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1. Introduction
Marketers are increasingly capable of interacting with their
customers directly. With this capability comes the challenge
to gather and use evolving data to optimize the delivery
of marketing messages. Due to scale and speed consid-
erations, interactive marketing decisions must be auto-
mated, and there is a continuing need for sophisticated
data-driven decision-support tools in this arena. Example
contexts range from traditional target marketing contexts
like direct mail and catalogs to Internet-based contexts like
banner advertising and paid search advertising. We col-
lectively refer to such contexts as interactive marketing
environments.
In many such environments, a marketer may have insuf-

ficient data to accurately predict the effectiveness of avail-
able messages. Off-line experiments to collect data may
prove both costly and slow, and may poorly reflect chang-
ing conditions in a real environment. For this reason, we
propose methods that actively learn message effectiveness
during real operations. With a limited number of avail-
able customer encounters, the marketer in such an environ-
ment faces the so-called “exploration versus exploitation”
dilemma between using messages thought to be promising
(exploitation) and using poorly understood messages for
the purpose of data gathering (exploration). There has been
very little work addressing this adaptive learning issue in

the interactive marketing context, and there is no consensus
on the proper modeling framework for approaching it.
Our model assumes that available customer encounters

at each decision epoch have been segmented according
to predetermined rules based on available data on the
customer, for example, recency, frequency, and monetary
value (RFM) variables, contact and response histories, or
demographic attributes. We then assume that customers
behave statistically homogeneously within a segment, and
we select (and learn about) messages for each customer
segment independently. Such a framework decouples the
detailed modeling of customer attributes from the optimiza-
tion of message selection. Recognizing that segmentation
models have been well studied in many settings and are
necessarily dependent on the data available and applica-
tion, our focus in this paper is on the optimal allocation of
messages to a segment of customer encounters.
The classic framework for studying the exploration-

exploitation trade-off is the multiarmed bandit problem,
an adaptive sampling problem in which a decision maker
draws samples one-by-one from a set of available popu-
lations with the objective of maximizing the expected (or
discounted expected) sum of the samples. In an interactive
marketing environment, however, it is often necessary to
make decisions for multiple customers at the same time due
to simultaneous contact with many customers (as in tradi-
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tional direct mailing), delayed responses, technology-based
considerations favoring updating databases and generating
decisions off-line, or systemwide global constraints.
The batched adaptive sampling problem we consider is

difficult to solve but simple to state. We choose among
a set of M marketing messages for N simultaneous cus-
tomer encounters at a time. We assume that responses are
independent Bernoulli random variables for which the suc-
cess probability for each message is unknown but described
by a prior distribution. The responses of the N customers
encountered at stage t are assumed known before deci-
sions must be made for stage t+ 1, and the objective is to
maximize the expected number of successes over T deci-
sion stages. While related adaptive sampling problems have
been considered for other applications, most notably for
medical trials, previous methods are not scalable and gen-
eral enough for use in an interactive marketing context.
This adaptive sampling problem can be straightforwardly

formulated as a dynamic program. The dynamic program-
ming formulation leads to some basic insights: that there
is value to information and that the optimal reward is
superadditive in N and T . Practically, however, the size
of the state space prohibits an efficient exact solution for
all but the smallest problem instances. We develop two
approaches for its approximate solution. The first is an
approximate dynamic programming algorithm that is based
on a Lagrangian decomposition at each stage. The method
performs well and can be readily extended to a multiseg-
ment problem in which the segments are linked through
budget constraints and customer dynamics. Our second
method extends an approximate policy for the multiarmed
bandit problem due to Lai (1987). This heuristic is particu-
larly efficient to compute and achieves very good results in
our simulation study, although its extendibility is less clear.
As we point out in §2.1, there exists little academic work

on adaptive learning in marketing contexts, even though the
interactive marketing domain is dynamic and data-driven,
and thus is a natural area to apply adaptive techniques. We
believe that one reason for the void is the large gap between
the relative simplicity of known, tractable adaptive learn-
ing models and the relative complexity (and scale) of many
interesting interactive marketing problems. While our work
attempts to narrow this gap, our customer behavior model
remains simple compared with contemporary marketing
research on modeling customer choice for descriptive pur-
poses or for myopic optimization. The adaptive experimen-
tation problem we consider is inherently more difficult, and
we believe that some modeling sacrifice is therefore nec-
essary. We also believe that the remaining modeling gap
represents a challenging opportunity for future research.
A common customer choice modeling approach is the

random utility framework (see, for instance, Ben-Akiva and
Lerman 1985), in which a customer’s action depends on a
random utility function over choices or choice attributes,
and the parameters of the utility function may include cus-
tomer attributes and/or random terms to model the het-
erogeneity of customers (see Ansari and Mela 2003 for

a contemporary model in the interactive marketing con-
text). Such models imply complex dependencies between
the unknown parameters. Bayesian approaches to fitting
such choice models from data (see Rossi et al. 2005) yield
complicated multidimensional posterior distributions that
are typically estimated using numerical simulation and can-
not be concisely parameterized.
On the other hand, known approaches to adaptive exper-

imentation, specifically to the multiarmed bandit problem,
nearly always assume that the parameters to be learned are
statistically independent given the decision-maker’s deci-
sions. A significant benefit of this assumption is that it
allows the decision maker to represent her state of knowl-
edge compactly and update it easily, which in turn makes
it tractable to fathom the future information impact of cur-
rent decisions within a dynamic optimization algorithm.
Thus, key assumptions ensuring tractability of our model
are those that allow us to assume independence of the
parameters to be learned.
Within a segment, our model requires that messages per-

form independently given the marketer’s decisions: learning
about one message does not inform her about the effective-
ness of other messages. The independent parameters to be
learned are the success probabilities of each message. We
note that this assumption will be conservative when there
are statistical dependencies among messages. That is, our
approach will learn more slowly than if these dependencies
were taken into account.
We also require that customers can be segmented at each

stage into independent and internally homogeneous groups.
Assuming independence among segments allows us to nat-
urally decompose the problem by segment (at the expense
of learning speed, if there are strong relationships between
segments). Our basic formulation and our work in §3 are
thus based on the important single-segment subproblem.
Implicit in the assumption of homogeneous customer seg-
ments is that all customer-specific data has been adequately
summarized by each customer’s current segment label. For
example, our optimization formulation does not keep track
of which customers have been exposed to which messages,
although we note that this can be managed by including
contact history information in the segmentation model. In
§4.3, we extend our model to account for the resulting
migrations between segments.
An interesting special case of the segmented customer

framework is when each segment consists of a single cus-
tomer, and we learn the effectiveness of messages for each
individual independently. Such a model, which assumes
that customers are fully heterogeneous, can be handled by
the methods we present. Learning may be slow in practice
due to the large number of unknown parameters and limited
encounters with each customer. Nevertheless, this special
case suggests the segmented model as an approximation of
customer heterogeneity, and that the trade-off between het-
erogeneity and learnability can be manipulated through the
fineness of the segmentation.
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A segmented customer model is natural in a number of
practical contexts. In many applications, little data about
individuals is known or available (e.g., due to constraints
of the media or privacy considerations), and discrete buck-
eting of customers is appropriate and perhaps unavoid-
able. Examples include Internet applications such as paid
search, in which customers are largely anonymous. Even
for direct mailing campaigns where customer-specific data
is available, it remains popular in practice to segment cus-
tomers according to RFM variables and treat customers as
homogeneous within the resulting discrete segments. Sev-
eral previous studies of dynamic marketing optimization
(e.g., Simester et al. 2006, Bitran and Mondschein 1996)
assume homogeneous response within segments.
The contributions of this paper are the proposal of

an adaptive sampling framework for interactive market-
ing environments, new methods for addressing a key sub-
problem of this framework, and associated insights. We
note that the subproblem—an extension of the classic
multiarmed bandit problem to batched decision making—
is also of more general interest than the specific marketing
application considered. Other example applications include
medical trials (Cheng et al. 2002) and retail assortment
(Caro and Gallien 2007).
The remainder of this paper is organized as follows. We

examine related marketing and algorithmic literature in §2.
Section 3 formulates the single-segment adaptive sampling
problem we consider and presents some theoretical results
about the optimal expected reward. We develop our approx-
imate dynamic programming (ADP) method in §4, and
our heuristic based on the asymptotic multiarmed ban-
dit approximation of Lai (1987) in §5. Section 6 presents
results of a simulation study to examine the performance
of the proposed methods, and §7 points toward interesting
future research directions.1�2

2. Related Work
We organize relevant literature into two categories: research
on marketing in interactive media, and general research on
methods for adaptive sampling.

2.1. Relevant Work on Interactive Marketing

We classify the related work on decision making in inter-
active marketing into three sets: myopic models, dynamic
models capturing customers’ long-run profitability, and
dynamic models incorporating learning effects.
A number of choice models have been proposed to cap-

ture detailed choice patterns in interactive marketing data.
However, decisions produced by these models are myopic
in that they maximize only immediate profits. Bult and
Wansbeek (1995) develop a random utility model for sam-
pling direct mail targets with the objective of maximizing
profits from a single mailing. Rossi et al. (1996) use a
Bayesian hierarchical model to model customer responses
to point-of-sale grocery coupon offers. Their data model is

sophisticated, accounting for both observed and unobserved
sources of customer heterogeneity, and highlights computa-
tional advances allowing the application of Bayesian statis-
tics to marketing (see Rossi et al. 2005). More recently,
Ansari and Mela (2003) fit a hierarchical Bayesian model
and apply deterministic optimization to the results for
the purpose of designing customized e-mail offers. They
optimize a single-period objective, ignoring their deci-
sions’ future impacts. In particular, active learning is not
considered.
Using coarser models of customer choice, a number

of studies have explored the impact of current deci-
sions on a customer’s long-run profit stream (i.e., “life-
time value”). Bitran and Mondschein (1996) introduce a
dynamic programming-based mailing policy for the situa-
tion in which a direct mailer has limited capital. Simester
et al. (2006) test a dynamic programming-based model
with real catalog data. Both of these studies model cus-
tomer behavior with discrete customer segments, based on
RFM variables in the first and on a tree-based segmen-
tation method in the second, within which response rates
are assumed homogeneous. Gönül and Shi (1998) develop
an estimable structural dynamic programming model of
customer and direct mailer behavior, deriving a dynamic
mailing policy. They simplify firmwide considerations so
that each customer can be modeled independently, and
they track customers using just two attributes, recency and
frequency, due to difficulties inherent in high-dimensional
dynamic programming.
All of the myopic and “lifetime value” studies discussed

above ignore the impact of information gain on current
decisions. We are aware of only two studies on adaptive
experimentation in interactive marketing settings. In Ariely
et al. (2002), choice models are assumed known for cus-
tomer segments, but the customers’ segment memberships
are unknown. The paper of Gooley and Lattin (2000) dis-
cusses allocating marketing messages when customers are
differentiated by covariates and customer contacts occur
one-by-one. Through a data experiment, the authors provide
evidence of the value of adaptive sampling in an interac-
tive marketing environment. They also present ideas on an
adaptive sampling approach when responses are modeled
as linear functions of customer attributes. Their approach
is not implemented or tested, and does not naturally extend
to batched decision making or budget constraints.

2.2. Relevant Methodological Work

The basic single-segment adaptive sampling problem we
consider relates closely to the so-called multiarmed bandit
problem (see Gittins 1989), a prototypical resource alloca-
tion problem involving several projects or “arms,” each of
which is represented as a reward-generating Markov chain.
At each stage, the decision maker chooses one arm to gen-
erate a reward and change state according to known tran-
sition probabilities. The highlight of the multiarmed bandit
literature is the work of Gittins (see Gittins and Jones 1974



Bertsimas and Mersereau: Learning Approach for Interactive Marketing
Operations Research 55(6), pp. 1120–1135, © 2007 INFORMS 1123

and Gittins 1979), which characterizes an optimal policy
for the infinite-horizon version of the problem as comparing
“indices” that can be independently and efficiently com-
puted for each arm.
An important special case of this problem (see, for exam-

ple, Berry and Fristedt 1985), also known as the multi-
armed bandit problem, is when the decision maker has
several available populations on which she has prior dis-
tributions, and she draws independent samples one-by-one
from the populations, updating her prior distributions after
each observation. The objective is to maximize expected
(or discounted expected) responses. In this version of the
problem, the populations correspond to “arms,” and the
Bayesian update at each stage can be thought of as a transi-
tion in a Markov chain. Much of the work on this problem
has been in deriving asymptotic approximations to opti-
mal policies. Important papers in this vein are those of Lai
and Robbins (1985) and Lai (1987). The basic problem
we consider can be viewed as a multiarmed bandit prob-
lem extended to the case of multiple samples at each stage.
Anantharam et al. (1987) consider asymptotic approxima-
tions for the case of multiple plays at each stage, although
they assume at most one sample can be taken from each
population at each stage.
Related problems of sequential experimental design have

been studied in the statistics and biostatistics communities,
inspired by the problem of designing sequential medical tri-
als. Much of the work has focused on few stages (typically
two or three), few populations (typically no more than two),
and fewer samples than considered here. Recent analytical
research on two-stage experiments involving two popula-
tions can be found in Cheng et al. (2002). Hardwick and
Stout (2002) solve two- and three-stage problems with two
populations optimally using clever dynamic programming
implementations. Sequential experimental design typically
requires the decision maker to select the number of sam-
ples at each stage subject to an overall limit on total sam-
ples taken over the finite horizon. We have developed very
similar methods to that discussed in §4 for this problem
with promising results, but this paper deals with the case
in which the number N of samples is exogenously fixed at
each stage.

3. Batched Adaptive Sampling in a
Single Segment

As discussed in §1, a customer segmentation model allows
us to decouple the problem of modeling customer covari-
ates from the problem of optimizing message selection,
assuming that customer encounters are statistically homo-
geneous within a segment and that message effectiveness
can be learned independently across segments. Given these
assumptions, in this section we focus on a single segment of
customers in isolation and formulate the problem of adap-
tive sampling of messages within a single segment. We
also prove some analytical results on the behavior of the

optimal expected rewards as a function of basic problem
parameters.

3.1. Problem and Notation

We assume that a marketer must assign messages to N cus-
tomer encounters in a segment at each stage with the overall
objective of maximizing total rewards over a finite horizon.
Immediate reward generated by a customer encounter is an
independent Bernoulli random variable with probability pm
that depends on the message m sent to the customer in the
current stage. We assume that the marketer does not know
pm, and has a beta prior distribution (see Drake 1967) on
its true value. With parameters s > 0 and f > 0 integer, the
beta density is given by

f��p s� f �

=




�s+ f − 1�!
�s− 1�!�f − 1�!p

s−1�1−p�f−1� 0<p< 1�

0 otherwise�

(1)

It can be shown that the beta distribution has the follow-
ing properties:
(1) The beta distribution is a conjugate prior for the

binomial distribution. That is, given a beta prior distribu-
tion beta�s0� f 0� on the success probability p of a Bernoulli
distribution, if we observe s+f Bernoulli experiments that
yield s successes and f failures, the Bayesian posterior dis-
tribution of p is beta�s0+ s� f 0+ f �.
(2) The uniform distribution on �0�1� can be written as

beta�1�1�.
The first of these properties implies that the beta distri-

bution is particularly simple to update. The second leads
to a practical interpretation of the beta distribution parame-
ters in our problem. It is natural to assume that a marketer
with no information about the effectiveness of her available
messages has uniform priors on their success probabilities.
Prior to stage zero, however, she may have gathered some
information on the various messages by running off-line
experiments. The parameters s0m and f

0
m of the prior distri-

bution can be thought of as the number of successes (plus
one) and the number of failures (plus one) observed in these
off-line experiments.
We assume a binary reward structure for the sake of sim-

plicity, and we note that this assumption can be relaxed to
some extent. In §4.3, we relax it somewhat by introducing
a reward for success that may vary (in a known way) across
messages. An obvious way to model nonbinary responses
would be to replace the beta/binomial framework we use
with another conjugate model pair, say gamma/Poisson.
Adapting our approaches to another conjugate model pair
is conceptually straightforward but brings complexity by
adding to the size of the state space.
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We make use of the following notation:
• T : the finite horizon of the problem. We index discrete

time stages 0� � � � � T − 1 with the variable t.
• M : the number of messages available. We index the

messages by m. We note that we may extend the notion
of messages to encompass different channels, designs, or
offers as suits the application. We assume that the mes-
sages are consistent over time, although one could model
deterministic changes in M over time by adding constraints
limiting when individual messages can be used.
• N : the total number of customers in the segment to

be contacted at each stage. We can easily handle the case
where at most N customers are contacted each stage by
including a “do not send” option among the available mes-
sages. However, given nonzero response probabilities it will
not be optimal to neglect an available customer encounter
in the current problem.
We assume that the number of customer encounters N

at each stage is constant in time and exogenous. Our for-
mulation and methods can be easily extended to the case
in which the number of customer encounters at each stage
varies deterministically with t. The case in which the num-
bers of future customer encounters are exogenous but ran-
dom is technically more complicated, although we suspect
that replacing these random variables by their expectations
would provide a reasonable approximation. As mentioned
in §2.2, we have considered an alternate problem in which
the decision maker may choose how many customers to
contact each period, but must contact a total of �N cus-
tomers over the finite horizon. A similar decomposition
method to that developed in §4 offers promising results,
but for horizons longer than three periods it seems to offer
little improvement over dividing contacts evenly among the
available time periods.
• s0m, f

0
m: the parameters of the initial prior beta distri-

bution on pm. These numbers for each message m are to be
specified for each problem instance as part of the problem
data.
• xtm: the decision variable indicating the number of cus-

tomers sent message m at stage t. The vector of decisions at
stage t is denoted xt = �xt1� � � � � x

t
M�. We note that the ade-

quacy of this choice of decision variable follows from our
assumption of homogeneous customer encounters within a
segment.
• ytm: the random variable giving the number of cus-

tomers sent message m in stage t who subsequently gener-
ate a “success.”
• stm� f

t
m: the parameters of the updated beta distribution

on the success probability corresponding to message m.
These numbers for each message m are maintained as state
variables in the problem. We refer to the vectors of reward
distribution parameters at stage t using boldface characters:
st = �st1� � � � � s

t
M� and f t = �f t

1 � � � � � f
t
M�. s

t
m and f

t
m accumu-

late the numbers of successes and failures observed so far.
Thus, st = s0 +∑t−1

j=0 y
j and f t = f0 +∑t−1

j=0�x
j − yj �. Also,

we have
∑M

m=1�s
t
m− s0m+ f t

m− f 0m�=Nt.

We assume that the problem is reformulated and re-
solved at each decision stage. Thus, more complicated
information dynamics than we assume can be incorporated
into the decisions passively via respecification of the mes-
sage priors at each stage. If this is done, then our statistical
assumptions can be seen as approximations for the purpose
of fathoming future rewards.

3.2. Dynamic Programming Formulation

The exact solution of the problem is naturally approached
via dynamic programming. Here we formulate the dynamic
program by specifying the state, randomness, available con-
trols, system dynamics, and reward structure of the system
over which we are optimizing.
• State: The state of the system at stage t is the total

number of successes and failures (plus the priors s0m and f
0
m,

respectively) observed so far for each of the messages, and
is given by the vector �st� f t�= �st1� � � � � s

t
M� f

t
1 � � � � � f

t
M�.• Control: The system control is xt = �xt1� � � � � x

t
M�, with

xtm indicating the number of type m messages sent at
stage t. We constrain

∑M
m=1 x

t
m =N for all t = 0� � � � � T −1,

and xtm � 0, xtm integer for all t = 0� � � � � T − 1 and m =
1� � � � �M .
• Randomness: ytm gives the number of successes result-

ing from sending xtm type m messages when the success
probability pm is distributed as beta(stm, f

t
m). y

t
m is a beta-

binomial random variable, with probability mass function
(see, for example, Raiffa and Schlaiffer 1961, §7.11):

Pr�ytm = y � xtm stm� f t
m�

=
∫ 1

0

(
xtm
y

)
py�1−p�x

t
m−yf��p s

t
m� f

t
m�dp

=
(
xtm
y

)
�stm+y−1�!
�stm−1�!

�f t
m+xtm−y−1�!
�f t

m−1�!
�stm+f t

m−1�!
�stm+f t

m+xtm−1�!
�

y = 0� � � � � xtm� (2)

As the ytm random variables are assumed independent
of each other, the probability mass function for the vector
yt = �yt1� � � � � y

t
M� is the product of the individual probabil-

ity mass functions of its components.
• System Dynamics: The system state evolves as st+1 =

st + yt and f t+1 = f t + xt − yt .
• Expected Rewards: The total expected reward is the

expected number of successes over T periods. The expected
reward accruing at stage t is given simply by

E
[ M∑
m=1

ytm

∣∣∣xt st� f t]= M∑
m=1

xtm

(
stm

stm+ f t
m

)
� (3)

where we use the fact that stm/�s
t
m + f t

m� is the expected
value of the beta distribution with parameters stm and f

t
m.

The problem can in principle be solved using the follow-
ing dynamic programming iteration. For the final stage, the
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optimal strategy is to send all customers the message with
the highest expected success probability:

JT−1�s
T−1� fT−1�=N ·max

{
sT−1m

sT−1m + f T−1
m

}
� (4)

For t = T − 2� � � � �0,

Jt�s
t� f t�= max

x

M∑
m=1

(
stm

stm+ f t
m

)
xtm

+Eyt �Jt+1�s
t + yt� f t + xt − yt� � x st� f t�

s.t.
M∑
m=1

xtm =N�

xtm � 0� m= 1� � � � �M�

xtm integer� m= 1� � � � �M�

(5)

where the expectation is with respect to M indepen-
dent probability mass functions of the form given in
Equation (2).
Discounting rewards geometrically in time with discount

rate 0� �� 1 requires a trivial modification to the formu-
lation: we modify Equation (5) by adding the factor � in
front of the expectation. This results in only minor modi-
fications to the ADP methods. (We note that most of our
theoretical results carry over, but that Propositions 3 and 4
in §3.3 will not generally hold as stated for the discounted
case.) It is less clear, however, how to modify the heuristic
of §5 to handle discounting.

3.3. The Value of Information

In this section, we show that the dynamic programming
formulation of the single-segment problem implies there is
value to information. That is, an optimal decision maker
may expect larger expected rewards if allowed to observe
the outcome of additional trials. This result has implica-
tions for the design of an interactive marketing campaign.
Using the result, we prove that there are increasing returns
to both stage size and problem horizon and that, if possible,
the marketer should arrange a given number of customer
encounters by maximizing the number of stages while min-
imizing the encounters per stage. In the interest of brevity,
some of the proofs of this section’s results are included in
the online companion (Appendix A). An electronic com-
panion to this paper is available as part of the on line ver-
sion that can be found at http://or.journal.informs.org/.
We require the following lemma, which states that, for a

fixed set of encounters x, the a priori joint distribution of
the outcomes does not change if the encounters are broken
up into two sets that are performed in series.

Lemma 1. For any m, x1m, x
2
m, y, sm, fm, and letting ym, y

1
m,

and y2m indicate the number of successes in x1m + x2m, x
1
m,

and x2m encounters, respectively,

Pr�ym = y � x1m+ x2m sm� fm�

=
y∑

y1m=0
Pr�y2m = y− y1m � x2m sm+ y1m� fm+ x1m− y1m�

·Pr�y1m � x1m sm� fm��
Proof. We omit the details of the proof. We note that
the result can be verified by substituting expression (2)
for the probabilities in the lemma statement, canceling
terms, and applying Vandermonde’s identity for binomial
coefficients. �

The following result captures the intuitive notion that
there is value to information. On an expected basis, the
marketer should prefer more information to less.

Proposition 1. For all t, st , f t , and fixed x� 0,

Ey�Jt�s
t + y� f t + x− y� � x st� f t�� Jt�s

t� f t��

Proof. For expositional convenience, we define the repa-
rameterized value function J̃t�n

t� st�= Jt�s
t�nt − st� for all

t, st , and nt � st .
Consider stage T −1. For fixed nT−1, J̃T−1�nT−1� sT−1�=

N ·maxm�sT−1m /nT−1m � is the maximum over linear functions
of sT−1, and thus is a convex function of sT−1. Jensen’s
inequality then gives, for fixed x,

Ey

[
J̃T−1�n

T−1+ x� sT−1+ y� � xnT−1� sT−1]
� J̃T−1�n

T−1+ x� sT−1+E�y � xnT−1� sT−1��

=N ·max
m

{
sT−1m + xms

T−1
m /nT−1m

nT−1m + xm

}

=N ·max
m

{
sT−1m

nT−1m

}

= J̃T−1�n
T−1� sT−1� for all nT−1� sT−1 � nT−1�

Now consider stage 0� t � T − 2. Assume that
Ey�J̃t+1�n

t+1+ x� st+1+ y� � xnt+1� st+1�� J̃t+1�n
t+1� st+1�

for all nt+1� st+1 � nt+1�x�

and let

x∗ = argmax
x�
∑

m xm=N

{∑
m

�stm/n
t
m�xm

+Ey

[
J̃t+1�n

t + x� st + y� � xnt� st]}�
Then, for fixed x,

Ey�J̃t�n
t + x� st + y� � xnt� st�

= Ey

[
max

x′ �∑m x
′
m=N

{∑
m

stm+ ym
ntm+ xm

x′m

+Ey′ �J̃t+1�n
t + x+ x′� st + y+ y′� � x′

nt + x� st + y�
}∣∣∣∣xnt� st

]
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�Ey

[∑
m

stm+ym
ntm+xm

x∗m+Ey∗ �J̃t+1�n
t+x+x∗�st+y+y∗� �x∗

nt + x� st + y� � xnt� st
]

=∑
m

stm
ntm

x∗m+Ey�Ey∗ �J̃t+1�n
t + x+ x∗� st + y+ y∗� � x∗

nt + x� st + y� � xnt� st�
=∑

m

stm
ntm

x∗m+Ey∗ �Ey�J̃t+1�n
t + x+ x∗� st + y+ y∗� � x

nt + x∗� st + y∗� � x∗nt� st�
�
∑
m

stm
ntm

x∗m+Ey∗ �J̃t+1�n
t + x∗� st + y∗� � x∗nt� st�

= J̃t�n
t� st��

where the equality in the third-to-last line follows from
Lemma 1 and the inequality on the second-to-last line fol-
lows from the induction assumption. The desired result then
follows for all t = T − 1� � � � �0 by induction. �

Proposition 1 can be generalized to the case in which the
decisions are not fixed, but rather are chosen in a series of
stages. We provide details in online Appendix A. Proposi-
tion 1 allows us to prove informative structural results about
the optimal problem rewards. Let Jt�s

t� f tN �T � indicate
the optimal cost-to-go evaluated in stage t and state �st� f t�
for a problem with horizon T and stage size N . The fol-
lowing result says that the optimal reward is superadditive
in the stage size N , so that there are increasing returns
to stage size. Intuitively, because information is valuable,
a large pool of customer encounters, managed centrally,
can give higher rewards than two smaller pools of exper-
iments, managed independently. We include a proof in
online Appendix A.

Proposition 2. For any initial state s0, f0, horizon T , and
stage sizes NA and NB,

J0�s
0� f0NA+NB�T �� J0�s

0� f0NA�T �+J0�s
0� f0NB�T ��

Similarly, the value of information implies that the opti-
mal reward is also superadditive in the horizon T . See
online Appendix A for a proof.

Proposition 3. For any initial state s0, f0, stage size N ,
and horizons TA and TB,

J0�s
0� f0N �TA+TB�� J0�s

0� f0N �TA�+J0�s
0� f0N �TB��

Finally, for a fixed total number TN of customer encoun-
ters, higher rewards are possible if the marketer can
increase the number of stages while decreasing the stage
size. We include a proof in online Appendix A.

Proposition 4. For any initial state s0, f0, stage size N ,
and horizon T , and assuming integer  > 1 such that T / 
is integer,

J0�s
0� f0N �T �� J0�s

0� f0 N �T / ��

4. Solution via Approximate Dynamic
Programming

While the dynamic programming formulation provides a
method for solving the single-segment problem of §3
exactly, the direct application of dynamic programming
is computationally prohibitive for problems of reasonable
size. (For a small problem with N = 10, T = 10, and
M = 3, the dynamic program has on the order of 108 states.
With N = 10, T = 5, and M = 10, the number of states
jumps to 1034.) In particular, the number of states grows
exponentially with the number of messages. To mitigate
this state explosion, we investigate an approximation tech-
nique that uses Lagrange multipliers to decompose the
problem by message.
We note that there is a literature on the decomposition

of large dynamic programming problems for approximate
solutions. Meuleau et al. (1998) is an example from the
reinforcement learning community. The use of Lagrangian
relaxation for decomposition of dynamic programs is inves-
tigated by Castañon (1997), Yost and Washburn (2000),
and in the PhD dissertation of Hawkins (2003). Our algo-
rithm is closely related to the ones proposed by these
authors and to Whittle’s (1988) proposed heuristic for the
restless bandit problem. Subsequent to working versions
of our paper, Caro and Gallien (2007) and Adelman and
Mersereau (2007) have further investigated the Lagrangian
approach.
The approximation method is motivated by the observa-

tion that the dynamic programming problem formulated in
Equation (5) would be separable by message if not for the
constraint

∑M
m=1 x

t
m = N . We add the redundant constraint

xtm � N for all m and replace the constraint
∑M

m=1 x
t
m = N

with a Lagrangian term in the objective function. We
assume a constant Lagrange multiplier !t across all states
at stage t. This gives a new value function which is a func-
tion of a vector of Lagrange multipliers �= �!0� � � � � !T−1�.
We can write the dynamic programming iteration for the
relaxed problem as follows:

J �
T−1�s

T−1� fT−1�

=N!T−1+N
M∑
m=1

(
max

{
0�

sT−1m

sT−1m +f T−1
m

−!T−1
})

� (6)

For t = T − 2� � � � �0,

J �
t �s

t� f t�=max
xt

!t

(
N −

M∑
m=1

xtm

)
+

M∑
m=1

(
stm

stm+ f t
m

)
xtm

+Eyt �J
�
t+1�s

t + yt� f t + xt − yt� � xt st� f t�
s.t. 0� xtm �N� m= 1� � � � �M� (7)

xtm integer� m= 1� � � � �M�

We observe first that the relaxed value function is sep-
arable by message at stage T − 1, and that if the problem
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is separable for some t + 1 � T − 1, then it is separable
for t. Thus, we can write the relaxed value function for all
t = 0� � � � � T − 1 as

J �
t �s

t� f t�=N
T−1∑
"=t

!" +
M∑
m=1

Ĵ �
t�m�s

t
m� f

t
m�� (8)

where

Ĵ �
T−1�m�s

T−1
m �f T−1

m �=N ·max
{
0�

sT−1m

sT−1m +f T−1
m

−!T−1
}

(9)

and

Ĵ �
t�m�s

t
m�f

t
m�=max

x

(
stm

stm+f t
m

−!t
)
x

+Ey

[
Ĵ �
t+1�m�s

t
m+y�f t

m+x−y� �xstm�f t
m

]
s.t. 0�x�N� (10)

x integer�

for t = T − 2� � � � �0.
The solution to the relaxed problem will not generally

be feasible for the problem of Equation (5). To generate
a feasible stage zero allocation, we consider the following
constrained problem that uses the relaxed value functions
to approximate the future implications of current actions:

J̄ �
0 �s

0�f0�= max
x0

M∑
m=1

(
s0m

s0m+f 0m

)
x0m

+Ey0 �J
�
1 �s

0+y0�f0+x0−y0� �x0s0�f0�

s.t.
M∑
m=1

x0m=N�

x0m�0� m=1�����M�

x0m integer� m=1�����M�

(11)

The problem gives, for any choice of �, a feasible stage
zero allocation of messages. Similar formulations could
potentially be used to generate feasible message allocations
at stages t = 1� � � � � T − 2 as well. We instead decide the
message allocation at each stage t once the state �st� f t�
becomes known, by solving (11) for a reduced horizon of
T − t.
Implementation of the approximate dynamic program-

ming method reduces to two methodological components:
selecting the Lagrange multipliers �, and solving the sub-
problems. We consider these two components in §§4.1 and
4.2, respectively.
We add that Castañon (1997) motivates a similar decom-

position approach in a way that leads to an inter-
esting interpretation (see also Adelman and Mersereau
2007). The alternate motivation for the approach is to
replace the constraints

∑M
m=1 x

t
m =N by relaxed constraints

E�
∑M

m=1 x
t
m�=N , and then solve the resulting problem

exactly using the method of Lagrange multipliers to accom-
plish the maximization.

4.1. Selecting �

We consider two different methods for selecting �. We can
show that J̄ �

0 �s
0� f0� is convex as a function of � and is

an upper bound for the true value function J0�s
0� f0� (see

Appendix B in the online companion). The first method
makes use of these observations, seeking the � that gives
the tightest possible value function bound. Our decision at
state �s0� f0� will then be a feasible x0 arising from the
following minimization problem:

min
�

J̄ �
0 �s

0� f0�� (12)

The convexity of J̄ �
0 �s

0� f0� implies that this minimum can
be found efficiently. We consider simplifying the computa-
tion further by assuming a constant multiplier, !1 = · · · =
!T−1 = !, as an approximation. With this assumption,
choosing ! requires a one-dimensional numerical optimiza-
tion. Following the interpretation introduced at the end of
the previous section, we note that assuming time-invariant
multipliers is equivalent to further relaxing the constraints
E�
∑M

m=1 x
t
m� = N (for all t > 0) by replacing them with

a single constraint E�
∑T−1

"=1
∑

m=1 x"m� = N�T − 1�. The
assumption seems reasonable in our case because the nature
of the constraint

∑
m x

t
m =N does not change over time nor

do we expect the expected rewards to vary greatly across
time periods. We provide evidence in the online companion
(Appendix C) that the restriction to time-invariant multipli-
ers does not significantly affect the quality of the policy.
The second method follows the development of Castañon

(1997). First, we define for all m the function

#�
0�m�s

0
m� f

0
m�x

0
m�

=
(

s0m
s0m+ f 0m

−!0
)
x0m

+Ey�Ĵ
�
1�m�s

0
m+ y� f 0m+ x0m− y� � x0m s0m� f 0m�� (13)

which gives the value of sending x0m type m messages at
stage zero in the relaxed subproblem. Restricting ourselves
to time-invariant ! as above, we seek a ! that induces a
set of solutions to the problems �maxx0m�0#

!
0�m�s

0
m� f

0
m�x

0
m��

that is also feasible with respect to the constraint∑M
m=1 x

0
m =N in the original problem. We note that it may

not be possible to exactly satisfy the constraint in this way,
in which case we estimate a suitable ! using binary search
(typically seven iterations in our implementations), then
use the resulting ! in problem (11) to generate a feasible
stage zero allocation. We have observed numerically that
#!
0�m�s

0
m� f

0
m�x

0
m� appears roughly concave. For large prob-

lems, we approximate it with its concave envelope in our
implementation to aid computation. We approximate the
objective function of (11) similarly for large problems.
We have found that the choice of method for choosing �

does not appear to impact the policy performance signifi-
cantly (see Appendix C in the online companion), and thus
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we mainly use the second method with time-invariant ! in
our implementation, as it is conceptually and computation-
ally straightforward.
Finally, we note that the algorithm is only of interest for

0< !< 1. In fact, for !s outside this range, the proposed
algorithm coincides with a greedy (or play-the-leader) algo-
rithm that sends the message with best expectation to all
N customer encounters in the segment.

Proposition 5. For ! = !0 = · · · = !T−1 � 0 or ! = !0

= · · · = !T−1 � 1, problem (11) is solved by the greedy
solution:

x0m =



N for m= argmax

n∈�1�����M�

{
s0n

s0n + f 0n

}
�

0 otherwise�
(14)

Proof. Consider the case ! � 0, and observe that stm/
�stm+ f t

m� � 0 for all t, m; hence, stm/�s
t
m+ f t

m� −
! � 0. Equation (9) gives Ĵ �

T−1�m�s
T−1
m � f T−1

m � = N�sT−1m /
�sT−1m + f T−1

m �− !�. Suppose that for some t < T − 1, we
have Ĵ �

t+1�m�s
t+1
m � f t+1

m �=N�T − t−1��st+1m /�st+1m +f t+1
m �−

!� for any st+1m and f t+1
m . Then, in the evaluation of Equa-

tion (10), we have

Ey

[
Ĵ �
t+1�m�s

t
m+ y� f t

m+ x− y� � x stm� f t
m

]
=N�T − t− 1� ·Ey

[
stm+ y

stm+ f t
m+ x

−!
∣∣∣x stm� f t

m

]

=N�T − t− 1�
(
stm+E�y � x stm� f t

m�

stm+ f t
m+ x

−!

)

=N�T − t− 1�
(
stm+ �stm/s

t
m+ f t

m�x

stm+ f t
m+ x

−!

)

=N�T − t− 1�
(

stm
stm+ f t

m

−!

)
� (15)

Thus, x=N is optimal in the problem of Equation (10),
and we have Ĵ �

t�m�s
t
m� f

t
m� = N�T − t��stm/�s

t
m+ f t

m� − !�.
Induction gives us this result for all t < T . Applying Equa-
tion (15) for t = 0 gives us that the objective function of
problem (11) depends on the variables x0m only through the
term

∑M
m=1�s

0
m/�s

0
m+ f 0m��x

0
m. Problem (11) is thus a linear

optimization over a simplex constraint, and is optimized by
the greedy solution.
For ! � 1, we have stm/�s

t
m+ f t

m� − ! � 0. A simple
inductive argument gives us that problem (10) is maximized
by x= 0, giving Ĵ �

t�m�s
t
m� f

t
m�= 0 for all t�m. Problem (11)

becomes

N
T−1∑
"=1

!" +max
M∑
m=1

(
s0m

s0m+ f 0m

)
x0m

s.t.
M∑
m=1

x0m =N�

x0m � 0� m= 1� � � � �M�

x0m integer� m= 1� � � � �M�

(16)

which is clearly optimized by the greedy solution. �

This result underscores the importance of selecting ! to
obtain good policies for the adaptive sampling problem, and
gives us bounds on the set of interesting !s to be chosen
using the two methods discussed in this section.

4.2. Solving the Subproblems

Consider the subproblem in Equations (9) and (10), and
observe that at stage t, �stm − s0m� and �f

t
m − f 0m� may each

range from 0 to Nt, such that 0� stm − s0m + f t
m − f 0m �Nt.

Thus, the number of states at stage t is O�t2N 2�, and the
total number of states in the problem is O�T 3N 2�. For a
full backward induction, we must evaluate O�N� possible
decisions xtm and O�N� possible outcomes y

t
m for each deci-

sion. Thus, solution of the subproblem for each message
requires on the order of T 3N 4 operations using a full back-
ward induction, and is difficult to solve for reasonable-sized
problems. For this reason, we look to approximate solu-
tions of the subproblems so that the algorithm is scalable
to medium and large problems.
First, we observe that the subproblems are simplified

greatly for limited time horizons, and that the benefits
of exploration intuitively diminish as time progresses and
information is accumulated. Thus, we solve the subprob-
lems using a limited lookahead horizon H . At the end of
the lookahead horizon, we estimate the value function as
if there were one final stage with N�T − H� customers
to contact. That is, we estimate the value function at time
H as

Ĵ �
H�m�s

H
m � f

H
m �

=N�T −H�

(
max

{
0�

sHm
sHm + f H

m

−!H
})

� (17)

At stages t = 1� � � � �H − 1, the value functions are com-
puted as in Equation (10). In our computational results, we
typically use H = 2. Section 6 includes some computational
results supporting this choice.
Another approximation we employ is to allocate mes-

sages to customers in blocks, typically of size B = N/10.
This approximation leads to fewer solutions to consider at
each stage, and allows us to consider only states for which
�stm+ f t

m− s0m− f 0m� is divisible by the block size.
A further approximation we consider relies on a central

idea of approximate dynamic programming (see Bertsekas
and Tsitsiklis 1996), namely, a functional approximation
of the value function in the state space. Figure 1 is a plot
of a typical subproblem value function. As a function of
the number of successes y observed in some stage of the
problem, the value functions are everywhere approximately
zero, everywhere approximately linear and increasing, or of
the shape represented in Figure 1. We observe that a very
close approximation can be made via linear interpolation
among very few carefully chosen samples. In Figure 1, we
demonstrate by comparing the true value function with an
approximation formed using only five samples.
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Figure 1. Illustration of an approximation of a value
function using linear interpolation.
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Note. Plot is as a function of the number of successes y out of x = 17
trials in one decision stage, given s0m = 1, f 0m = 3, and T = 5.

Finally, we observe that for large stm and f t
m, the prob-

ability mass function of ytm has very little significant sup-
port outside a small range. In computing the expectations
in Equation (10), we use this fact to limit our compu-
tational efforts to values of ytm with significant nonzero
probabilities.

4.3. Extensions to Multiple Segments

Up until this point, we have considered the adaptive
sampling problem within a single segment. To handle a
K-segment model, a simple approach would be to replicate
K independent single-segment models. However, simulta-
neously considering multiple segments brings about distinct
challenges. In this section, we illustrate two extensions to
our basic approximate dynamic programming model for use
in a multisegment framework: addition of systemwide bud-
get constraints, and accounting for customer lifetime value
when the customers may migrate among segments. Either
of these additions destroys the independence of customer
segments, thus we must consider all segments together
when we include these considerations.

Incorporating Systemwide Constraints. An interac-
tive marketing campaign may realistically face budget or
other systemwide constraints on the set of messages sent
out each period. In addition, the messages may incur dif-
ferent profits if accepted. Extension of the approximate
dynamic programming algorithm to these considerations is
straightforward.
In particular, label the various customer segments

1� � � � �K and let rkm be the expected profit if message m
elicits a positive response from a segment k customer. Let
bkm (for all segments k = 1� � � � �K and messages m =

1� � � � �Mk) indicate the cost coefficients (assumed nonneg-
ative) and let D indicate the right-hand side of a budget
constraint

∑K
k=1
∑M

m=1 bkmx
t
m =D on the overall set of mes-

sages sent out in a single period. In addition, for the devel-
opment in this section, we introduce multisegment decision
variables xtkm, state variables stkm and f t

km, and available
customer encounters Nk per stage for each segment k =
1� � � � �K. We assume that the problem is feasible (for
example, by including a cost-free default message).
We denote by !k (assumed constant in time, as dis-

cussed in §4.1) the Lagrange multiplier corresponding to
the constraint on the number of customer encounters in
segment k. Let � = �!1� � � � � !K�. We can also apply
Lagrangian relaxation to the budget constraint, yielding the
following approximate formulation:

J +��t �st1� � � � � s
t
K� f

t
1� � � � � f

t
K�

= �T − t�

(
+D+

K∑
k=1

!kNk

)
+

K∑
k=1

Mk∑
m=1

Ĵ
+�!k
t� k�m�s

t
km� f

t
km�� (18)

where

Ĵ
+�!k
T−1� k�m�s

T−1
km � f T−1

km �

=Nk ·max
{
0� rkm

sT−1km

sT−1km + f T−1
km

−!k −+bkm

}
(19)

and

Ĵ
+�!k
t� k�m�s

t
km� f

t
km�

=max
x

(
rkm

stkm
stkm+ f t

km

−!k −+bkm

)
x

+Ey�Ĵ
+�!k
t+1� k�m�s

t
km+ y� f t

km+ x− y� � x stkm� f t
km�

s.t. 0� x�Nk�

x integer�

(20)

for t = T − 2� � � � �0.
The subproblems of this problem can be solved using

the same procedures used to solve the subproblems of the
single-segment problem. It remains to choose appropri-
ate multipliers + and !1� � � � � !K . These can be chosen by
minimizing the quantity J

+��
t �st1� � � � � s

t
K� f

t
1� � � � � f

t
K� using

subgradient methods, or, analogously to the approach we
used in §4.1, we can perform a line search to select + so
that the budget constraint is made binding.

Accounting for Migrating Customers. Here we con-
sider adaptive sampling in a multisegment system in which
customers are assumed to migrate among segments accord-
ing to message-dependent transition probabilities. Such
an extension is relevant when the customer segmentation
depends on past customer behavior data (such as RFM vari-
ables). In such systems, message choices can impact cus-
tomers’ future states as well as immediate rewards and the
decision maker’s information state.
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We assume that when a customer in segment k at stage t
is shown message m, he then migrates with probability Pkml
to segment l at stage t+1. The migration probability matri-
ces are assumed known with certainty. While we recognize
that it is not likely to be the case that transition probabili-
ties are known while the response rates are not, we make
this assumption as an approximation for tractability. Here
the problem data include the problem horizon T , the initial
allocation N 0

1 � � � � �N
0
K of customers to segments, the beta

distribution priors �s01� � � � � s
0
K� f

0
1 � � � � � f

0
K�, and the transition

matrices Pkml.
The exact solution of this problem requires a state space

that includes both the vector �N t
1 � � � � �N

t
K� indicating the

number of customers in each segment at stage t and the
vectors st and f t parameterizing the updated distributions
of pkm for each segment k and message m. We implicitly
assume in this section that the N t

k are known going forward
(in fact, constant in our implementation), and we account
for migration through a value function adjustment at the
initial time stage.
Suppose that we have at our disposal estimates Ht�k� of

the value of having a single customer in segment k from
stage t onwards and that the total future value of a set of
customers can be estimated by summing the individuals’
values. As the true value function corresponding to an exact
dynamic programming formulation cannot be decomposed
by customer, this is an approximation of the true value
of customers in the system. Nevertheless, given these esti-
mates, we can approximately account for the migration of
a single customer from segment k to l at stage t by adding
to the no-migration value function the term �Ht+1�l� −
Ht+1�k��. Given this adjustment, we may write a decom-
posed dynamic programming iteration that approximately
accounts for the effect of customer migration as follows:

J
!k
t� k�s

t
k� f

t
k�=N t

k�T − t�!k +
Mk∑
m=1

Ĵ
!k
t� k�m�s

t
km� f

t
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for t = T − 2� � � � �0.

It remains to estimate the values Ht+1�k�, k= 1� � � � �K.
While there are several potential estimates, a conceptually
and computationally simple one is to approximate Ht+1�k�
by the value of a single migrating customer in segment k at
stage t + 1 assuming that the reward probabilities pkm are
fixed at their current (t = 0) expected values. These values
can be efficiently computed ahead of time by solving a
simple dynamic program with K states at each stage.

5. A Heuristic Based on a Bandit
Approximation

We return to the single-segment problem of §3. In addi-
tion to the dynamic programming-based heuristic, we have
designed a heuristic for the single-segment problem based
on the asymptotic approximation of Lai (1987) for the
finite-horizon multiarmed bandit problem, in which sam-
ples are drawn from unknown populations one at a time
with the objective of maximizing the sum of rewards. The
problem Lai considers is a special case of our problem with
N = 1. We develop a new heuristic, which we call “Inter-
val,” for the problem of §3, by extending Lai’s method to
the case of batched decision making. We note that the Inter-
val method we develop does not appear to naturally extend
to the multisegment features introduced in §4.3.
We briefly summarize Lai’s method using terminology

and notation that fit with our discussion. The reader is
referred to the original paper (Lai 1987) for a more com-
plete treatment. Lai’s paper considers a relatively sim-
ple heuristic for allocating customers one at a time to
M messages assumed to have reward densities of the form
f �ypm�, where the pms are unknown parameters belong-
ing to some set �. He develops an allocation rule that
he proves is asymptotically optimal from a Bayesian per-
spective (for priors on pm in the set � that meet certain
technical conditions) as T →�.
For the case in which we are interested, f �ypm� is the

Bernoulli distribution parameterized by an unknown suc-
cess probability pm for each message m. Suppose that we
are ready to make an allocation decision for stage t. Let
p̂m� rt�m indicate the maximum likelihood estimator of pm
given past observations, and let rt�m indicate the number of
customers contacted with message m by time t. Lai’s allo-
cation rule is then to send the next customer the message m
with the highest upper confidence bound Um�rt�m

:

Um�rt�m
= inf

{
p� p� p̂m�rt�m and I�p̂m�rt�m �p��

 �rt�m/T �

rt�m

}
�

(24)

where I�p̂� p� is the so-called Kullback-Liebler informa-
tion number, given in the Bernoulli case by I�p̂� p� =
p̂ · log�p̂/p� + �1 − p̂� · log��1− p̂�/�1−p��, and  is a
nonnegative function satisfying certain technical conditions
(namely, supt�a  �t�/t < � for all a > 0,  �t�∼ log t−1

as t → 0, and  �t� � log t−1 + 1 log log t−1 as t → 0 for
some 1).
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Intuitively, we can think of the “confidence bound”
Um�rt�m

as an inflated version of the estimator p̂m� rt�m , where
the adjustment decreases with the number rt�m of customers
already contacted with message m. Thus, the rule favors
messages with high success probability estimates and also
messages on which we have little accumulated experience.
Lai’s method is developed for the case in which one

customer is contacted at a time (N = 1). Furthermore, his
allocation rule is not developed specifically for a Bayesian
formulation of the problem. (He assumes only that the true
parameters pm are drawn from some known set.) Thus,
we have developed the following heuristic based on Lai’s
method to be relevant for comparison with the method
developed in §4.
First, we must calibrate the parameters rt�m and p̂m� tt�m of

Lai’s method to somehow reflect the available prior infor-
mation at stage t. As discussed in §3.1, from the Bayesian
perspective we may imagine that our prior distribution
beta(stm� f

t
m) on pm at stage t has been developed start-

ing with a uniform�0�1� (=beta�1�1�) prior, then observ-
ing stm − 1 successes and f t

m − 1 failures on message m.
Alternatively, we may view these observations (summed
across all messages) as the first

∑M
m=1�s

t
m + f t

m − 2� cus-
tomer encounters in a hypothetical finite adaptive sampling
problem involving a total of �N = N�T − t�+∑M

m=1�s
t
m +

f t
m − 2� customer encounters. We can thus calibrate Lai’s
method by applying it to this larger hypothetical problem,
assuming it has observed rt�m = stm+f t

m−2 experiments on
message m (including stm− 1 successes) and has the maxi-
mum likelihood estimator p̂m� rt�m = �stm− 1�/�stm+ f t

m− 2�
of the true probability pm.
In stage t, we are to contact a total of N customers

before observing the associated outcomes. Arbitrarily num-
ber the N customers to be contacted in the current stage
n= 1� � � � �N and set r̄t�m�1 = rt�m. For each customer n=
1� � � � �N , we send the message m∗ = argmaxm� �Um� r̄t�m�n

�,
where

�Um� r̄t�m�n
= inf

{
p� p� p̂m� rt�m and

I�p̂m� rt�m � p��
 �r̄t�m�n/ �N�

r̄t�m�n

}
� (25)

We also increment the r̄t�m�n variables as follows:

r̄t�m�n+1 =
{
r̄t�m�n+1 = r̄t�m�n+ 1 if m=m∗�
r̄t�m�n+1 = r̄t�m�n if m �=m∗�

(26)

Thus, our modification makes decisions about customers
one at a time using the upper confidence intervals �Um� r̄t�m�n

,
adjusting the width of the interval (but not its midpoint)
after each decision. We will see in §6 that this heuristic
performs quite well in our simulations.
In our implementation, we make use of the same choice

of  (called g in his paper) that Lai identifies while devel-
oping his own computational results. We also make use of a

recursive algorithm Lai presents for identifying the message
with the highest (or nearly highest) confidence bound with-
out numerically computing the confidence bounds them-
selves. For an exact specification of this algorithm, see the
original paper (Lai 1987, pp. 1,110–1,111).
The resulting “Interval” method is a new heuristic for

the problem of §3 that we have developed as a computa-
tionally attractive alternative to the approximate dynamic
programming-based method developed in §4 and for com-
parison. We note that it is not clear how to rigorously
extend the Interval method to the multisegment considera-
tions of §4.3.

6. Computational Results
In this section, we present some computational results com-
paring the methods developed in this paper with each other
and with various benchmarks. For purposes of comparison,
we consider only the single-segment problem of §3 (instead
of the extended problems of §4.3) because it captures the
core adaptive sampling trade-off and because both the ADP
and Interval methods have been developed for this problem.
We consider a number of benchmarks and heuristics for

comparison in our simulation study. The algorithms con-
sidered are as follows:
• Ideal: This algorithm sends to all customers the mes-

sage with the highest true success probability. As the pm
are unknown to the decision maker, this algorithm is not
implementable in practice but gives an upper bound on the
performance of implementable methods. It is included as a
benchmark.
• Exact: This algorithm uses backward induction to

exactly solve the formulation of §3.2, and is only practical
for problems of very limited size.
• Greedy: This algorithm sends all customers the mes-

sage with the highest expected purchase probability given
the current information. In the case of a tie, Greedy divides
the customers equally among the tied messages. This algo-
rithm is also commonly referred to as the “play-the-leader”
rule in the multiarmed bandit literature.
• GGreedy: This algorithm sends all customers at a

given stage the message with the highest Gittins index,
computed using an infinite horizon and discount rate of
0.90. Our procedure for computing Gittins indices for this
problem follows the discussion in the first chapter of Gittins
(1989). In the case of a tie, GGreedy divides the set of
customers equally among the tied messages.
• Interval: The heuristic based on the asymptotic

approximation of the multiarmed bandit problem, as dis-
cussed in §5.
• ADP: The approximate dynamic programming algo-

rithm using the decomposition idea outlined in §4. For
the results presented in this section, we approximate the
subproblems using the ideas presented in §4.2. For these
problems, we typically use H = 2 and B = N/10, and we
approximate the value functions using linear interpolation
among 10 samples.



Bertsimas and Mersereau: Learning Approach for Interactive Marketing
1132 Operations Research 55(6), pp. 1120–1135, © 2007 INFORMS

To compare the decisions produced by the various meth-
ods with an optimal solution, we require problems suf-
ficiently small to be solvable using the exact backward
induction specified in §3.2. We have considered several
problems with two messages, stages numbering up to eight,
and customers numbering up to 12. For these small exam-
ples, we have found the results for Greedy, ADP, and Inter-
val to be indistinguishable from the results of Exact in most
of the simulations. From these results, it is difficult to draw
conclusions differentiating the methods’ performances. We
look to larger examples, for which we can judge the meth-
ods’ performances relative to one another but not relative
to an optimal strategy.
Our simulation study is designed as follows. For each

simulation run, we select the numbers s̄ and f̄ to serve as
parameters of a true beta distribution from which we choose
true message success probabilities. To generate problem
instances, true message success probabilities pm, m =
1� � � � �M , are drawn from a beta distribution with parame-
ters s̄ and f̄ . Then, we simulate am preliminary experiments
on each message to strengthen the priors before we record
the results.
As input to the algorithms, the prior distribution is then

the beta distribution with parameters s0m and f 0m, where
s0m is set as s̄ plus the number of successes from the pre-
liminary experiments on message m, while f 0m is set as
f̄ plus the number of failures from the am preliminary
message m experiments. This method of generating prior
distributions reflects a hypothetical situation in which the
decision maker initially begins with rough (but statistically
consistent) priors on pm, then develops beliefs on pm based
on a few off-line preexperiments. We look at examples with
constant am across messages, which reflect situations in
which the amount of prior information is the same for all
messages, and with am randomly chosen, which represents
potentially more interesting cases in which the amount of
available information varies across messages.
Table 1 represents numbers of successes averaged over

2,000 simulated problems with batch sizes up to 1,000

Table 1. Average number of successes for a variety of large adaptive sampling problems.

Average successes

s̄, f̄ T N M am Ideal Greedy GGreedy Interval ADP

2, 8 10 50 10 U�0�20� 204�78 185�63 187�48 190�12 189�78
2, 8 10 100 10 U�0�20� 412�68 373�64 378�63 388�87 388�60
2, 8 10 100 10 20 418�44 399�46 400�99 403�94 403�40
2, 8 10 100 10 U�0�50� 411�06 388�05 390�82 394�55 395�04
2, 50 10 100 8 U�30�60� 82�80 73�92 74�24 74�83 74�71
4, 100 10 100 6 U�100�200� 64�64 60�36 60�43 60�37 60�10
1, 3 6 200 10 20 708�80 691�01 691�67 693�58 694�06
1, 3 6 200 10 U�0�20� 711�65 665�64 669�17 682�52 682�66
1, 3 6 200 10 U�0�50� 712�80 687�99 690�16 695�21 695�73
2, 50 6 200 8 U�30�60� 98�89 87�40 87�95 88�75 88�61
4, 100 6 200 6 U�100�200� 77�64 72�33 72�37 72�28 72�24
2, 50 5 1�000 8 U�30�60� 406�28 362�29 363�53 374�14 373�36
4, 100 5 1�000 6 U�100�200� 323�58 305�07 306�00 307�03 306�99

per stage. We denote those table entries in boldface whose
value cannot be statistically distinguished at a 95% confi-
dence level from the best of Greedy, GGreedy, Interval, and
ADP. For Greedy, Interval, and ADP, we present the same
results in terms of regret (defined as the difference between
successes under Ideal and successes under the method of
interest) in Table 2. The last two columns of this table give
the percent reduction in measured regret achieved by ADP
relative to Greedy and by ADP relative to Interval.
We observe from Tables 1 and 2 that the ADP and Inter-

val methods perform similarly to each other and better
than the Greedy and GGreedy methods over a wide range
of problems. In most cases, the advantage of the ADP
and Interval methods is statistically significant. In addi-
tion, Table 2 shows that they achieve a sizeable percentage
reduction in average regret versus the other methods. The
ADP and Interval methods give the largest improvements
in those cases where we might have expected the value of
adaptive sampling to be the greatest, namely, where there
is little prior information available.
To further examine the effects of the problem parameters

on the performance of the methods, we plot in Figure 2
the average performance of the methods as functions of
the problem parameters. The first plot, Figure 2(a), plots
regret of the methods versus batch size N for a problem
with 10 messages. Message success probabilities pm were
chosen randomly from the distribution beta�2�8�, and the
number of extra prior samples am was chosen uniformly on
�20�40�. Customer sets of size 1,000, 500, 250, and 100
were tried, with the number of stages chosen so that the
total number of customers was 2,000 for each simulation
run. The performances of the adaptive methods generally
improve as the number of customers is decreased and the
number of stages is increased. This matches the behav-
ior of the optimal solution, as proven in Proposition 4.
We observe that the ADP method outperforms Interval for
large N and T � 10. It underperforms Interval for rela-
tively large T and small N , which is likely due to the
limited lookahead approximation in the ADP subproblem
computations.
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Table 2. Average regret for a variety of large adaptive sampling problems.

% Improvement
Average regret

ADP vs. ADP vs.
s̄, f̄ T N M am Greedy Interval ADP Greedy Interval

2, 8 10 50 10 U�0�20� 19�15 14�66 15�00 21�7 −2�3
2, 8 10 100 10 U�0�20� 39�04 24�07 23�81 38�3 −1�1
2, 8 10 100 10 20 18�97 14�50 15�03 20�8 −3�7
2, 8 10 100 10 U�0�50� 23�01 16�51 16�02 30�4 3�0
2, 50 10 100 8 U�30�60� 8�88 7�97 8�09 8�9 −1�5
4, 100 10 100 6 U�100�200� 4�28 4�27 4�54 −6�0 −6�4
1, 3 6 200 10 20 17�80 15�22 14�74 17�1 3�2
1, 3 6 200 10 U�0�20� 46�01 29�13 28�99 37�0 0�5
1, 3 6 200 10 U�0�50� 24�81 17�59 17�06 31�2 3�0
2, 50 6 200 8 U�30�60� 11�49 10�14 10�27 10�6 −1�3
4, 100 6 200 6 U�100�200� 5�31 5�36 5�40 −1�8 −0�8
2, 50 5 1�000 8 U�30�60� 44�00 32�14 32�93 25�2 −2�4
4, 100 5 1�000 6 U�100�200� 18�50 16�55 16�59 10�4 −0�3

Figure 2(b) illustrates the improvement in the perfor-
mances of the adaptive methods as the priors are strength-
ened. The points plotted represent the average number of
successes for a problem with message success probabilities
chosen from beta�2�8�. We make decisions for 400 cus-
tomers at each of the five stages. The number am of extra
pre-experiments is fixed at 0, 5, 10, 20, 50, and 100. This
plot reveals that all of the methods benefit from additional
prior information, in keeping with Proposition 1, which
implies that information has value given the optimal policy.
The performance gaps between the various methods narrow
as the amount of prior information is increased, support-
ing the intuition that intelligent adaptive sampling has less
impact the more accurate prior information is available.
For the problems presented, the ADP and Interval meth-
ods perform similarly over a wide range of available prior
information, both offering substantial benefits over the two
greedy methods.
We conclude from the computational results presented

in this section that the ADP and Interval methods perform
similarly to each other and at least as well as the other
methods over a wide range of problems, and achieve sig-
nificant gains when the amount of prior information is low.
For certain problem instances, the Greedy method may per-
form sufficiently well to be the preferred method due to
its simplicity, but we expect adaptive sampling to be par-
ticularly beneficial in marketing situations with many cus-
tomers and in very dynamic and changing environments in
which short planning horizons are appropriate. The Interval
heuristic based on Lai’s (1987) algorithm is particularly fast
to compute and performs quite well over a wide range of
parameters. Thus, this heuristic may be appropriate when
computational speed is at a premium. The fact that the ADP
approach is based on a mathematical programming formu-
lation makes it extendable. Relevant extensions have been
developed in §4.3.

We have implemented versions of the ADP method
that select ! by minimizing J̄ !0 �s

0� f0� and that relax the
computational assumption that � is constant over time.
Experiments on a few problems have shown that the
method we use for selecting � performs better than the
minimization method and indistinguishably as well as the
version without the assumption of constant �. Details can
be found in the online companion (Appendix C) to this
paper.
We have also investigated the sensitivity of the ADP

algorithm performance to choices of the lookahead hori-
zon H and the decision block size B. The choice of B
appears to have little impact on the results, and we have
generally chosen B =N/10, which seems to provide good
results relatively efficiently. Table 3 gives results for var-
ious choices of H for selected parameters, averaged over
2,000 problem runs. We see that while H = 2 seems to
consistently outperform H = 1, little or no improvement is
noted for H > 2. In the interest of simplicity and computa-
tion time, we have used H = 2 in the other results reported
in this paper.
Finally, we give some evidence of the computational

effort required for the various algorithms. Table 4 gives
processor times required per decision for several of the
algorithms discussed in the previous section for selected
parameters, averaged over 2,000 runs. We note that all of
the solution methods discussed in this paper are capable
of generating decisions for the problems mentioned in no
more than a few seconds.

7. Directions for Future Research
To our knowledge, we are among the first to propose a
workable solution to the problem of adaptive experimenta-
tion in an interactive marketing context. While we believe
this is an important problem, solving it comes at a price.
As mentioned in §1, there is a gap between the relative
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Figure 2. Impact of parameter changes on average
regret. (a) Batch size indicated on x-axis,
and time horizon varied as N = 2�000/T .
(b) Number of extra preexperiments am for
each message is fixed at the number indicated
on the x-axis.
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simplicity of our model of customer behavior and the rel-
ative sophistication of state-of-the-art customer response
models used in marketing research for descriptive and
myopic optimization purposes. It remains to be seen if the
benefits of active learning in a real-world implementation

Table 3. Simulation results comparing different choices of lookahead horizon H for the ADP algorithm.

ADP ADP ADP ADP
s̄, f̄ T N am Ideal Greedy Interval H = 1 H = 2 H = 3 H = 4

2, 8 10 100 U�0�20� 412�68 373�64 388�86 388�17 388�60 388�38 388�49
2, 8 10 50 U�0�20� 204�78 185�63 190�12 189�62 189�78 189�76 189�72
4, 100 5 1�000 U�100�200� 323�58 305�07 307�03 306�80 306�99 307�29 307�20
2, 50 6 200 U�30�60� 98�89 87�40 88�75 88�52 88�61 88�81 88�79

justifies the modeling sacrifice, and it remains a chal-
lenge to develop rigorous adaptive learning technologies for
more complicated and realistic models of customer behav-
ior, for example, allowing dependence among messages,
dependence among customer segments, and customer het-
erogeneity. In short, we believe that there is much room for
interesting future research in this area.
We feel that research in this area remains challenging

for a few fundamental reasons. The first is that Bayes Rule
tends to generate intricate statistical dependence even in
relatively simple statistical models. We managed this com-
plexity using the beta/binomial conjugacy and assuming
independence among segments and messages, but learning
models that deal more directly with parameter dependence
are of interest. Contemporary Bayesian customer response
models (e.g., Rossi et al. 2005) typically make use of
simulation-based techniques, like Markov Chain Monte
Carlo, to generate Bayes posteriors. Such techniques are
computationally intensive and the results are not easily
parameterized. Hence, it remains a challenge to interface
such techniques tractably with dynamic optimization for-
mulations. We believe that approximations, either of the
customer behavior model or of optimality or both, are nec-
essary. Our ADP approach shows that problem decompo-
sition is a powerful approximation tool, although we also
believe that functional and distributional approximations of
the Bayes updates warrant investigation.
Possible alternatives to the Bayes solution include non-

Bayesian approaches or approaches that seek a weaker form
of optimality (e.g., asymptotic optimality). We note that a
portion of the past research on the multiarmed bandit prob-
lem and its variants has sought optimality in an asymp-
totic sense. Our adaptation of the asymptotically optimal
sampling method of Lai (1987) is fast to compute and
yields rewards similar to the ADP approach. However,
it remains an interesting topic of research to adapt such
techniques, themselves based on relatively simple problem
formulations, to constraints and customer dynamics that
may be important features of real interactive marketing
problems.
A second challenge in studying adaptive experimentation

in marketing contexts is in testing the methodologies. Test-
ing an adaptive learning model requires not just data but
also decision-making control in a real-world system. While
examples of successful field testing exist (e.g., Simester
et al. 2006), it is understandable why marketers have been
reluctant to cede this control to academic researchers.
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Table 4. Computation times per stage for the various methods.

ADP ADP ADP ADP
s̄, f̄ T N am Interval H = 1 H = 2 H = 3 H = 4

2, 8 10 100 U�0�20� <0�005 0.01 0.69 1.92 3.37
4, 100 5 1�000 U�100�200� 0.02 0.01 0.53 1.26 1.97

Notes. Numbers represent average CPU time in seconds on an Intel Xeon 2.4 GHz computer. The
Greedy algorithm was found to take negligible time per stage (<0�005 seconds).

8. Electronic companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnotes
1. The online companion includes proofs of the propo-
sitions in §3.3, proofs of the structural properties of
J̄ �
0 �s

0� f0� claimed in §4.1, and computational evidence sup-
porting the choice of method for selecting � discussed in
§4.1.
2. Working versions of this paper bore the titles “Adap-
tive Interactive Marketing to a Customer Segment” and
“A Learning Approach to Customized Marketing.”
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