
RESTAURANT REVENUE MANAGEMENT

DIMITRIS BERTSIMAS
Sloan School of Management, E53-363, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, dbertsim@mit.edu

ROMY SHIODA
Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, romy@mit.edu

We develop two classes of optimization models to maximize revenue in a restaurant (while controlling average waiting time as well
as perceived fairness) that may violate the first-come-first-serve (FCFS) rule. In the first class of models, we use integer programming,
stochastic programming, and approximate dynamic programming methods to decide dynamically when, if at all, to seat an incoming party
during the day of operation of a restaurant that does not accept reservations. In a computational study with simulated data, we show that
optimization-based methods enhance revenue relative to the industry practice of FCFS by 0.11% to 2.22% for low-load factors, by 0.16%
to 2.96% for medium-load factors, and by 7.65% to 13.13% for high-load factors, without increasing, and occasionally decreasing, waiting
times compared to FCFS. The second class of models addresses reservations. We propose a two-step procedure: Use a stochastic gradient
algorithm to decide a priori how many reservations to accept for a future time and then use approximate dynamic programming methods to
decide dynamically when, if at all, to seat an incoming party during the day of operation. In a computational study involving real data from
an Atlanta restaurant, the reservation model improves revenue relative to FCFS by 3.5% for low-load factors and 7.3% for high-load factors.

Received January 2001; revisions received September 2001, June 2002; accepted June 2002.
Subject classifications: Dynamic programming: revenue management, stochastic optimization. Industries: restaurant.
Area of review: Financial Engineering.

1. INTRODUCTION

Maximizing efficiency is of utmost importance in order
for large and popular restaurants to increase their profits
and to remain competitive. This can explain the surge in
the usage of point of sales (POS) softwares that track the
arrival time, size, and order of each customer. Although
floor managers can utilize these tools as an aid to better
estimate the remaining service time of the customers and
to see which tables need to speed up their service, their
seating policy is mainly based on intuition brought on by
experience. In most cases, they follow a simple first-come-
first-serve (FCFS) policy.

The challenge of a floor manager is to decide when and
where to seat each arriving customer. If there are only
tables of four available and a party of two enters, does he
seat the party at the larger table or reserve it for a larger,
more revenue-producing party? In addition, if the restaurant
takes reservations, he needs to further decide how to seat
walk-in customers so that they would not take tables away
from the reservation customers while considering the pos-
sibility of no-shows. These are important practical issues
for restaurant managers, where in some cases a good floor
manager can make the difference of couple of hundred
dollars per night (Kosugi 1999). Thus, a tool that can help
floor managers better make these decisions would be of
significant value to a restaurant.

With all the data that are collected by the POS software,
a revenue-maximizing seating policy can be utilized. We
believe the key lies in nesting—where parties are seated at
tables that can seat larger parties. The present paper stems

from the belief that restaurants can increase their revenue
by optimizing their nesting decisions, i.e., when to save
tables in anticipation for larger parties, even when there are
smaller parties currently in queue. We develop two classes
of optimization models to maximize revenue in a restaurant,
while controlling average waiting time as well as perceived
fairness, that may violate the FCFS rule. In the first class of
models, we use integer programming, stochastic program-
ming, and approximate dynamic programming methods to
decide dynamically when, if at all, to seat an incoming
party during the day of operation of a restaurant that does
not accept reservations. In the second class of models, we
use a stochastic gradient algorithm to decide when, if at all,
to accept a reservation for a future time and also incorpo-
rate reservations in a dynamic model. We illustrate, using
both simulated and real data, that our models lead to sig-
nificant revenue enhancements relative to FCFS.

Literature

Revenue management in general is the practice of maxi-
mizing a company’s revenue by optimally choosing which
customers to serve. It has been used extensively in the air-
line, hotel, and car rental industries. McGill and van Ryzin
(1999) give a comprehensive overview of the history of rev-
enue management in transportation, where it has had the
greatest impact.

In the case of restaurants, restaurant managers want to
allocate their tables by seating the largest possible party
at each table—assuming the total bill increases with party
size. However, they need to also consider seating small par-
ties at large tables when the larger parties are not expected

Operations Research © 2003 INFORMS
Vol. 51, No. 3, May–June 2003, pp. 472–486 472

0030-364X/03/5103-0472 $05.00
1526-5463 electronic ISSN

Bertsimas and Shioda / 473

to arrive in the near future, because they would rather seat
them than have an empty table. Thus, the challenge is to
understand the demand flow throughout the day of each
type of customer and optimize the allocation of the tables
among them.

Unlike the widespread application of revenue manage-
ment methods in airlines, hotels, and rental cars, the
number and depth of studies on revenue management in
restaurants have been comparatively slim. Kimes (1998,
1999) and Kimes et al. (1999) have been among the first
to directly address the issue of restaurant revenue man-
agement. They built a strategic framework for applying
revenue management for restaurants to increase demand,
and thus revenue, by effective duration management and
demand-based pricing. They proposed using the revenue
per available seat hour (RevPASH �= revenue accrued in a
given time interval divided by the number of seats avail-
able during that time) as the restaurant’s performance met-
ric. This value is calculated for each time period of each
day, to identify times that the RevPASH is low. Simi-
larly, Sill et al. (1999, 2000) propose the use of Capacity-
Management Science (CMS)® as a systematic method of
assessing the restaurant’s capacity potential and process
efficiency. CMS® involves monitoring every component of
the service and production delivery process with quan-
tifiable measurements to improve customer satisfaction,
enhance employee work life, and increase profit.

Although not specified under the name of revenue man-
agement, many other approaches have been proposed to
increase the revenue of restaurants. Vakharia et al. (1992)
developed models and heuristics to find the best trade-
off between wages and hour preferences to minimize the
cost of employees while maintaining employee satisfaction.
Quain et al. (1998) and Muller (1999) addressed managerial
factors that may improve the efficiency of restaurants, such
as realizing profit centers, dispersing demand, decreasing
operating hours, and decreasing service time by making the
restaurant operational procedures as efficient as possible.

Most of the studies in this area address issues concern-
ing the overall management of the restaurant. However, to
the best of our knowledge there are no studies on a math-
ematically rigorous dynamic seating model.
Our objective in the present paper is to develop and test,

using both simulated and real data, several increasingly
sophisticated optimization-based approaches to restau-
rant revenue management (RRM) that address trade-offs
between expected revenue, average waiting time, and per-
ceived fairness, that may violate the FCFS rule.

Contributions

Our contributions are:
(1) Because an exact dynamic programming approach

to RRM is infeasible due to “the curse of dimensionality,”
we develop mathematical-programming-based approaches
of increasing sophistication to maximize expected revenue,
taking into account expected waiting time and associated

fairness issues. We develop integer programming, stochas-
tic programming, and approximate dynamic programming
models to provide efficiently implementable policies for
RRM. These approaches are interesting in their own right
and may find application in revenue management in other
contexts. A particularly promising method is the approach
of approximate dynamic programming based on an integer
programming model.

(2) We propose a stochastic gradient algorithm moti-
vated by the work of Karaesmen and van Ryzin (1998) to
address RRM with reservations. We also apply approximate
dynamic programming to make optimal seating decisions
for both reservation and walk-in customers online.

(3) In computational studies involving both simulated
and real data, we show that our models improve revenue,
often substantially, relative to the industry standard of seat-
ing parties in a FCFS manner, without increasing the aver-
age waiting time.

Structure

The structure of this paper is as follows: §2 describes
the structure and components of the basic model. Sec-
tion 2.1 describes the integer programming approach, while
§2.2 outlines the simulation model. Section 3 elaborates on
extensions to the basic model. Two variations of the model
are introduced in this section: §3.1 describes the stochas-
tic programming version of the basic model; §3.2 intro-
duces an approximate dynamic programming approach for
the basic integer programming model; §3.3 describes FCFS
models and the bid-pricing model used as a performance
baseline for the previous models. Section 4 introduces
reservations to our previous models. Section 4.1 describes
the reservation-booking model that determines the opti-
mal booking level using a stochastic gradient algorithm,
while §4.2 describes a modified version of the approximate
dynamic programming model introduced earlier. In §§5 and
6 we report computational results for models without and
with reservations, respectively. Section 7 summarizes our
findings and contains some concluding remarks.

2. THE BASIC MODEL

2.1. An Integer Programming Approach

In this section, we develop an integer programming (IP)
model that aims to maximize the expected future revenue,
while controlling for expected waiting time by deciding
when and where to seat each incoming party. We use a
discrete time horizon of N equal-length periods so that
the number of decision variables and constraints remain
tractable. We first introduce the data on which the model
is based.

Data. We consider a restaurant that can seat parties of
size k = 2�4� � � � �K, with K even. For simplicity, parties
of sizes 1�3� � � � �K− 1 can be considered to be one per-
son larger. There are k′ = 2�4� � � � �K different table sizes
such that a party of size k can sit at a table of size k′,

474 / Bertsimas and Shioda

for k′ � k. We assume that the total revenue generated by
a party increases with the party size. Note that we do not
necessarily assume that the revenue per person is affected
by party size. We model the service time as a collection of
SP service phases (for example: first course, second course,
dessert). By breaking up the service time and keeping track
of how many parties are in each phase, we can make a bet-
ter estimate of the remaining service time. Our model only
uses information about expected values. In this respect, our
model is similar to network airline revenue management
systems that use a linear programming model (for example,
the widely used bid-price control approach) to decide seat
allocation. We assume the following information is known:
ck �= the number of tables of size k available,
Dt�k �= the expected number of size k parties arriving

at time, t,
Sk� s �= the expected duration of phase s for a size k

party,
Sk� �=

∑SP
s=1 Sk� s , the expected total service duration of

a size k party,
S ′k� s �=

∑SP
n=s Sk�n, the expected remaining service dura-

tion for a size k party entering phase s,
Rk �= the revenue expected from a party of size k,
CostQt� k �= the cost of postponing service to a party of

size k that arrived at time t and is currently in queue, and
CostX t� k �= the cost of postponing service to a party of

size k that is expected to arrive at time t.
The above data can be collected by many POS softwares.

For example, Dt�k and Rk can be estimated using histori-
cal data on customer arrivals and bills, which is often kept
track of by POS softwares. We have found there are sev-
eral POS products that have the ability to track service
phases of customers with an electronic ordering pad used
by waiters when taking orders. Currently, these pads are
used to send orders to the kitchen, but we believe they can
also be used to notify the floor manager of the progress
of the customers in their meals. With this added feature,
it would be easy for the POS software to estimate aver-
age service-phase durations. Floor managers would need to
record arrival and departure times of parties, but that can
be readily linked to seating the parties and processing their
bills, respectively. Finally, we set the values for CostQt�k
and CostXt�k in our computational experiments (see §5) to
capture the trade-off between quality of service (excessive
waiting times and denied service) and revenue.

In addition to revenue, important considerations in man-
aging restaurants are the control of waiting time and asso-
ciated fairness issues. Thus, in the IP model we explicitly
address these issues. For this purpose, we introduce the
following parameters that we adjust to achieve the “right”
trade-off between revenue, waiting time, and fairness.

Max �= the maximum number of periods that a party
will wait,
M �= a user-defined parameter that controls the trade-

off between revenue and waiting time (the higher M ,
the higher the importance of the waiting time; see Equa-
tion (1)), and

� �= a user-defined parameter that controls the trade-
off between revenue and allowing flexibility in allocating a
size k party to a table of size k′ � k; see Equation (1).

In practice, the waiting time behavior of customers is
complex. The amount of time a party may wait in queue
may follow a probabilistic distribution and may be depen-
dent on the size of the party and time of arrival. However,
to simplify the model, we assume that every party is will-
ing to wait up to Max periods. If they are not seated within
Max periods, the model assumes that they automatically
renege from the queue.1 It further assumes that parties can-
not renege earlier or later than Max periods. Appropriate
values for Max, M , and � are discussed in §§5 and 6.

State. The state of the system is described as follows.
now �= the current time (in periods),
Qt�k �= the number of size k parties that arrived at time

t currently waiting in queue, and
N sk�k′ �= the number of size k parties in service phase s

seated at a size k′ table.
To better utilize capacity, the IP model allows parties of

size k to be seated at a table of size k′ � k. The service
state parameters N sk�k′ keep track of these parties.

Decision Variables. We introduce the following deci-
sion variables:
qt� t′� k� k′ �= the number of parties of size k, who arrived

at time t and are currently in the queue, that should be
seated at a size k′ table at time t′,
qdenyt� k �= the number of parties of size k, who arrived

at time t and are currently in the queue, that are not cur-
rently allocated a seat (i.e., not seated within Max periods),
xt� t′� k� k′ �= the number of parties of size k, out of Dt�k,

that should be seated at a size k′ table at time t′,
xdenyt� k �= the number of parties of size k, out of Dt�k,

that are not currently allocated a seat (i.e., not seated within
Max periods),
z
q
t� k �= the auxiliary variables that allow us to model

fairness in the seating decisions, captured in Equations (5)
and (6) below, and
zxk �= the auxiliary variables that allow fairness in the

seating decisions, captured in Equations (7) and (8) below.
Each time the IP model is formulated, there are two dis-

joint sets of customers that it must consider, those that
have already arrived and those that are expected to arrive.
qt� t′� k� k′ and qdenyt� k are seating-decision variables corre-
sponding to the former type of customers, and xt� t′� k� k′ and
xdenyt� k are the seating-decision variables for the latter
type. The parties represented by the qt� t′� k� k′s and qdenyt� ks
are parties that have already arrived and are thus known.
However, the parties represented by xt� t′� k� k′s and xdenyt� ks
have not yet arrived and are thus uncertain. Partitioning the
decision variables in such a way allows for more dynamic
and flexible modeling.

The model does not explicitly deny service to the cus-
tomers, but it may not be able to seat some parties within
Max periods—the maximum number of periods that a party
would be willing to wait in queue. These parties that are
not currently allocated a table are captured by the decision

Bertsimas and Shioda / 475

variables qdenyt� k and xdenyt� k. The use of the auxiliary
variables zqt� k and zxk will be described in more detail in the
IP formulation.

The Integer Program Formulation. We formulate
and solve an integer program at each customer arrival and
departure, and determine from the optimal solution whether
a party should be seated. Our objective is to maximize
expected revenue, while maintaining reasonable waiting
times and fairness in our seating decisions, by considering
the state of the restaurant. We can also maximize occu-
pancy by assuming that the revenue per person is inde-
pendent of the number in the party. Although we solve
the IP to optimality, the data we use, such as expected
demand, expected service time, and the simplified waiting-
time behavior, are only estimations. Thus, the expected
future state of the restaurant modeled by the IP are also
estimations. However, capturing the states of the system
exactly in a stochastic dynamic programming sense would
be computationally intractable, thus making our IP model
a viable heuristic. The proposed model is as follows.

Objective Function. The objective is the maximization
of expected future revenue while controlling waiting time:

max
∑

t=1������now�
k=2�����K

∑
k′=k�����K

t′=�now������min�N �t+Max−1�

�Rk−M�t′ −t�−��k′ −k��qt�t′�k�k′

− ∑
t=1������now�
k=2�����K

CostQt�kqdenyt�k�

∑
t=�now������N
k=2�����K

∑
k′=k�����K

t′=t�����min�N �t+Max−1�

�Rk−M�t′ −t�−��k′ −k��xt�t′�k�k′

− ∑
t=�now������N
k=2�����K

CostXt�kxdenyt�k� (1)

The first set of summations corresponds to the expected
revenue that can be attained from parties currently in the
queue. The second set corresponds to the cost of not allo-
cating a table to parties currently in the queue. The third set
corresponds to the revenue from parties expected to arrive
in the future, and the last is the cost of not allocating a
table to those customers.

The term −M�t′ − t� in the first and third coefficients is
a cost against excessive waiting time. The cost −��k′ −k�
encourages seating from the smallest available table first.
Without this term, the model may, for example, seat a party
of size two at a table of size eight if it does not expect
larger-sized parties in the near future. However, because our
expected demand data are only estimations and the actual
demand is uncertain, we want to be on the safe side and
seat from the smallest available table first.

The costs CostQt�k and CostXt�k are necessary for the
model to give preference to customers in the queue, as well
as those expected to arrive in the current period, over those
expected to arrive in the future. Thus, the value of CostQt�k
is higher than CostXt�k for all t for each k, because post-
poning service to a customer already in queue should be
higher than postponing service to a customer expected to

arrive in the future. Also, CostXt�k for t = �now� is higher
than that for t > �now�. If it were the same, the model
would consider postponing service to a party that arrives
in the current period versus seating that party and postpon-
ing service to an equal-sized future party as the same. We
prefer the former solution, since there is a possibility that
a party will arrive in the current period, and thus we want
the model to give us the ability to seat them. The exact
numerical value of these weights are determined by com-
putational experimentation.

Constraints.
(1) Demand Constraints.∑

t′=�now������min�N �t+Max−1�
k′=k�����K

qt�t′�k�k′ +qdenyt�k=Qt�k

∀ t=1���� ��now��k=2���� �K� (2)∑
t′=t�����min�N �t+Max−1�

k′=k�����K

xt�t′�k�k′ +xdenyt�k=Dt�k

∀ t=�now����� �N �k=2���� �K� (3)

Constraints (2) insure that the model does not seat more
parties than those currently in the queue. Constraints (3)
insure that the model does not seat more parties than cur-
rently expected.

(2) Seating-Capacity Constraints. This constraint char-
acterizes the capacity constraint at each time � for each
table size k′. It also incorporates a nesting concept that
allows parties of size k to sit at a size k′ table, where k� k′:

∑
k=2���� �k′
t′∈T �t� k�

(∑
t=max�1� t′−Max+1����� ��now�

qt� t′� k� k′

+ ∑
t=max��now�� t′−Max+1����� �t′

xt� t′� k� k′

)

+ ∑
k=2���� �k′
s=1���� �SP

IN ���� ck′

∀ � = �now�� � � � �N �k′ = 2� � � � �K� (4)

where

T �t� k�= �t′ � t � t′ � � � t′ +Sk�� t′ ∈���

IN ���=
{
N sk�k′ � if � � now+S ′k� s ,
0� otherwise.

Note that the parameters N sk�k′ allow for a more accu-
rate estimation of the remaining service time of the parties
currently being served. The last summation term in Equa-
tion (4) corresponds to the expected number of parties cur-
rently seated at table k′ who are still being served at time � .

(3) Fairness Constraints. The model uses parameter M
to control waiting time in the objective function. However,
when this cost is added, the model would rather seat last-
come-first-serve within the same party size because the last
customer to arrive would have less waiting time, and thus a
higher objective value. To avoid this problem, we add con-
straints in the model that would seat the customers within
the same party size in the order that they arrived. By seat-

476 / Bertsimas and Shioda

ing parties in queue by FCFS within the same party size,
the waiting time of the parties decreases and fewer parties
will leave from the queue. In particular, because of per-
ceived unfairness, customers in a restaurant would strongly
complain if a same-sized party that arrived after them were
seated before them.

The following constraint insures a FCFS seating policy
within the same party size for those in the queue that are
able to be seated at the current time. It is not extended to
future periods due to the uncertainty of the future state of
the queue.∑
t̃=max�1��now�−Max+1������t−1

k̃=k�����K

(
Qt̃�k−qt̃��now��k�k̃

)

�

(∑
t̃=max�1��now�−Max+1������t−1

Qt̃�k

)
z
q
t�k� (5)

∑
k̃=k�����K

qt��now��k�k̃�L�1−zqt�k�

for t=max�2��now�−Max+2����� ��now��
k=2���� �K� (6)∑

t̃=max�1��now�−Max+1�������now�
k̃=k�����K

(
Qt̃�k−qt̃��now��k�k̃

)

�

(∑
t̃=max�1��now�−Max+1������t−1

Qt̃�k

)
zxk� (7)

∑
k̃=k�����K

x�now���now��k�k̃�L�1−zxk�� for k=2���� �K. (8)

Here zqt� k, z
x
k are auxiliary binary decision variables asso-

ciated with each set of constraints. L is some large posi-
tive constant. Equations (5) and (6) state that if there are
parties of size k that arrived before time t still in queue
(i.e., the LHS of (5) is positive), then zqt� k has to be equal
to 1. This implies that the LHS of (6) must be zero. In
other words, Equations (5) and (6) insure that a party of
size k that arrived at time t can be seated only when there
are no parties of k that arrived before them still in queue.
Constraints (7) and (8) are analogous to parties of size k
expected to arrive at the current period.

(4) Integrality Constraints. For t = 1� � � � �N � t′ = t�
� � � �N �k = 2� � � � �K�k′ = k� � � � �K;

qt� t′� k� k′ ∈�+� xt� t′� k� k′ ∈�+�

z
q
t� k ∈ �0�1�� zxk ∈ �0�1�� (9)

2.2. The Simulation

The IP described in Equations (1)–(9) will be formulated
and solved whenever the floor manager needs to make a
seating decision. When incorporated into a POS product,
the system would optimize the IP model with the current
system data each time a new customer arrives or when a
customer exits. If the optimal solution of the model indi-
cates that a party should be seated or not seated at that

moment, the result is conveyed to the floor manager, who
can act accordingly.

The implementation of the model is simple. There is little
or no added work for the floor manager who uses most
POS products. He or she needs only to input the size of a
newly arrived party and take note when a party exits. All
the information needed to run the model is already being
collected in many large restaurants.

To summarize, there are three events that drive the
model: (1) customer arrivals, (2) service completion, and
(3) customer attrition from the queue. The model works in
the following way after each of these events:

(1) Customer Arrives:
• Input the party size and time of arrival.
• Update appropriate Dt�k.
• Formulate and solve the IP model using current

system data.
• Act according to the IP solution and update system

data, i.e.,
— If the party is to be seated, seat them at the

specified table. Update N sk�k′ accordingly.
— If the party is not to be seated, put them at the

end of the line. Update Qt�k accordingly.
(2) Customer Exits After Service Completion:

• Exit the party from the table.
• Update appropriate N sk�k′ .• Formulate and solve the IP model using current

system data.
• Act according to the IP output and update system

data, i.e.,
— If a party currently in the queue is to be seated,

take them off the queue and seat them at the
specified table. Update N sk�k′ and Qt�k accord-
ingly.

(3) Customer Attrition from the Queue
• Update appropriate Qt�k.

We update N sk�k′ and Qt�k by incrementing or decrement-
ing the appropriate term. We do the same for Dt�k, the
expected future demand, instead of using any probabilistic
approach to forecasting demand. The initial value of Dt�k
is set to the expected demand for each time period t and
party size k calculated by a simple average of the histor-
ical data. As arrivals are seen for a given t and k, Dt�k
is decremented. If Dt�k is 0 when an unexpected customer
arrives, the simulation model automatically puts them in the
queue, the queue state is updated, and the IP is optimized.
Although the party is theoretically put in the queue from
the model’s perspective, they often do not have to wait to
be seated. Though this is a simplified estimate of future
demand levels, it seems sufficient from our computational
experimentations.

3. EXTENSIONS OF THE BASIC MODEL

In this section, we present several increasingly more sophis-
ticated extensions of the basic model.

Bertsimas and Shioda / 477

3.1. A Stochastic Integer Programming Model

One of the shortcomings of the basic model is its sole
use of the expected demand values as an indication of
future customer arrivals. The stochastic version of the IP
introduces various demand scenarios that the IP model can
work with. Several demand scenarios are generated simi-
larly to the process of generating arrivals in simulations.
By using the generated scenarios with the expected demand
values, the IP attempts to more accurately capture the future
demand characteristics.

The stochastic IP model works with demand scenarios
(one of them being the expected case), each with probabil-
ity !", where " = 1�2� � � � � . The objective function is
modified to maximize the expected revenue over the possi-
ble scenarios.

Additional and Modified Data and Parameters. To
summarize the new parameters and data required:
 �= the total number of scenarios,
!" �= the probability of scenario ", and
D"t�k �= the number of currently expected size k parties

arriving at time t in scenario ".

Modified Decision Variables. To summarize the mod-
ified decision variables:
xt� t′� k� k′�" �= the number of size k parties, out of D"t�k,

that should be seated at a table of size k′ at time t′ in
scenario ",
xdenyt� k�" �= the number of size k parties, out of D"t�k,

that are not allocated a table in scenario ", and
zxk�" �= the auxiliary variables that allow fairness in the

seating decision, captured in Equations (14) and (15).

Stochastic Integer Programming Formulation.

Objective Function.

max
∑

t=1������now�
k=2�����K

∑
k′=k�����K

t′=�now������min�N �t+Max−1�

�Rk−M�t′ −t�−��k′ −k��qt�t′�k�k′

− ∑
t=1������now�
k=2�����K

CostQt�kqdenyt�k�

∑
t=�now������N
k=2�����K

∑
k′=k�����K

t′=t�����min�N �t+Max−1�
"=1�����

!"�Rk−M�t′ −t�−��k′ −k��xt�t′�k�k′�"

− ∑
t=�now������N
k=2�����K
"=1�����

!"CostXt�kxdenyt�k�"� (10)

Constraints.
(1) Demand Constraints. The first set of constraints

insures that the IP model does not seat more customers
than those in the queue. The second set insures that the IP
model does not seat more parties than the demand for each
scenario:∑
t′=�now����� �min�N � t+Max−1�

k′=k���� �K

qt� t′� k� k′ +qdenyt� k =Qt�k

∀ t = 1� � � � � �now�� k = 2� � � � �K� (11)

∑
t′=t���� �min�N � t+Max−1�

k′=k���� �K

xt� t′� k� k′�"+xdenyt� k�" =D"t�k

∀ t = �now�� � � � �N � k = 2� � � � �K�"= 1� � � � � � (12)

(2) Seating-Capacity Constraint.

∑
k=2���� �k′
t′∈T �t� k�

(∑
t=max�1� t′−Max+1����� ��now�

qt� t′� k� k′

+ ∑
t=max��now�� t′−Max+1����� �t′

xt� t′� k� k′�"

)

+ ∑
k=2���� �k′
s=1���� �SP

IN ���� ck′ ∀ � = �now�� � � � �N �

k′ = 2� � � � �K�"= 1� � � � � � (13)

where T �t� k′� and IN ��� are as in (4).
(3) Fairness Constraint. Same as (5) and (6). In addi-

tion, ∑
t̃=max�1� �now�−Max+1����� ��now�

k̃=l���� �K

(
Qt̃�k−qt̃� �now�� k� k̃

)

�

(∑
t̃=max�1� �now�−Max+1����� �t−1

Qt̃�k

)
zxk�"� (14)

∑
k̃=k���� �K

x�now�� �now�� k� k̃ � L�1− zxk�"�

for k = 2� � � � �K, "= 1� � � � � . (15)

(4) Integrality Constraints. For t = 1� � � � �N � t′ = t�
� � � �N �k = 2� � � � �K�k′ = k� � � � �K�"= 1� � � � �

qt� t′� k� k′ ∈�+� xt� t′� k� k′�" ∈�+�

z
q
t� k ∈ �0�1�� zxk�" ∈ �0�1�� (16)

The Simulation for the Stochastic Model. The simu-
lation using the stochastic IP model is similar to that of the
basic model. The model follows the procedure described
in §2.2 using the stochastic programming model instead of
the deterministic IP model.

3.2. An Approximate Dynamic
Programming Model

The approximate dynamic programming model solves for
the maximum revenue-producing seating policy for each
customer. We formulate and solve the IP under each pos-
sible seating decision for a particular customer, and the
decision that results in the maximum revenue value is
chosen.

Let S be a vector describing the current states of the sys-
tem that can be affected by a seating decision. In particular,

S = �Qt�k�N sk�k′� for

t = max�1� �now�−Max+1�� � � � � �now��
k = 2� � � � �K�k′ = k� � � � �K� s = 1� � � � � SP � (17)

478 / Bertsimas and Shioda

A decision time is when a party arrives or a party exits
after service completion. If an arrival of size k occurs, the
following decisions are available:

(1) Do not seat the incoming party. The new state is
such that: Qt�k ←Qt�k+1.

(2) For k′ = k� � � � �K, seat the incoming party at a table
of size k′. The new state is such that: N 1

k�k′ ← N 1
k�k′ +1.

If a party of size k occupying a table of size k′ exits
from the restaurant, the following decisions are available:

(1) Do not assign the table to a party from the queue.
The new state is such that: NSPk�k′ ← NSPk�k′ −1.

(2) Assign the table to a party of size k′′ � k′, who has
been in the queue since time t′′. The new state is such that:
Qt′′� k′′ ←Qt′′� k′′ −1, N 1

k′′� k′ ← N 1
k′′� k′ +1, NSPk�k′ ← NSPk�k′ −1.

Let u be the decision taken, so that

u=
{

0� don’t seat now,
k′� seat at a table of size k′, (18)

for each of the events. Let Su be the updated state after
a decision u is taken. Let IP�S� be the expected future
revenue resulting from the IP model (Equations (1)–(9)) as
a function of the state S.

Under an approximate dynamic programming (ADP)
framework, we choose the decision u, corresponding to
seating a size k party that arrived at time t, by solving

max

{
max
u=k���� �K

table of size u available

%Rk−��u−k�+ IP�Su�&� IP�S0�

}
�

(19)

The first term in the maximization corresponds to the
expected revenue of seating the party minus a nesting cost,
and the second term corresponds to the expected revenue of
not seating the party. This method uses the ADP methodol-
ogy by approximating the true value function (in a dynamic
programming sense) by the value of the IP model.

We note that the IP in (19) need not include the fairness
constraints (5)–(8) required in the previous models because
ADP evaluates the value function of each party in the order
of their arrival and thus ensures FCFS seating within the
same party size.

3.3. Comparison Models

First-Come-First-Serve. We develop three FCFS
models to compare their revenue with the revenue gener-
ated by using the above models. The FCFS model seats the
customers in the order of arrival if there are tables available
for them. The “Full Nesting” FCFS model incorporates full
nesting of capacity, where a party of size k is allowed to
sit at a size k′ table for k′ � k. If there are several possi-
ble table sizes, the model would seat them at the smallest
of those tables. The “1 Up Nesting” FCFS model allows a
party of size k to sit at either a table of size k or at the next
largest table if size k tables are saturated. The “No Nest-
ing” FCFS model allows no nesting. If there are no tables
for a particular customer of size k, but there are tables for

smaller customers that arrived after them, the model will
seat those customers in order of arrival. Customers who
have waited longer than Max will automatically leave the
queue. The average of the simulated revenues over several
iterations are compared to the revenue of the IPs.

Bid-Pricing Model. The bid-pricing heuristic com-
monly applied in airline revenue management is run as
a performance benchmark. The linear programming relax-
ation of the basic IP model is solved and the seating deci-
sions are made based on the difference between the imme-
diate revenue and the sum of the dual prices corresponding
to the utilized capacity corresponding to the party’s stay.
Suppose pt�k′ is the dual value of the seating-capacity con-
straint corresponding to a table of size k′ at time t. The bid
price for seating a party of size k to a table of size k′ � k
is as follows:

Rk−
�exit�−1∑
t=�now

pt�k′ − ��now
−now�p�now�� k′

− �exit−�exit��p�exit�� k′ � (20)

where exit = now+ Sk�. The term ��now
− now�p�now�� k′
and �exit−�exit��p�exit�� k′ are to prevent overestimation of
the expected stay of the customer due to the discreteness
of time. ��now
 − now� is the fraction of period �now�
and�exit−�exit�� is the fraction of period �exit� that the
party is expected to be in service. If there are positive bid
prices, the party is seated at the table corresponding to the
maximum price. Otherwise, the party is not seated.

4. MODELS WITH RESERVATIONS

The models in the previous two sections assume that the
restaurant does not accept any reservations. Many high-
end restaurants, however, do indeed accept reservations
for their customers’ convenience. Such a policy introduces
several decisions which need to be addressed. For exam-
ple, how much should they overbook and how should they
service walk-in customers? We will incorporate reserva-
tions into our previous models by using two models: (1) a
static reservation-booking (RB) model, and (2) a dynamic
seat allocation model with reservations (DSAR). The static
reservation-booking model is an offline model that is opti-
mized using a stochastic gradient approach as in Karaes-
men and van Ryzin (1998). The dynamic seat allocation
with the reservation model is an online model solved using
an ADP approach as in §3.2.

4.1. A Reservation-Booking Model

In this section, we develop a model that determines how
many reservations to accept in prior days for a particular
day in the future, given data regarding the expected number
of reservation requests, the expected number of walk-ins,
and the rates for no-shows.

As before, we assume that there are N time periods in
which reservations can be accepted. We do not, however,

Bertsimas and Shioda / 479

consider nesting of table sizes; i.e., a party of size k can
only be assigned to a table of size k. Thus, the seating
decisions are independent across the party sizes so that the
problem can be broken down into smaller subproblems for
each party size. Because we are building a planning, as
opposed to operational, model in this section, we feel that
this is justified. Methodologically, motivated by the work of
Karaesmen and van Ryzin (1998) in a very different con-
text, we solve the optimization problem using a steepest-
descent algorithm with stochastic gradient estimation.

Data. The following are the data that we expect the
restaurant to have for each party size,
R �= the expected revenue of the given party size,
p �= the probability that a reservation party will show

up,
ERt �= the expected number of reservation requests for

time t, and
EWt �= the expected number of walk-in parties that

arrive at time t.

Decision Variables. The key decision is the number of
reservations ut to accept for time period t; t = 1� � � � �N .

Random Variables. We define
zt �= the number of reservation parties booked for time

t that show up, and
wt �= the number of walk-ins that show up at time t.

We assume that the probability of no-shows is inde-
pendent and identically distributed across parties of the
same size, as shown empirically by Martinez and Sanchez
(1970). We further assume that zt obeys a binomial dis-
tribution with parameters (ut , p). We approximate this
distribution for time t as a nonhomogeneous Poisson
distribution of rate put for ease in numerical computation.
We also model wt as a nonhomogeneous Poisson with rate
EWt for time t.

Objective Function. We maximize the following
objective function RB�u�, where u, ER, z, and w are N -
dimensional vectors of elements ut , ERt , zt , and wt , respec-
tively, t = 1� � � � �N :

max
u�0
RB�u� (21)

such that

RB�u�= E %V �z�w�&−- 1
2
E
[��u−ER��2] � (22)

The first term in Equation (22) corresponds to the expected
maximum revenue resulting from having z reservation cus-
tomers and w walk-in customers arrive on the requested
date. We will refer to the term V �z�w� as the the optimal
OTD (on-the-day) revenue. This value is calculated by solv-
ing a simplified version of the previously discussed seat-
ing models of §§2.1–3.2 generalized for reservations. We
describe this term in further detail in the following section.

The second term is a regularizing term that discour-
ages the decision variables from straying too far from

the expected reservation requests. Without this term, the
model may allocate no seats for the 6 o’clock time period
and many for the 10 o’clock period, though the expected
requests are mostly for 6 o’clock and hardly any are for
10 o’clock. Thus, a policy that allocates significantly more
(less) seats for a particular period with few (many) reser-
vation requests overestimates (underestimates) the possible
expected revenue. The parameter - > 0 represents the trade-
off between the two terms.

Static On-the-Day Model. We calculate the value of
V �z�w� for a given vector z and w by solving an integer
program that optimally allocates the tables to reservation
and walk-in customers. The OTD model is similar to the
previous models with an additional class of reservation par-
ties. However, it does not consider nesting of party sizes
and assumes that there are no queues. By making each
period large enough (e.g., half an hour), it is reasonable to
assume that after one period, both walk-in and reservation
parties will renege. Also, most reservation requests are on
the half-hour. Thus, this simplification will not significantly
jeopardize the accuracy of the model. We will see that these
assumptions make the problem a single-commodity maxi-
mum flow problem which aids us in the convergence anal-
ysis of the stochastic gradient algorithm.

The OTD model is also a static model that is not updated
dynamically because it is solved before the day in question.
It decides offline how many of the reservation and walk-in
parties to seat and how many to deny service for each time
period, t= 1� � � � �N . We need to introduce some additional
and modified notation.

Data.
S �= the expected service time for the given party size,
CostW �= the cost of denying service to a walk-in party,
CostR �= the cost of denying service to a party with a

reservation, and
C �= the total capacity (number of tables) for the given

party size.
We assume that the expected revenue and service-time

distributions are the same for walk-in and reservation
customers of the same party size. CostW and CostR are
qualitative values of the loss of goodwill and customer dis-
satisfaction. CostR should be large relative to R, because
not being able to serve a customer with a reservation
would most likely entail losing that customer and garnering
a negative reputation. However, CostW can be negligible
because walk-in customers’ expectation of being served is
significantly less.

Decision Variables.
xwt �= the number of walk-in parties that are seated at

time t,
xrt �= the number of reservation parties booked for time

t that are seated,
xwdenyt �= the number of walk-in parties that arrive at

time t that are denied service, and
xrdenyt �= the number of reservation parties booked for

time t that are denied service.

480 / Bertsimas and Shioda

Problem Formulation. Given a particular vector z and
w, the OTD problem is as follows:

(OTD)

V �z�w�= max
∑

t=1���� �N

[
R · �xwt+xrt�− �CostW� ·xwdenyt

− �CostR� ·xrdenyt
]

(23)

subject to

xwt+xwdenyt = wt� t = 1� � � � �N � (24)

xrt+xrdenyt = zt� t = 1� � � � �N � (25)∑
�=max�1�t−S+1����� �t

�xw� +xr��� C� t = 1� � � � �N � (26)

xwt � 0� t = 1� � � � �N � (27)

xrt � 0� t = 1� � � � �N � (28)

The objective value is the net revenue of seating xwt
walk-ins and xrt reservation parties and denying service
to xwdenyt walk-ins, and xrdenyt reservation parties for
t = 1� � � � �N . Equations (24) and (25) are the demand
constraints for walk-ins and reservations, respectively, for
the particular realizations of demand zt and wt for t =
1� � � � �N . Equation (26) represents the capacity constraint
for each time period, t = 1� � � � �N .

Equations (23)–(28) can be characterized as a single-
commodity minimum cost flow problem; thus, the value of
V �z�w� can be calculated by solving the OTD problem as a
linear program. It follows by the network structure of OTD
and Karaesmen and van Ryzin (1998) that the function
V �z�w� is submodular and jointly concave with respect
to zt and wt , t = 1� � � � �N , and RB�u� is component-
wise concave, continuous, and differentiable with respect
to ut , t= 1� � � � �N . As shown in Karaesmen and van Ryzin
(1998), these properties allow convergence of the stochas-
tic gradient algorithm described in the next section.

Stochastic Gradient Algorithm. We solve the sto-
chastic optimization problem (21) by estimating the
stochastic gradient of RB�u� as done in Karaesmen and van
Ryzin (1998). We apply this gradient to maximize RB�u�
using a method similar to the steepest descent algorithm.
We first calculate

0

0ut
RB�u�

= 0

0ut
E%V �z�w�&−-�ut−ERt�� t = 1� � � � �N � (29)

When zt ∼ Poisson�put� and wt ∼ Poisson�EWt�, t =
1� � � � �N , Karaesmen and van Ryzin (1998) show that an
unbiased estimate of 0/0ut E%V �z�w�& is given by

0

0ut
E%V �z�w�&

= p�V �z+ et�w�−V �z�w��� t = 1� � � � �N � (30)

The step sizes �bk� satisfy

�∑
k=1

bk =+��
�∑
k=1

b2
k <�� (31)

Let MaxIt be the maximum number of iterations we allow.
The following is the stochastic gradient algorithm.

Step 0. Initialization. k = 1, ukt = ERt for t = 1� � � � �N .
Step 1. Generate 4RB�uk�:

• Generate new vectors zkt ∼ Poisson�pukt � and
wt ∼ Poisson�EWt� for t = 1� � � � �N .

• Evaluate V �zk�w� using a network flow al-
gorithm (for example, the network simplex
algorithm).

• Evaluate V �zk+ et�w� for t = 1� � � � �N .
• Derive 4RB�uk� such that, for t = 1� � � � �N :

0

0ut
RB�uk�

= p�V �z+ et�w�−V �z�w��−-�ut−ERt��

Step 2. Compute

uk+1 = Project�uk+bk4RB�uk���

where Project�·� is the projection function to the
feasible space uk � 0.

Step 3. If k >MaxIt, Exit. Else, set k �= k+1 and return
to Step 1.

Theorem 1 (Kushner, Clark, Karaesmen, and van
Ryzin). Let KT be the set of Kuhn-Tucker points of (21).
If KT is a connected set and �uk� is the sequence deter-
mined by the previous algorithm with step sizes satisfying
(31), then �uk�→ KT in probability as k→�.

The proof is given in Kushner and Clark (1978) and
Karaesmen and van Ryzin (1998), Theorem 3 and Theo-
rem 6.3.1, respectively. Kusher and Clark also show that a
weaker convergence follows when KT is not a connected
set.

4.2. Dynamic Seat Allocation with Reservations

The DSAR model is the same as the previous dynamic seat-
ing models of §§2.1–3.2, but with reservation customers
taken into account. It takes the reservations accepted as
input and determines the optimal seating policy for each
arriving party given the current state of service and queue.
It does not, however, update the maximum reservation-
booking number produced by the RB model. As before,
each time the state changes (i.e., due to a customer arrival
or customer exit), the state parameters are updated and the
model is continually reoptimized online. We apply the the
ADP approach as in §3.2, with a slight modification in the
IP formulation.

Bertsimas and Shioda / 481

The following are additional and modified notations for
the DSAR model:

Input.
vt�k �= the number of reservations booked of size k for

time t. vt�k is such that vt�k � u
∗
t� k, where u∗t� k is the optimal

reservation booking value outputted from the RB model.

Data.
CostQWt�k �= the cost of postponing service to a walk-

in party of size k that arrived at time t and currently waiting
in queue,

CostQRt�k �= the cost of postponing service to a party
of size k with reservations that arrived at time t and is
currently waiting in queue,

CostXWt�k �= the cost of postponing service to a walk-
in party of size k that is expected to arrive at time t,

CostXRt�k �= the cost of postponing service to a party
of size k with reservations that is booked for time t,
pk �= the probability that a party of size k with reser-

vations will show up,
MaxW �= the maximum number of periods that a walk-

in party will wait,
MaxR �= the maximum number of periods that a reser-

vation party will wait,
Mw �= a user-defined parameter that controls the

trade-off between revenue and waiting time for walk-in
customers, and
Mr �= a user-defined parameter that controls the trade-

off between revenue and waiting time for reservation
customers.

The quantities CostQWt�k, CostQRt�k, CostXWt�k, and
CostXRt�k are analogous to CostQt�k and CostXt�k in §2.1
which are split into walk-ins and reservation customers
(denoted by W and R, respectively). Similarly, MaxW and
MaxR are analogous to Max, and Mw and Mr are analogous
to M in §2.1.

State. The following are modified state parameters in
addition to those described in §2.1.
Qwt�k �= the number of size k walk-in parties currently

in queue that arrived at time t,
Qrt�k �= the number of size k reservation parties cur-

rently in queue that arrived at time t,
Dwt�k �= the expected number of walk-in parties of size

k that are going to arrive in time t who have not already
arrived, and
Drt�k �= the expected number of reservation parties of

size k that are going to arrive in time t who have not
already arrived.

When now< t, Dwt�k = EWt�k and Drt�k = pkvt�k. Each
time a walk-in or reservation party of size k arrives at
time t, Dwt�k or Drt�k is decremented, respectively.

Decision Variables.
qwt� t′� k� k′ �= the number of walk-in parties of size k that

arrived at time t and are currently in queue, that should be
seated at a size k′ table at time t,

qrt� t′� k� k′ �= the number of reservation parties of size k
that arrived at time t and are currently in queue, that should
be seated at a size k′ table at time t,
qwdenyt� k �= the number of walk-in parties of size k

that arrived at time t and are currently in queue, that are not
allocated a table (i.e., are not seated within MaxW periods),
qrdenyt� k �= the number of reservation parties of size k

that arrived at time t and are currently in queue, that are not
allocated a table (i.e., are not seated within MaxR periods),
xwt� t′� k� k′ �= the number of walk-in parties of size k out

of Dwt�k, that should be seated at a size k′ table at time t′,
xrt� t′� k� k′ �= the number of reservation parties of size

k out of Drt�k, that should be seated at a size k′ table at
time t′,
xwdenyt� k �= the number of walk-in parties of size k

out of Dwt�k, that are not allocated a table (i.e., are not
seated within MaxW periods), and
xrdenyt� k �= the number of reservation parties of size

k out of Drt�k, that are not allocated a table (i.e., are not
seated within MaxR periods).

IP Formulation. The DSAR uses a slightly modified
version of the ADP model described in §3.2 due to its
superior performance compared to the other models. The
following describes these modifications:

Objective.

max
∑

t=1������now�
k=2�����K

t′=�now������min�N �t+MaxW−1�
k′=k�����K

�Rk−Mw�t′ −t�−��k′ −k��qwt�t′�k�k′

+ ∑
t=1������now�
k=2�����K

t′=�now������min�N �t+MaxR−1�
k′=k�����K

�Rk−Mr�t′ −t�−��k′ −k��qrt�t′�k�k′

+ ∑
t=�now������N
k=2�����K

t′=t�����min�N �t+MaxW−1�
k′=k�����K

�Rk−Mw�t′ −t�−��k′ −k��xwt�t′�k�k′

+ ∑
t=�now������N
k=2�����K

t′=t�����min�N �t+MaxR−1�
k′=k�����K

�Rk−Mr�t′ −t�−��k′ −k��xrt�t′�k�k′

− ∑
t=1������now�
k=2�����K

(
CostQWt�k qwdenyt�k+CostQRt�k qrdenyt�k

)

− ∑
t=�now������N
k=2�����K

(
CostXWt�k xwdenyt�k+CostXRt�k xrdenyt�k

)
�

(32)

The first four sets of summations correspond to the
expected revenue, waiting-time cost, and nesting costs of
seating (1) the walk-in parties currently in queue, (2) the
reservation parties currently in queue, (3) the walk-in par-
ties expected to arrive in the future, and (4) the reservation
parties expected to arrive in the future, respectively. The
last two sets of summations correspond to the cost of post-
poning service to (1) walk-in parties and reservation parties
currently in queue, and (2) walk-in parties and reservation
parties expected to arrive in the future, respectively.

482 / Bertsimas and Shioda

Constraints. (1) Demand Constraints. The following
constraints are analogous to Constraints (2) and (3) in §2.1:∑
t′=t� ��� �min�N � t+MaxW −1�

k′=k���� �K

qwt� t′� k� k′ +qwdenyt� k =Qwt�k

∀ t = 1� � � � � �now�� k = 2� � � � �K� (33)∑
t′=t���� �min�N � t+MaxR−1�

k′=k���� �K

qrt� t′� k� k′ +qrdenyt� k =Qrt�k

∀ t = 1� � � � � �now�� k = 2� � � � �K� (34)∑
t′=t���� �min�N � t+MaxW −1�

k′=k���� �K

xwt� t′� k� k′ +xwdenyt� k =Dwt�k

∀ t = �now�� � � � �N �k = 2� � � � �K� (35)∑
t′=t���� �min�N � t+MaxR−1�

k′=k���� �K

xrt� t′� k� k′ +xrdenyt� k =Drt�k

∀ t = �now�� � � � �N �k = 2� � � � �K� (36)

(2) Seating-Capacity Constraints. The following con-
straint is analogous to the (4) in §2.1 with reservation
parties:

∑
k=2�����k′
t′∈T �t�k�

(∑
t=max�1�t′−MaxW+1�������now�

qwt�t′�k�k′

+ ∑
t=max�1�t′−MaxR+1�������now�

qrt�t′�k�k′

+ ∑
t=max��now��t′−MaxW+1��v����t′

xwt�t′�k�k′

+ ∑
t=max��now��t′−MaxR+1������t′

xrt�t′�k�k′

)

+ ∑
k=2�����k′
s=1�����SP

IN ����ck′ ∀ �=�now����� �N �k′ =2���� �K

(37)

where T �t� k′� and IN ��� are as in (4).
(3) Integrality Constraints. For t = 1� � � � �N � t′ = t� � � � �

N � k = 2� � � � �K�k′ = k� � � � �K�
qwt� t′� k� k′ � qrt� t′� k� k′ � xwt� t′� k� k′ � xrt� t′� k� k′ �

qwdenyt� k� qrdenyt� k� xwdenyt� k� xrdenyt� k ∈�+�

Incorporating the ADP Model. In the DSAR model,
the state vector S is characterized by

S = �Qwtw�k�Qrtr � k�N sk�k′� for (38)

tw = max�1� �now�−MaxW +1�� � � � � �now��
tr = max�1� �now�−MaxR+1�� � � � � �now��
k = 2� � � � �K�k′ = k� � � � �K� s = 1� � � � � SP �

The service state parameter N sk�k′ remains the same as
in §3.2.

There are two types of arrivals: reservation customer
arrivals and walk-in arrivals. There is, however, no distinc-
tion between reservation and walk-in service completions.

Thus, the decision times are when there is a reservation
party arrival, walk-in arrival, and a customer service com-
pletion. The decisions available at each event are illustrated
below:

• Reservation arrival at time t of size k:
(1) Do not seat the incoming reservation party. The

new state is such that: Qrt�k ←Qrt�k+1.
(2) For k′ = k� � � � �K, seat the incoming party at a

table of size k′. The new state is such that: N 1
k�k′ ←

N 1
k�k′ +1.

• Walk-in arrival at time t of size k:
(1) Do not seat the incoming walk-in party. The new

state is such that: Qwt�k ←Qwt�k+1.
(2) For k′ = k� � � � �K, seat the incoming party at a

table of size k′. The new state is such that: N 1
k�k′ ←

N 1
k�k′ +1.

• Party of size k exits table for k′ at time t:
(1) Do not assign the table to a party from the queue.

The new state is such that: NSPk�k′ ← NSPk�k′ −1.
(2) Assign the table to a reservation party of size
k′′ � k′, who has been in the queue since time t′′.
The new state is such that: Qrt′′� k′′ ← Qrt′′� k′′ − 1,
N 1
k′′� k′ ← N 1

k′′� k′ +1, NSPk�k′ ← NSPk�k′ −1.
(3) Assign the table to a walk-in party of size k′′ � k′,

who has been in the queue since time t′′. The new
state is such that: Qwt′′� k′′ ←Qwt′′� k′′ −1, N 1

k′′� k′ ←
N 1
k′′� k′ +1, NSPk�k′ ← NSPk�k′ −1.

Finally, the DSAR model uses the objective value of the
IP described by Equations (32)–(38) for IP�S� in (19).

Comparison Model

First-Come-First-Serve Model with Reservations.
We incorporate reservation customers into the FCFS model
in §3.3, which uses a heuristic to seat walk-in parties within
reservations by taking the optimal reservation-booking data
output from the RB model of §4.1. When a walk-in
party arrives, the model will check whether seating them
would take away a table from any outstanding reservations
booked within a 15-minute (1 period) interval of the cur-
rent time. The three different nesting models (Full Nesting,
1 UP Nesting, and No Nesting), as described in §3.3, are
tested.

5. COMPUTATIONAL RESULTS FOR MODELS
WITHOUT RESERVATIONS

In this section, we present the performance of the nonreser-
vation models of §2 and 3 on simulated data.

5.1. Data

The test data for the capacity, service time, demand, and
revenue are taken from a contrived restaurant. The data is
constructed from its dinner-time operation, which runs from
6 pm to 10 pm. We divide this time into 16 equal periods
of 15-minute durations.

Bertsimas and Shioda / 483

Table 1. Expected duration (in minutes)
of service phases.

Party Size

Phase 2 4 6 8

1 6 9 12 18
2 39 45 57 75
3 6 6 8 9
Total 51 60 77 102

Capacity Data. This is a small-scale restaurant with
four tables for two, two tables for four, one table for six,
and two tables for eight. The restaurant allows nesting of
the capacity, i.e., a party of two can be seated at a table of
two, four, six, or eight.

Service Time Data. The meal duration is split up into
three phases: appetizer (phase 1), entrée (phase 2), and cof-
fee and dessert (phase 3).2 The expected service durations
are illustrated in Table 1. For this example, we have in
mind a restaurant with faster than usual turnover time.

Demand Data. The restaurant does not accept reserva-
tions. We have tested the various methods for three levels of
demand; low, medium, and high with average load factors
0.68, 0.93, and 1.54.3 Each demand level is split up into
two demand distributions: constant, where all parties arrive
uniformly throughout the day, and varied, where the larger
parties arrive mainly in the later part of the evening.4 We
simplify the data so that there are only four possible types
of customers: parties of sizes two, four, six, and eight. We
simulate the customer arrivals as a nonhomogeneous Pois-
son process with rate 6�t� k� �= expected demand of size k
customers at time t.

Revenue Data. The expected revenue for parties of
sizes two, four, six, and eight are $50, $120, $210, and
$320, respectively. We simplify the revenue function so that
it is time invariant.

5.2. Algorithms Tested and Parameter Settings

Using the above data, we tested the following algorithms:
the FCFS models (FullNest, 1Up, and NoNest), the bid-
pricing model (BidP), the basic integer programming model
(IP), the stochastic programming model using three scenar-
ios (STOCH), and the approximate dynamic programming
model (ADP). We used CPLEX to solve the optimization
models. The models were run on Dell Pentium II worksta-
tion operating under LINUX.

Parameter Settings. For the STOCH model, we used
a three-scenario model (i.e., = 3) in which one of the
scenarios is the expected demand and the other two are
randomly generated. We assign the probability of 0.5 to
the expected demand scenario and the probability of 0.25
to each of the generated scenarios. We tested models with
larger and with variations in the scenario probability, but

the significant increase in the computation time was not
worth the small increase in the average revenue.

The value of M is set to 5 for all of the models. After
running the models for different values of M , M = 5 pro-
duced the highest revenue, on average, for most of the mod-
els. Setting this value too high makes the model averse to
seating customers that have been waiting in the queue for
a long time. When M is set to zero, the model would give
no consideration to waiting time when solving for the opti-
mal solution. For values of M between 0 and 5, the result-
ing average revenue actually increases because the model
is forced to seat a customer at a table which it was reserv-
ing for a future customer. This may be beneficial because
the model sometimes incorrectly forecasts future demand
and keeps tables idle when they could have been used.

The appropriate values for � seem to vary according to
the model and the demand level. For the IP and STOCH
model we set � = 4, and for ADP we set � = 0�25. These
values were chosen from empirical testing, thus they may
not be the optimal. However, the differences in revenue and
average waiting time were not significant for slight changes
in �.

The value for Max is set to 3 for all models; thus we
are assuming customers do not wait for more than 45
minutes. The models AUTOMATICALLY EXIT customers
who have been waiting for more than three periods.

For the IP and STOCH model, the values of CostQt�k
are 2.5 for k = 2, 6.0 for k = 4, 10.5 for k = 6, and 16.0
for k = 8, ∀t. CostXt�k when t = �now� are 0.5 for k =
2, 1.2 for k = 4, 2.1 for k = 6, and 3.2 for k = 8, and
when t > �now�, CostXt�k is set to 0 for all k. The ADP
model performed better with significantly higher values of
CostQt�k and CostXt�k than IP and STOCH. Thus, these
costs for ADP were set to 10 times that of IP and STOCH.

Appropriate values for these parameters are clearly
restaurant dependent. They would depend on the demand
level and characteristics, expected revenue, expected ser-
vice time, capacity, and waiting-time behavior of the cus-
tomers of each restaurant. We suggest testing for the right
values for these parameters by simulation, using the data
and characteristics of each restaurant.

5.3. Results

Table 2 contains the average daily revenue, average waiting
time per customer, and the percentage of customers served
for all the algorithms we tested. Each subtable corresponds
to a demand scenario, low and constant, low and varied,
medium and constant, medium and varied, high and con-
stant, and high and varied. Table 3 contains the average run
times per party for each model.

For smaller load factors, Full Nesting is better than the
other FCFS models and performs similarly to the IP, in gen-
eral. This implies that the phenomenon that the IP captures
to increase revenue for small load factors is nesting. The
No Nesting model loses revenue by unnecessarily saving
large tables for large parties. As demand level increases,

484 / Bertsimas and Shioda

Table 2. Revenue, average wait, and percent served resulting from static capacity models.

FullNest 1Up NoNest BidP IP STOCH ADP

Load = 0�68 Constant
Revenue ($) 2�351�94 2�390�32 2�125�46 2�328�10 2�354�46 2�375�92 2�401�56
% Difference 0�00% 1�63% −9�63% −1�01% 0�11% 0�98% 2�11%
Average Wait (min) 5�0 5�3 10�7 6�0 5�7 5�7 4�9
% Served 93�23% 93�08% 83�25% 90�89% 91�81% 91�94% 93�67%

Load = 0�68 Varied
Revenue ($) 2�066�54 2�031�18 1�883�90 1�997�86 2�087�14 2�077�30 2�112�34
% Difference 0�00% −1�71% −8�84% −3�32% 1�00% 0�52% 2�22%
Average Wait (min) 7�7 7�5 13�1 6�0 8�3 7�8 7�5
% Served 88�06% 88�11% 78�52% 90�89% 86�51% 87�35% 88�58%

Load = 0�93 Constant
Revenue ($) 2�964�62 2�928�98 2�702�36 2�822�12 2�976�84 2�969�50 3�034�18
% Difference 0�00% −1�20% −8�85% −4�81% 0�41% 0�16% 2�35%
Average Wait (min) 9�9 9�8 14�4 11�3 11�1 10�4 9�9
% Served 87�82% 87�69% 78�30% 83�35% 85�48% 86�26% 87�84%

Load = 0�93 Varied
Revenue ($) 2�624�94 2�596�36 2�391�00 2�430�18 2�610�06 2�651�06 2�702�71
% Difference 0�00% −1�09% −8�91% −7�42% −0�57% 1�00% 2�96%
Average Wait (min) 10�8 10�4 15�9 12�6 10�8 11�3 10�5
% Served 83�16% 83�96% 75�35% 78�22% 82�71% 82�08% 83�31%

Load = 1�54 Constant
Revenue ($) 3�409�82 3�467�66 3�498�8 3�203�10 3�676�74 3�708�76 3�857�36
% Difference 0�00% 1�70% 2�61% −6�06% 7�83% 8�77% 13�13%
Average Wait (min) 12�3 24�2 25�9 23�7 23�7 24�0 22�9
% Served 68�84% 68�70% 60�36% 57�85% 65�65% 64�02% 68�96%

Load = 1�54
Revenue ($) 3�146�76 3�154�98 3�051�06 2�902�52 3�393�36 3�387�42 3�545�40
% Difference 0�00% 0�26% −3�04% −7�76% 7�84% 7�65% 12�67%
Average Wait (min) 24�0 23�7 27�5 24�3 24�0 23�7 23�4
% Served 67�83% 68�50% 57�16% 56�77% 64�25% 64�33% 66�56%

the nesting decisions become more complex. This explains
the decrease in the revenue gap across the FCFS models
with higher demand.

We observe that increasing the sophistication of the mod-
els results in monotonically increasing revenue. There is
a marginal revenue improvement of using stochastic pro-
gramming versus the deterministic IP. The ADP model
outperforms the deterministic and stochastic model in all
demand scenarios, with about 2% improvement from FCFS
in low and medium load factors and 12% improvement in
high load factors in revenue.

We also observe that the models do not sacrifice wait-
ing time for higher revenue. The optimization models had
comparable waiting times to the FCFS models, and in most
of the larger-load cases had lower waiting time than the
FCFS. Thus, higher revenue was achieved without any sac-
rifices and some improvements in the average waiting time.
When examining the waiting time for each party size sep-
arately, we see that the optimization models have signifi-
cantly lower waiting times for parties of sizes six and eight,
while slightly higher for parties of two compared to the

Table 3. Run time per party in seconds for static capacity
models.

FCFS BidP IP STOCH ADP

Average Run Time (sec) 0.00 0.67 0.21 0.66 1.07

FCFS models. Thus, our models have a smaller range of
waiting times across party sizes.

In addition, IP and STOCH have a lower percentage
of parties served than the best performing FCFS models,
while producing higher revenue. Overall, the ADP model
seems to be the best performing method: It serves about
the same percentage of parties as the FCFS models,
does not increase and occasionally decreases waiting
time, and produces significantly higher revenue. This
implies that the optimization models are able to seat more
of the “right” (higher-revenue-producing) customers. The
run times are also in a practical range for all of the models.
Thus, any of these models can be run online with a POS
system.

6. COMPUTATIONAL RESULTS FOR
RESERVATION MODELS

In this section, we report computational results for the mod-
els with reservations. We first run the static RB model to
decide a priori how many reservations to accept, and we
then run the DSAR model.

6.1. Data

The test data was taken from Soto’s, a Japanese restaurant
in Atlanta, Georgia (Kosugi 1999). Similar to the previous
data set, the data are taken from its dinner-time operations

Bertsimas and Shioda / 485

Table 4. Revenue, percent served, and average waiting time of reservation models
for demand level 90.

Demand = 90 FullNest 1Up NoNest DSAR

Revenue ($) 6�944�68 6�917�18 6�777�02 7�182�20
% Difference 0�00% −0�40% −2�41% 3�42%
% Reservation Served 95�96% 95�95% 96�02% 97�97%
Average Wait Reservation (min) 3�0 3�2 3�3 4�0
% Walk-in Served 81�19% 80�90% 79�07% 85�02%
Average Wait Walk-in (min) 11�1 11�3 12�3 8�6

of 16 periods, from 6 pm to 10 pm. The service time and
revenue data are also identical to that of §5.1.
Capacity. Soto’s has many small tables that can be

put together to accommodate large parties. For the purpose
of our model, we assume that the restaurant takes only
one table configuration. In this configuration, Soto’s has 16
tables for two, 7 tables for four, 3 tables for six, and 1 table
for eight. We allow nesting of capacity as before.
Demand Data. Soto’s gets a total of around 90 cus-

tomers on weekdays and 120 to 130 customers on week-
ends. We test the models on these two demand levels, with
corresponding loads of 0.93 and 1.24, respectively. Around
30% of these customers are reservation customers with a
no-show rate of 3% to 15%. We use a constant no-show
rate of 10%. Out of the walk-in parties, 55% are of size
two, 30% are of size, four and 15% are of size six. Out
of the reservation parties, 40% are of size two, 43% are of
size four, 10% are of size six and 7% are of size eight. The
distribution of reservation customers throughout the day is
as follows: 20% during 6 pm to 7 pm, 40% during 7 pm to
8 pm, 30% during 8 pm to 9 pm, and 10% during 9 pm to
10 pm. The distribution of walk-in customers is as follows:
30% during 6 pm to 7 pm, 35% during 7 pm to 8 pm, 25%
during 8 pm to 9 pm, and 10% during 9 pm to 10 pm.

6.2. Parameter Settings

We use the following values for CostQWt�k: 2.5 for k = 2,
6.0 for k = 4, 10.5 for k = 6, and 16.0 for k = 8, ∀t. The
values for CostQRt�k are 150 for k = 2, 300 for k = 4,
500 for k = 6, and 700 for k = 8, ∀t. Distinction for the
values for both CostXWt�k and CostXRt�k for t = �now�
are set higher than for t > �now�. This implies that parties
expected to arrive in the current period are given more pri-
ority than those expected to arrive later because the state

Table 5. Revenue, percent served, and average waiting time of reservation models
for demand level 120.

Demand = 120 FullNest 1Up NoNest DSAR

Revenue ($) 8,210.70 8,274.82 8,132.2 8,806.60
% Difference 0.00% 0.78% -0.96% 7.26%
% Reservation Served 94.57% 94.42% 93.92% 97.39%
Average Wait Reservation (min) 3.6 3.75 4.2 6.0
% Walk-in Served 53.97% 53.75% 50.39% 65.83%
Average Wait Walk-in (min) 25.4 25.5 26.7 19.5

of the distant future is more uncertain than the near future.
The values for CostXWt�k when t = �now� are 0.05 for
k = 2, 0.12 for k = 4, 0.21 for k = 6, and 0.32 for k = 8.
When t > �now�, the values are set to 0 for all k. The
values for CostXRt�k when t = �now� are 101 for k = 2,
241 for k = 4, 421 for k = 6, and 641 for k = 8. When
t > �now�, the values are 100 for k= 2, 240 for k= 4, 420
for k = 6, and 640 for k = 8.

The value ofMr was set to 8 andMw was set to 3, reflect-
ing higher cost for keeping reservation customers waiting
� was set to 0.5. MaxR was set to 4 and MaxW was set to
2, which reflects the customer behavior at Soto’s.

6.3. Computational Results

The average revenue, percentage of customers served, and
average waiting time for reservation and walk-in customers
are illustrated in Tables 4 and 5. Table 4 uses the demand
data of 90 customers and Table 5 uses the demand data
of 120 customers. In the low-demand scenario of 90 cus-
tomers, the DSAR outperforms all of the FCFS models by
3.5% to 6.9%. The DSAR also serves a larger percentage
of both reservation and walk-in customers than the FCFS
models. The average wait for reservation parties is slightly
higher for the DSAR, but 0.27 periods (4.05 minutes) is
still a reasonable length of wait. The average wait for walk-
in customers is lowest using the DSAR. The results for 120
customers are similar. The DSAR outperforms the FCFS
model by 6.43% to 8.29%. It again has the best percent-
age seated for both the reservation and walk-in customers.
It also has the highest average waiting time (0.40 periods,
or 6 minutes) for reservation parties and the lowest aver-
age waiting time for walk-in parties. Thus, the DSAR pro-
duces more revenue and serves more customers than FCFS

486 / Bertsimas and Shioda

for both low and high demands. The results also imply
that the DSAR has a higher revenue impact with higher
demand.

7. SUMMARY AND CONCLUDING REMARKS

We feel we gained the following insights from the compu-
tational study:

(1) For models without reservations, optimization-based
strategies outperform FCFS-based strategies for all low and
medium load factors and significantly for high load factors.
Somewhat surprisingly, optimization-based strategies do
not adversely affect the service quality (waiting times either
remain unchanged or decrease somewhat, while FCFS is
maintained within parties of the same size).

(2) Increasing the sophistication in the models results in
higher revenue without sacrificing waiting time. We believe
that the performance of the ADP model represents the best
trade-off between maximizing revenue and maintaining low
average waiting time and run time.

(3) The reservation models we propose (using a stochas-
tic gradient approach to decide the reservations a priori, and
ADP to implement it online) result in a significant improve-
ment relative to the FCFS models for both low and high
demand levels. The RB and DSAR models result in both
higher revenue and lower customer attrition.

(4) Overall, we feel that optimization-based models have
a role to play in restaurant revenue management.

There are many areas for future research:
(1) Extending our model to support dynamic capacity—

that is, allowing restaurants to move their tables around to
better accommodate the demand at each time.

(2) Incorporating balking and reneging.
(3) Further empirical testing; this might be facilitated by

combining algorithms from this paper with online restau-
rant reservation providers.

ENDNOTES

1. In the language of queueing theory, reneging is when a
customer prematurely leaves the restaurant, after waiting in
line, before receiving any service.
2. The probability distribution of the length of each phase
for each party size is approximated by a discrete distribu-
tion illustrated in an online appendix.
3. The load factor 7k corresponding to party size k was cal-
culated as 7k = 6̄kSk�/c̄�k�, where 6̄k �= the expected rate
of arrival of size k parties, Sk� �= the expected service time
of size k customers, and c̄�k� �= the average number of
tables of size k over all three configurations.
4. The online appendix contains an illustration of the
expected demand for each period and party size corre-
sponding to each of the demand scenarios (http://or.pubs.
informs.org/Pages/collect.html/).

ACKNOWLEDGMENTS

This research was supported in part by the Singapore-MIT
alliance. The authors thank Sotohiro Kosugi, owner and
chef of Soto’s, a Japanese restaurant in Atlanta, Georgia,
for sharing data from his restaurant with them and helping
the authors to better understand restaurant operations. They
also thank the reviewers of the paper and the associate edi-
tor for many insightful suggestions.

REFERENCES

Ahuja, Ravindra K., Thomas L. Magnanti, James B. Orlin. 1993.
Network Flows: Theory, Algorithms, and Applications. Pren-
tice Hall, Englewood Cliffs, NJ.

Karaesmen, I., G. van Ryzin. 1998. Overbooking with substi-
tutable inventory classes. Working paper, Columbia Graduate
School of Business, New York.

Kimes, Sheryl E. 1999. Implementing restaurant revenue manage-
ment: A five step approach. Cornell Hotel Restaurant Admin.
Quart. 40(3) 16–21.
, Deborah I. Barrash, John E. Alexander. 1999. Develop-
ing a restaurant revenue-management strategy. Cornell Hotel
Restaurant Admin. Quart. 40(5) 18–29.
, Richard B. Chase, Sunmee Choi, Philip Y. Lee, Elizabeth
N. Ngonzi. 1998. Restaurant revenue management: Applying
yield management to the restaurant industry. Cornell Hotel
Restaurant Admin. Quart. 39(3) 32–39.

Kosugi, Sotohiro. 1999. Owner and manager of Soto’s, personal
communication. Atlanta, GA.

Kushner, H. J., D. S. Clark. 1978. Stochastic Approximation Meth-
ods for Unconstrained Systems, AMS Vol. 26. Springer-
Verlag, New York.

Martinez, R., M. Sanchez. 1970. Automatic booking level con-
trol. AGIFORS Sympos. Proc., Vol. 10. American Airlines,
New York.

McGill, Jeffrey I., Garrett J. van Ryzin. 1999. Revenue manage-
ment: Research overview and prospects. Transportation Sci.
33(2) 233–256.

Muller, Christopher C. 1999. A simple measure of restaurant effi-
ciency. Cornell Hotel Restaurant Admin. Quart. 40(3) 31–37.

Quain, Bill, Michael Sansbury, Stephen M. LeBruto. 1998. Rev-
enue enhancement, part 1: A straightforward approach for
making money. Cornell Hotel Restaurant Admin. Quart.
39(5) 41–48.

Sill, Brian. 2000. Capacity management: Engineering the bal-
ance between customer satisfaction, employee satisfaction
and company profit. The Consultants (second quarter)
72–81.
, Robert Decker. 1999. Applying capacity-management
science. Cornell Hotel Restaurant Admin. Quart. 40(3)
22–30.

Vakharia, A. J., H. S. Selim, R. R. Husted. 1992. Efficient
scheduling of part-time employees. Omega 20(2) 201–213.

