBL Algo-
rithm is not monotone, perhaps because of the discrete and

Figure 2. Convergence of the SBL Algorithm for
Example 1 with CV=RDF= 50%.
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Table 4. Sensitivity gain SBL over EMSR and LP for LFR and FLD (standard nesting).

SBLEMSR −EMSR SBLLP −LP EMSR−LP

FLD⇓ \LFR ⇒ 50% 62.5% 75% 50% 62.5% 75% 50% 62.5% 75%

25% 0�02% 0�50% 1�03% 0�79% 0�99% 1�17% 0�77% 0�49% 0�20%
50% 0�49% 0�70% 0�36% 0�76% 0�81% 1�09% 0�26% 0�14% 0�71%
75% 0�03% 0�07% 0�07% 0�83% 0�67% 0�66% 0�58% 0�60% 0�57%

stochastic nature of the optimization problem, and that most
progress is made in the first couple of iterations.

4.2.2. Example 2: Single-Hub Network. We continue
our sensitivity analysis with an example of a single-hub
network connecting five cities to investigate factors that
may affect the performance of the considered policies in
a network setting. We only consider one bank of inbound
and one bank of outbound flights. The airline offers all 30
possible itineraries, both local and connecting, at a full-fare
and a discount rate. The factors that we have considered
are the fraction local demand on each leg (FLD) and the
average ratio between local and connecting fares (LFR).
For example, an LFR of 50% indicates that on average
traveling to or from the hub costs half as much as a con-
necting flight from spoke to spoke. The results of 100,000
simulation runs for an LBH arrival process using standard
nesting are reported in Table 4.

The most important observation from this example is
that when local demand is relatively low, the gain of SBL
over EMSR-BL increases with the value of local traffic,
while when local demand makes up a larger fraction of
total demand, the effect is unclear. The gain of SBL over
LP-BL is less sensitive to these factors. A possible expla-
nation may be that EMSR-BL, by solving the problem
for each leg separately, may have a tendency to overpro-
tect local traffic. Note that a connecting passenger should
only be turned down when he is expected to displace a
local passenger on both of his flight legs. However, leg-
based methods based on displacement adjusted or prorated
fares set protection levels to avoid displacement on a sin-
gle leg, which has a higher probability of occurring. This
tendency might be stronger when local passengers are rel-
atively more valuable, but this would matter less the larger
their share of total traffic. Finally, note that the performance
of SBL is generally independent of the starting point of
the random search, because again in most cases the gain of
EMSR-BL over LP-BL and the gain of SBL over EMSR-
BL roughly add up to the gain of SBL over LP-BL.

Table 5. Comparison with optimal booking control (standard nesting).

Number of updates 0 5 10 20

SBLEMSR −EMSR 0�11% 0�23% 0�37% 0�48%
SBLLP −LP 0�79% 0�89% 1�07% 1�18%
SBLNVV

EMSR −EMSR 0�11% 0�16% 0�16% 0�27%
SBLNVV

LP −LP 0�79% 0�93% 0�86% 1�13%
opt. gap SBLEMSR 0.77%–1.55% 0.11%–0.90% <0�41% <0�17%

4.3. Comparison with the Optimal Policy

In our next example, we compare SBL, EMSR-BL, and
LP-BL with the optimal booking policy determined by
stochastic dynamic programming. To illustrate the impor-
tance of the value functions for the performance of the
SBL approach, we test an alternative implementation of
the Finite Differences Estimation Algorithm that simulates
the booking process until the end of the booking period,
not accounting for future policy updates (SBLNVV). The
comparisons between EMSR-BL and LP-BL and between
standard nesting and theft nesting have been left out delib-
erately, because our primary interest is the relative perfor-
mance of the SBL approach.

Consider a single-leg flight with capacity of 100 seats.
The airline offers six different booking classes, with fares
ranging from $100 to $800. Booking requests arrive accord-
ing to a nonhomogeneous Poisson process of the LBH
type. The gamma component of the arrival intensity in (5)
is suppressed to allow modeling the problem as a one-
dimensional Markov Chain �Aodf = E�Dodf ��. Average
demand exceeds capacity by 30%. The results of 2,500
simulations runs using standard nesting for different num-
bers of policy updates are reported in Table 5. The reported
bounds on the optimality gap are based on the SDP solu-
tion (optimal expected revenue of $26,594.5) and a 95%
confidence interval for the true expected revenue of the
SBL approach based on the sample average and its standard
deviation. The most relevant observations from this table
are that:
• The optimality gap of the SBL method decreases with

the number of policy updates until, with 95% confidence,
it is less than 0.17%.
• The gain of SBL over EMSR-BL and LP-BL increases

with the number of policy updates, and when SBL is imple-
mented without accounting for the policy updates, the rev-
enue gains are generally lower. This suggests that it is
important to take future updates into account when deter-
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Table 6. Accuracy of the value function estimates (standard nesting).

Number of updates 0 5 10 20

E�R1�C1�� 26286.4 26512.8 26548.6 26572.5
SBLEMSR revenue 26286.4 (53.3) 26460 (53.8) 26589.4 (53.3) 26649.8 (50.9)

Table 7. Comparison with optimal booking control (theft nesting).

Number of updates 0 5 10 20

SBLEMSR −EMSR 4�92% 0�91% 0�40% 0�20%
SBLLP −LP 4�97% 1�00% 0�68% 0�89%
SBLNVV

EMSR −EMSR 4�92% 0�86% 0�24% −0�11%
SBLNVV

LP −LP 4�97% 0�96% 0�48% 0�50%
opt. gap SBLEMSR 0.79%–1.57% <0�79% <0�33% <0�09%

mining the current booking policy, which the latter two
methods do not.

To illustrate the performance of the Value Function Esti-
mation Algorithm, in Table 6 we report both the average
revenue generated by the SBL approach (standard devia-
tion of the sample average given between parenthesis) and
the estimate of the value function at the beginning of the
booking period. Note that the value function estimates are
relatively accurate.

In Table 7, we report the results for the same 2,500 real-
izations of the demand process under theft nesting. The
most relevant observations are that:
• The gain of SBL over EMSR-BL and LP-BL now

decreases with the number of policy updates. A possible
explanation is that theft nesting is more effective when the
booking limits are updated more frequently; thus, there is
less room for the SBL approach to improve.
• When SBL is implemented without accounting for the

policy updates, the revenue gains are lower and can even
be negative. We have seen this in many other simulation
experiments that we have not reported here as well, which
shows that the value function estimation step is in fact
essential for the success of the SBL method.
• The revenue gains of the SBL approach are more sig-

nificant under theft nesting than under standard nesting
when the number of policy updates is relatively small, for
reasons already explained above.

4.4. Larger Networks

We consider networks of 5, 10, and 15 cities connected by
a single hub. The airline offers all possible itineraries, both

Table 8. Large-scale simulation results (revenue performance).

SBLEMSR −EMSR SBLLP −LP EMSR−LP

Test case⇓ \ # spokes⇒ 5 10 15 5 10 15 5 10 15

Poisson, standard 0�16% 0�09% 0�08% 0�84% 0�24% 0�24% 1�67% 2�07% 2�17%
Poisson, theft 0�18% 0�47% 0�61% 1�23% 0�60% 0�61% 1�50% 1�25% 1�08%
Pólya, standard 0�07% 0�05% 0�05% 1�06% 0�26% 0�25% 1�64% 1�84% 1�85%
Pólya, theft 0�32% 0�38% 0�48% 1�29% 0�84% 0�68% 1�07% 1�35% 1�01%

local and connecting, at five different rates. We consider the
case of demand following a pure nonhomogeneous Poisson
process (Aodf = E�Dodf �, with CV = 1/E�Dodf �, generally
less than 30%), and the case of the arrival intensity itself
being a gamma-distributed random variable (a Pólya pro-
cess, with CV= 35%), under both standard and theft nest-
ing. The other simulation settings are RDF = 50%, LF =
125%, LFR = 75%, FLD = 25%, and an LBH arrival
process. The booking policy is updated 20 times during
the booking period. The results of 1,000 simulation runs
are reported in Table 8. Again, the comparison between
standard and theft nesting has been left out deliberately.
We applied “slower” SBL optimization settings for the
5-spokes network with demand modeled by a Pólya process
than for the other test cases (see §4.4.1), which may be
part of the reason why the relative performance of the SBL
approach is generally better in this case. Other important
observations are:
• The gains of the SBL approach are practically sig-

nificant. Given the operating scale and cost structure of
airlines, seemingly small revenue improvements might
translate to millions of dollars each year, added straight to
the bottom line.
• The gain of the SBL approach is larger under theft

nesting than under standard nesting.
• In all cases, the combined gain of EMSR-BL over LP-

BL and of SBL over EMSR-BL is much higher than the gain
of SBL over LP-BL, which shows that the EMSR booking
limits provide a better starting point for the SBL approach.

4.4.1. Computational Tractability. When the scale of
the problem allows it, we can use “slower” optimization
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Table 9. Large-scale simulation results (computational performance).

VV-EST (hrs) SIM SBLEMSR (sec) SIM SBLLP (sec)

Test case⇓ \ # spokes⇒ 5 10 15 5 10 15 5 10 15

Poisson, standard 4�84 24�53 49�41 0�33 1�24 14�13 0�45 1�57 12�55
Poisson, theft 4�84 24�53 49�41 0�32 1�19 10�53 0�60 2�97 18�95
Pólya, standard 10�09 42�25 60�52 10�16 3�14 11�30 12�41 3�23 9�73
Pólya, theft 10�09 42�25 60�52 17�98 5�26 9�89 21�07 5�73 14�43

settings for the SBL approach, which may lead to a better
solution. The number of iterations (n) for the Finite Dif-
ferences Estimation Algorithm was 1,000 for the 5-spokes
network with demand modeled by a Pólya process, using a
fixed stepsize $k = 0�5, but only 100 for the other test cases,
with stepsize $k = 0�05. In all cases, we used (max = 2 and
kmax = 10. The number of iterations for the Value Func-
tion and First Differences Estimation Algorithm was 10,000
for the 5- and 10-spokes networks, but only 5,000 for the
15-spokes network. In all cases, we used q = 4 grid points
in each dimension of the state-space, while for the Value
Function Interpolation Algorithm we used w = 0�5 with-
out much tuning. The value function estimate based on
standard nesting was used to implement the SBL approach
under theft nesting as well, to save computation time. The
run time of the value function estimation (VV-EST, in
CPU) and of the booking-limit improvement step (approx-
imated by the average simulation time per update of the
SBL policy (SIM, in CPU)) for these large-scale examples
on a Pentium IV processor are reported in Table 9. The
important observations are that:
• The estimation of the value function for the 15-spokes

network took about 50 to 60 hours of CPU time, depending
on the demand process. Tuning of the optimization param-
eters and a more efficient implementation of the program
can speed up the algorithm, but the important point is that
this part of the algorithm can be done offline.
• The online part of the SBL approach takes only sec-

onds for all instances, which shows that the proposed SBL
approach is computationally tractable for realistically sized
problems.

4.5. Comparison with Bid-Price Control

We now compare the SBL approach with the BP policy
defined in §2.2. Clearly, the BP policy is easier to com-

Table 10. Gain SBL approach with 20 updates over the BP policy (SBLEMSR −BP).

5 spokes 10 spokes 15 spokes

# updates BP⇓ \ Demand process⇒ Pólya Poisson Pólya Poisson Pólya Poisson

20 2�19% 1�89% 2�14% 2�67% 2�00% 2�60%
40 1�72% 1�27% 1�74% 2�22% 1�34% 2�01%
60 1�21% 1�21% 1�29% 2�22% 1�15% 1�76%
80 1�27% 1�17% 1�29% 1�97% 1�09% 1�71%

100 1�08% 1�06% 1�33% 2�06% 1�03% 1�59%

pute, but as we have pointed out, its success may strongly
depend on the frequency of policy updates. For this reason,
we compare the revenue performance of the SBL approach
(EMSR starting point, standard nesting) with 20 updates
to the BP policy updated 20 to 100 times. The results of
1,000 simulation runs for the same test cases as in §4.4, but
with different sequences of booking requests, are reported
in Table 10. Even given 100 updates of the BP policy, the
SBL approach with only 20 updates performed best. As we
have pointed out, a better implementation of the BP policy
may be based on dynamic bid prices, but a more thorough
comparison of booking-limit and bid-price control is out-
side the scope of this research.

4.6. Insights Gained

The most important insights gained from the numerical
experiments in this section are:
• The SBL approach can lead to practically significant

revenue improvements over both EMSR-BL and LP-BL.
• The SBL approach takes into account factors that

should affect the booking-limit policy, but that other meth-
ods ignore, such as demand uncertainty and the fare struc-
ture (compared to LP-BL), the dynamics of the demand
process, the likelihood of a connecting passenger displacing
two local travelers, future policy updates, and the opera-
tional nesting policy. Because both EMSR-BL and LP-BL
implicitly assume standard nesting, the improvement of the
SBL approach over these methods is particularly significant
under theft nesting.
• The SBL approach is computationally tractable for

realistically sized problems.
• The use of value functions to account for future policy

updates is essential for the success of the SBL approach.
• EMSR-BL provides a better starting point for the SBL

random search than LP-BL.
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5. Conclusions
In this paper, we proposed a framework to address the
stochastic and dynamic character of the demand and the
nested character of booking-limit control in a network envi-
ronment. Starting with any nested booking-limit policy, we
combine a stochastic gradient algorithm and approximate
dynamic programming ideas to improve the initial book-
ing limits. Preliminary simulation experiments suggest that
this approach (a) is computationally feasible for realisti-
cally sized networks, because the computationally demand-
ing part of the algorithm can be done offline, and (b) has
the potential of leading to practically significant revenue
enhancements over policies based on inaccurate representa-
tions of booking-limit control in a network. The simplified
demand model and the relatively small number of test prob-
lems limit the extent of our conclusions, but the potential
revenue gains warrant more extensive testing.

Appendix
Clustering Algorithm

On each leg l, recursively cluster all booking classes with
nonnegative adjusted leg revenue into at most Nmax (to be
chosen beforehand) leg buckets as follows. Let k = 0 be
the number of buckets Bl

i �1� i� k� already defined, and
consider the range of adjusted leg revenues of all booking
classes that remain to be clustered into at most Nmax − k
additional buckets. This range starts at 0 and ends at

UBl
k+1 =max

{
f̄ l
odf � 0 � odf ∈ Sl\

k⋃
i=1

Bl
i

}
�

Divide this range into Nmax − k equal parts and cluster all
booking classes whose adjusted leg revenue falls into the
last subinterval into bucket Bl

k+1, thus

Bl
k+1 =

{
odf ∈ Sl�

Nmax − k− 1
Nmax − k

UBl
k+1 � f̄ l

odf �UBl
k+1

}
�

which by definition contains the booking class with the
highest adjusted leg revenue that had not yet been clustered.
Let k← k+ 1 and terminate the recursion when k=Nmax,
or when no more booking classes with nonnegative adjusted
leg revenue remain to be clustered. Finally, let Nl = k+ 1
be the total number of buckets on leg l after clustering all
booking classes with negative adjusted leg revenue into the
lowest bucket

Bl
Nl
= odf ∈ Sl� f̄

l
odf < 0�

if this set is not empty. Otherwise, Nl = k. This basic algo-
rithm, which may be different from what airlines use in
practice, guarantees that there are no empty buckets and
reduces the number of buckets on a leg if the adjusted leg
revenues are closely grouped together.

LP-Based Booking-Limit Calculation Method
(LP-BL, Williamson 1992)

Let bl1 =Cl. Let pl
i be the number of seats that needs to be

protected (protection level) on leg l for buckets 1 to i from
bookings for bucket i+ 1 or lower, which based on the LP

solution is

pl
i =

i∑
j=1

∑
odf∈Bl

j

x∗
odf �i= 1� � � � �Nl − 1��

Then, it makes intuitive sense to let

bli+1 =Cl −pl
i �i= 1� � � � �Nl − 1�� (6)

Note that bli � 0 for all i because of the capacity constraints
of Model (1).

EMSRb Booking-Limit Calculation Method
(EMSR-BL, Belobaba 1992)

Let Dl
i be the aggregate demand for all booking classes in

bucket i on leg l, and let r li be a weighted average of their
adjusted leg revenues; thus,

Dl
i =

∑
odf∈Bl

i

Dodf �

r li =
1

E�Dl
i �

∑
odf∈Bl

i

E�Dodf �f̄
l
odf �

Let Dl
1�i be the aggregate demand for buckets 1 to i; thus,

Dl
1�i =

i∑
j=1

Dl
j =

i∑
j=1

∑
odf∈Bl

j

Dodf �

We approximate the distribution of Dl
1�i with the Gaussian

distribution with

E�Dl
1�i�=

i∑
j=1

∑
odf∈Bl

j

E�Dodf ��

Var�Dl
1�i�=

i∑
j=1

∑
odf∈Bl

j

Var�Dodf ��

The average weighted leg revenue r l1�i for these buckets is

r l1� i =
1

E�Dl
1� i�

i∑
j=1

E�Dl
j �r

l
j �

We can now define the booking limits. As before, let bl1 =
Cl. For i= 2� � � � �Nl −2, the number of seats that needs to
be protected for buckets 1 to i from bookings from bucket
i+ 1 (and thus from all lower buckets) is

pl
i =maxp � r l1� iP �Dl

1� i � p� > rli+1� p integer��

and the booking limit corresponding to bucket i+1 is again
given by (6). Finally, set blNl

= 0, because we do not want to
accept bookings that seem to have a negative contribution
to leg revenue.
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