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OPTIMAL INEQUALITIES IN PROBABILITY THEORY: A CONVEX
OPTIMIZATION APPROACH∗

DIMITRIS BERTSIMAS† AND IOANA POPESCU‡

Abstract. We propose a semidefinite optimization approach to the problem of deriving tight
moment inequalities for P (X ∈ S), for a set S defined by polynomial inequalities and a random vector
X defined on Ω ⊆ Rn that has a given collection of up to kth-order moments. In the univariate case,
we provide optimal bounds on P (X ∈ S), when the first k moments of X are given, as the solution
of a semidefinite optimization problem in k + 1 dimensions. In the multivariate case, if the sets S
and Ω are given by polynomial inequalities, we obtain an improving sequence of bounds by solving
semidefinite optimization problems of polynomial size in n, for fixed k.

We characterize the complexity of the problem of deriving tight moment inequalities. We show
that it is NP-hard to find tight bounds for k ≥ 4 and Ω = Rn and for k ≥ 2 and Ω = Rn

+, when the
data in the problem is rational. For k = 1 and Ω = Rn

+ we show that we can find tight upper bounds
by solving n convex optimization problems when the set S is convex, and we provide a polynomial
time algorithm when S and Ω are unions of convex sets, over which linear functions can be optimized
efficiently. For the case k = 2 and Ω = Rn, we present an efficient algorithm for finding tight bounds
when S is a union of convex sets, over which convex quadratic functions can be optimized efficiently.
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1. Introduction. The problem of deriving bounds on the probability that a
certain random variable belongs in a given set, given information on some of its
moments, has a very rich and interesting history, which is very much connected with
the development of probability theory in the twentieth century. The inequalities due to
Markov, Chebyshev, and Chernoff are some of the classical and widely used results of
modern probability theory. Natural questions, however, that arise are the following:

1. Are such bounds “best possible”; i.e., do there exist distributions that match
them?

2. Can such bounds be generalized in multivariate settings, and in what circum-
stances can they be explicitly and/or algorithmically computed?

3. Is there a general theory based on optimization methods to address in a unified
manner moment-inequality problems in probability theory?

In this paper, we formulate the problem of obtaining best possible bounds as an
optimization problem and use modern optimization theory, in particular convex and
semidefinite programming, to give concrete answers to the questions above. We first
introduce some notation. Let κ = (k1, . . . , kn)′ with kj ∈ Z+ nonnegative integers.
We use the notation σκ = σk1,...,kn

and Jk = {κ = (k1, . . . , kn)′ | k1+· · ·+kn ≤ k, kj ∈
Z+, j = 1, . . . , n}. We next introduce the notion of a feasible moment sequence.
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Definition 1.1. A sequence σ = (σκ, κ ∈ Jk) is a feasible (n, k,Ω)-moment
vector (or sequence), if there is a random vector X = (X1, . . . , Xn)′ defined on Ω ⊆ Rn

endowed with its Borel sigma algebra of events, whose moments are given by σ, that
is, σκ = σk1,...,kn = E

[
Xk1

1 · · ·Xkn
n

]
for all κ ∈ Jk. We say that any such random

variable X has a σ-feasible distribution and denote this as X ∼ σ.
Throughout the paper, the underlying probability space is implicitly assumed

to be Ω ⊆ Rn endowed with its Borel sigma algebra of events. We denote by
M = M(n, k,Ω) the set of feasible (n, k,Ω)-moment vectors. For the univariate
case (n = 1), the problem of deciding if σ = (M1,M2, . . . ,Mk)

′ is a feasible (1, k,Ω)-
moment vector is the classical moment problem. This problem has been completely
characterized by necessary and sufficient conditions by Stieltjes [43], [44] in 1894-95,
who adopts the “moment” terminology from mechanics (see also Karlin and Shapley
[18], Akhiezer [1], Siu, Sengupta, and Lind [38], and Kemperman [21]). For univariate,
nonnegative random variables (Ω = R+), these conditions can be written as Rk � 0
and Rk−1 � 0, where for any integer l ≥ 0 we define

R2l =

⎛
⎜⎜⎜⎝

1 M1 . . . Ml

M1 M2 . . . Ml+1

...
...

. . .
...

Ml Ml+1 . . . M2l

⎞
⎟⎟⎟⎠ , R2l+1 =

⎛
⎜⎜⎜⎝

M1 M2 . . . Ml+1

M2 M3 . . . Ml+2

...
...

. . .
...

Ml+1 Ml+2 . . . M2l+1

⎞
⎟⎟⎟⎠ .

For univariate random variables with Ω = R, the necessary and sufficient condi-
tion (given by Hamburger [12], [13] in 1920-21) for a vector σ = (M1,M2, . . . ,Mk)

′ to
be a feasible (1, k,R)-moment sequence is that R2� k

2 �
� 0 . In the multivariate case,

the formulation of the problem can be traced back to Haviland [14], [15] in 1935-36
(see also Godwin [10]). To date, the sufficiency part of the moment problem has not
been completely resolved in the multivariate case, although substantial progress has
been made in the last decade by Schmudgen [37] and Putinar [34].

Suppose that σ is a feasible moment sequence and X has a σ-feasible distribution.
We now define the central problem that this paper addresses.

The (n, k, Ω)-bound problem. Given a sequence σκ, κ = (k1, k2, . . . , kn)′ ∈ Jk
of up to kth-order moments

σκ = E
[
Xk1

1 Xk2
2 · · ·Xkn

n

]
, κ ∈ Jk

of a random vector X = (X1, X2, . . . , Xn)′ on Ω ⊆ Rn endowed with its Borel sigma
algebra, find the “best possible” or “tight” upper and lower bounds on P (X ∈ S), for
measurable events S ⊆ Ω.

The term “best possible” or “tight” upper (and by analogy lower) bound above
is defined as follows.

Definition 1.2. We say that γ is a tight upper bound on P (X ∈ S) if γ =
supX∼σ P (X ∈ S).

Note that a bound can be tight without necessarily being exactly achievable (i.e.,
there is a random variable X(0) ∼ σ for which P (X(0) ∈ S) = γ), but only asymptot-
ically (i.e., there exists a sequence of random variables {X(i)}i≥1 such that X(i) ∼ σ
and limi→∞ P (X(i) ∈ S) = γ).

The well-known inequalities due to Markov, Chebyshev, and Chernoff, which are
widely used if we know the first moment, the first two moments, and all moments
(i.e., the generating function) of a random variable, respectively, are feasible but
not necessarily optimal solutions to the (n, k,Ω)-bound problem; i.e., they are not
necessarily tight bounds.
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Literature and historical perspective. The history of the developments in
the area of (n, k,Ω)-bound problems, sometimes referred to as generalized Chebyshev
inequalities, can be traced back to the work of Gauss, Cauchy, Chebyshev, Markov,
etc., and has witnessed an unexpected evolution. The problem of finding bounds
on univariate distributions under moment constraints was proposed and formulated
without proof initially by Chebyshev [6] in 1874 and resolved ten years later by his
student Markov [25] in his Ph.D. thesis, using continued fractions techniques. In the
1950s and 1960s there was a revival of the interest in this area, that resulted in a
large literature on Chebyshev systems and inequalities. Surveys of early literature
can be found in Shohat and Tamarkin [40] and Godwin [9], [10]. A detailed, unified
account of the evolution of Chebyshev systems is given by Karlin and Studden [19] in
their 1966 monograph (see in particular Chapters 12 and 13 that deal with (n, k,Ω)-
type bounds). In particular, they summarize the results of Marshall and Olkin [27],
[28] who computed tight, explicit bounds on probabilities given first- and second-
order moments (the (n, 2,Ω) problem in our context), thus generalizing Chebyshev’s
inequality to a multivariate setting.

Not for the first time in its history, and in the words of Shohat and Tamarkinin
1943 [40, p. 10], “the problem of moments lay dormant for more than 20 years.” It
revived briefly in the 1980s, with the book on probability inequalities and multivariate
distributions of Tong [45] in 1980, who also published a monograph on probability
inequalities in 1984. The latter notably contains, among others, a generalization of
Markov’s inequality for multivariate tails, due to Marshall [26]. A volume in Moments
in Mathematics edited by Landau in 1987 includes a background survey by the same
author [23], as well as relevant papers of Kemperman [22] and Diaconis [7].

The idea that optimization methods and duality theory can be used to address
moment-type inequalities in probability first appeared in 1960, and is due indepen-
dently and simultaneously to Isii [16] and Karlin (lecture notes at Stanford, see [19,
p. 472]), who showed via strong duality results that certain types of Chebyshev in-
equalities for univariate random variables are sharp. Isii [17] extended these duality
results for random vectors on complete regular spaces. Thirty two years after Isii’s [17]
original multivariate proof, Smith [42] rederived the duality result and proposed new
interesting applications in decision analysis, dynamic programming, statistics, and fi-
nance. Shapiro [39] provided a rigorous discussion of necessary topological conditions
for strong duality to hold, in that sense relaxing the compactness assumptions under-
lying Isii’s proof. For an in-depth account of strong duality and sensitivity analysis
for a general class of semi-infinite programming problems see Bonnans and Shapiro
[3, Section 5.4].

For a broader investigation of the optimization framework underlying this type
of problem, we refer the interested reader to Borwein and Lewis [4], [5] who provide
an in-depth analysis of partially finite convex programming.

Despite its long and scattered history, the common belief among researchers is
still that “the theory [of moment problems] is not up to the demands of applications”
(Diaconis [7, p. 129]). The same author suggested that one of the reasons could
be the high complexity of the problem: “numerical determination . . . is feasible for a
small number of moments, but appears to be quite difficult in general cases.” Another
reason, as identified by Kemperman (see [22, p. 20]), is the lack of a general algorithmic
approach:

“. . . a deep study of algorithms has been rare so far in the theory
of moments, except for certain very specific practical applications, for
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instance, to crystallography, chemistry and tomography. No doubt,
there is a considerable need for developing reasonably good numer-
ical procedures for handling the great variety of moment problems
which do arise in pure and applied mathematics and in the sciences
in general . . . .”

In an attempt to address Kemperman’s criticism, Smith [42] actually introduced a
computational procedure for the (n, k,Rn)-bound problem, although he does not refer
to it in this way. Unfortunately, the procedure is far from a formal algorithm, as there
is no proof of convergence, and no investigation (theoretical or experimental) of its
efficiency. It is fair to say that a thorough understanding of the algorithmic aspects
and the complexity of the (n, k,Ω)-bound problem is still lacking.

Yet another criticism brought by Smith is the lack of simple, closed-form solutions
for the (n, k,Rn)-bound problem: “the bounds given by Chebyshev’s inequalities . . .
are quite loose. The more general versions are rarely used because of the lack of
simple closed-form expressions for the bounds” (see [42, p. 808]).

Goals and contributions. The previous discussion motivates our desire in the
present paper to understand the complexity of deriving tight moment inequalities,
search for efficient algorithms in a general framework, and, when possible, derive
simple closed-form bounds. In particular, we characterize which classes of (n, k,Ω)-
bound problems are efficiently solvable and which are NP-hard.

Let us remark that the theory of polynomial solvability and NP-hardness assume
a rational computational model. For this reason, as far as complexity results are
concerned, we work under the assumption that the problem data is rational; i.e.,
moments are rational numbers and the sets Ω and S are specified in terms of rational
numbers. Specifically, they are defined by semialgebraic sets (i.e., sets that are defined
in terms of polynomial inequalities), whose parameters are rational numbers. In
addition, throughout the paper we refer to an efficient, or polynomial time algorithm
when it takes polynomial time in the problem data and log(1/ε), and it computes a
bound within ε of the tight bound for all ε > 0.

More concretely, the contributions and structure of the paper are as follows.

1. In section 3, we investigate in detail the univariate case, i.e., the (1, k,Ω)-
bound problem for Ω = R,R+. We show that tight bounds can be computed effi-
ciently by solving a single semidefinite optimization problem. We also derive tight
bounds for tail probability events in closed form, when up to three moments are given.
For k = 1, we recover the Markov inequality, which also shows that the Markov bound
is tight. For k = 2, we recover a strict improvement of the Chebyshev inequality that
retains the simplicity of the bound. This inequality dates back at least to Uspensky’s
book (see [46, p. 198]) from 1937, who proposed it as an exercise. Despite its simplic-
ity, the bound has been strangely ignored in the recent literature and textbooks. For
k = 3, we present closed-form tight bounds that appear to be new.

2. In section 4, we generalize the results of the previous section to the multivari-
ate (n, k,Ω)-bound problem. For a fairly general class of semialgebraic sets S and Ω
(not necessarily convex), we propose a sequence of increasingly stronger, asymptoti-
cally exact upper bounds by solving semidefinite optimization problems of polynomial
size in n. This includes the case when Ω is a bounded polyhedron, or a semialgebraic
set such that Ω ⊆ {x ∈ Rn | x′x ≤ M2} and M is known a priori. The proposed ap-
proach gives rise to a family of semidefinite relaxations whose size is polynomial in n.
We also show that the (n, k,Rn

+), (n, k,Rn)-bound problems for k ≥ 2, respectively
k ≥ 4, are NP-hard.
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Table 1

The landscape of the (n, k,Ω)-problem (BP refers to the current paper).

n = 1 n
S convex set S union of convex sets

k = 1 Theorem 3.3 Theorem 5.1 Algorithm A, section 5.2
Markov [25] Marshall [26], BP BP

k = 2 Theorem 3.3 Theorem 6.1 Algorithm B, section 6.2
Chebyshev [6] Marshall and Olkin [27] BP

k Theorem 3.2: SDP Theorem 4.3: SDP; Propositions 4.5, 4.6: NP-hardness
BP BP

3. In section 5, we address the (n, 1,Ω) problem. We show that if the set S in
the definition of the (n, 1,Rn)-bound problem is convex, we find best possible bounds
for P (X ∈ S) explicitly as a solution of n convex optimization problems. We also
provide a polynomial time algorithm to solve the (n, 1,Ω) problem, when the sets
S and Ω are the union of disjoint convex sets, over which a linear function can be
efficiently optimized. These bounds represent natural extensions of the inequalities
due to Markov in the univariate case, and Marshall [26] for multivariate tails.

4. In section 6, we first review the work of Marshall and Olkin [27] who showed
that the (n, 2,Rn)-bound problem can be solved as a single convex optimization prob-
lem. We provide an efficient algorithm for the case when S is a union of disjoint convex
sets, over which a convex quadratic function can be optimized efficiently.

Table 1 summarizes the contributions of the paper to the (n, k,Ω)-bound problem.

2. Primal and dual formulations of the (n, k, Ω)-bound problem. In this
section, we formulate the (n, k,Ω)-upper bound problem as an optimization problem,
where Ω ∈ Rn is the domain of the random variables under consideration. We examine
the corresponding dual problem and present weak and strong duality results that
permit us to develop algorithms for the problem. The same approach and results
apply to the (n, k,Ω)-lower bound problem.

We use the notation zκ = zk1
1 · · · zkn

n , where z = (z1, . . . , zn)′ and κ = (k1, . . . , kn)′,
kj ∈ Z+. Recall that Jk = {κ = (k1, . . . , kn)′ | k1 + · · · + kn ≤ k, kj ∈ Z+, j =
1, . . . , n}. The (n, k,Ω)-upper bound problem can be formulated as the following op-
timization problem:

ZP = max
µ

∫
S

1 dµ

subject to

∫
Ω

zκdµ = σκ ∀κ ∈ Jk.
(2.1)

The variable of the infinite-dimensional optimization problem (2.1) is the probability
measure µ (so implicitly dµ(z̄) ≥ 0 a.e.). We assume that σ0,...,0 = 1, corresponding
to the probability mass constraint. If problem (2.1) is feasible, then σ is a feasible
moment sequence, and any feasible distribution µ is a σ-feasible distribution. The
feasibility problem is exactly the classical multidimensional moment problem.

In the spirit of linear programming duality theory, we associate a dual variable
yκ = yk1,...,kn

with each equality constraint of the primal and we obtain

ZD = min
y∈R|Jk|

∑
κ∈Jk

yκσκ

subject to g(z̄) =
∑
κ∈Jk

yκz̄
κ ≥ 1 ∀z̄ ∈ S,

(2.2)



OPTIMAL PROBABILITY BOUNDS 785

g(z̄) =
∑
κ∈Jk

yκz̄
κ ≥ 0∀z̄ ∈ Ω.

While in principle the dual constraints may only need to hold a.e., this is equiv-
alent to solving (2.2) since polynomial positivity holds a.e. if and only if it holds
everywhere.

In general, the optimum in problem (2.1) may not be achievable. Whenever
the primal optimum is achieved, we call the corresponding distribution an extremal
distribution. In the case when only (say upper) bounds on moments σκ are known,
then in the dual problem we add the inequalities yκ ≥ 0. Thus, our results (specifically
Theorems 3.2 and 4.3 below) regarding efficient solvability of the underlying problem
generalize to the case when only bounds on moments are known. We next establish
weak duality.

Theorem 2.1 (weak duality). ZP ≤ ZD.
Proof. Let µ be a primal feasible solution and let yκ, κ ∈ Jk, be a dual feasible

solution. From dual feasibility we have that for all z ∈ Ω, g(z) =
∑

κ∈Jk
yκz

κ ≥ χS(z),
where χS(z) = 1 if z ∈ S, and 0, otherwise. Then

ZP =

∫
S

1dµ =

∫
Ω

χS(z)dµ ≤
∫

Ω

g(z)dµ =
∑
κ∈Jk

yκ

∫
Ω

zκdµ =
∑
κ∈Jk

yκσκ = ZD.

Theorem 2.1 indicates that by solving the dual problem (2.2) we obtain an upper
bound on the primal objective, and hence on the probability we are trying to estimate.
If the moment vector σ is an interior point of the set of feasible moment vectors, the
dual bound turns out to be tight. This strong duality result follows from a univariate
result due to Karlin and Isii in 1960 (see Karlin and Studden [19, p. 472]), and
generalized by Isii in 1963 [17] for random vectors defined on complete regular spaces.
Shapiro [39, Proposition 3.4] provides a modern proof based on conic linear duality,
under a general topological structure. The following theorem is a consequence of their
work, and holds for general distributions of X (discrete, continuous, with or without
atoms, etc.) over a metric space Ω endowed with its Borel sigma algebra.

Theorem 2.2 (strong duality). If the moment vector σ is an interior point of
the set M of feasible moment vectors, then ZP = ZD.

If the dual is unbounded, it is immediate from weak duality that the multidi-
mensional moment problem is infeasible. On the other hand, if the common optimal
value is finite, then the set of dual optimal solutions is nonempty and bounded (see
Isii [17], Kemperman [20], or Shapiro [39]). Furthermore, if σ is a boundary point
of M, then it can be shown that the σ-feasible distributions are concentrated on a
subset Ω0 of Ω, and strong duality holds provided we relax the dual to Ω0 (see Isii
[17, p. 190] or Smith [42, p. 824]). These authors also prove that it is equivalent to
optimize only over discrete distributions that are concentrated on m+2 points, where
m is the number of moment constraints.

In the univariate case, Isii [16] proves that if σ is a boundary point of M, then
exactly one σ-feasible distribution exists. Kemperman [20] proves that for almost
every σ (with respect to the Lebesgue measure) such that the dual is finite, the dual
solution is unique (see also Shapiro [39, Proposition 3.5]). In Chapter 5.4 of their
recent book, Bonnans and Shapiro [3] provide necessary and sufficient conditions for
the uniqueness of the optimal distribution, as well as sensitivity results.

If strong duality holds, then by optimizing over problem (2.2) we obtain a tight
bound on P (X ∈ S). On the other hand, it is worthwhile to remark that under
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certain technical conditions (see Grötschel, Lovász, and Schrijver [11]) solving problem
(2.2) is equivalent to solving the corresponding separation problem, which amounts
to verifying polynomial positivity conditions over S and Ω.

3. The (1, k, Ω)-bound problem. In this section, we restrict our attention to
univariate random variables. Given the first k moments M1, . . . ,Mk (we let M0 = 1)
of a real random variable X with domain Ω ⊆ R, we are interested in deriving tight
bounds on P (X ∈ S). This is the (1, k,Ω)-bound problem. Our main result in this
section is that tight bounds can be derived as a solution to a single semidefinite
optimization problem. We also derive closed-form tight bounds when up to the first
three moments are given.

3.1. Tight bounds as semidefinite optimization problems. In the one-
dimensional case, problem (2.2) becomes

minimize
k∑

r=0

yrMr

subject to

k∑
r=0

yrx
r ≥ 1 ∀x ∈ S,

k∑
r=0

yrx
r ≥ 0 ∀x ∈ Ω.

(3.1)

Problem (3.1) naturally leads us to investigate conditions for polynomials to be non-
negative. When S and Ω are intervals on the real line, we show in the next propo-
sition that the feasible region of problem (3.1) can be expressed using semidefinite
constraints. Semidefinite optimization problems are efficiently solvable using inte-
rior point methods. For a review of semidefinite optimization see Wolkowicz, Saigal,
and Vandenberghe [47]. The results and the proofs in the following proposition are
inspired by Nesterov [31] (see also Ben-Tal and Nemirovski [2, pp. 140–142]).

Proposition 3.1. (a) The polynomial g(x) =
∑2k

r=0 yrx
r satisfies g(x) ≥ 0 for

all x ∈ R if and only if there exists a positive semidefinite matrix X = [xij ]i,j=0,...,k,
such that

yr =
∑

i,j:i+j=r

xij , r = 0, . . . , 2k, X � 0.(3.2)

(b) The polynomial g(x) =
∑k

r=0 yrx
r satisfies g(x) ≥ 0 for all x ≥ 0 if and only

if there exists a positive semidefinite matrix X = [xij ]i,j=0,...,k, such that

0 =
∑

i,j:i+j=2l−1

xij , l = 1, . . . , k,

yl =
∑

i,j:i+j=2l

xij , l = 0, . . . , k,

X � 0.

(3.3)
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(c) The polynomial g(x) =
∑k

r=0 yrx
r satisfies g(x) ≥ 0 for all x ∈ [0, a] if and

only if there exists a positive semidefinite matrix X = [xij ]i,j=0,...,k, such that

0 =
∑

i,j:i+j=2l−1

xij , l = 1, . . . , k,

l∑
r=0

yr

(
k − r

l − r

)
ar =

∑
i,j:i+j=2l

xij , l = 0, . . . , k,

X � 0.

(3.4)

(d) The polynomial g(x) =
∑k

r=0 yrx
r satisfies g(x) ≥ 0 for all x ∈ [a,∞) if and

only if there exists a positive semidefinite matrix X = [xij ]i,j=0,...,k, such that

0 =
∑

i,j:i+j=2l−1

xij , l = 1, . . . , k,

k∑
r=l

yr

(
r

l

)
ar−l =

∑
i,j:i+j=2l

xij , l = 0, . . . , k,

X � 0.

(3.5)

(e) The polynomial g(x) =
∑k

r=0 yrx
r satisfies g(x) ≥ 0 for all x ∈ (−∞, a] if

and only if there exists a positive semidefinite matrix X = [xij ]i,j=0,...,k, such that

0 =
∑

i,j:i+j=2l−1

xij , l = 1, . . . , k,

(−1)l
k∑

r=l

yr

(
r

l

)
ar−l =

∑
i,j:i+j=2l

xij , l = 0, . . . , k,

X � 0.

(3.6)

(f) The polynomial g(x) =
∑k

r=0 yrx
r satisfies g(x) ≥ 0 for all x ∈ [a, b] if and

only if there exists a positive semidefinite matrix X = [xij ]i,j=0,...,k, such that

0 =
∑

i,j:i+j=2l−1

xij , l = 1, . . . , k,

l∑
m=0

k+m−l∑
r=m

yr

(
r

m

)(
k − r

l −m

)
ar−mbm =

∑
i,j:i+j=2l

xij , l = 0, . . . , k,

X � 0.

(3.7)

Proof.
(a) Suppose (3.2) holds. Let x(k) = (1, x, x2, . . . , xk)′. Then

g(x) =
2k∑
r=0

∑
i+j=r

xijx
r

=

k∑
i=0

k∑
j=0

xijx
ixj

= x′
(k)Xx(k)

≥ 0,
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since X � 0.
Conversely, suppose that the polynomial g(x) of degree 2k is nonnegative for

all x. Then, the real roots of g(x) should have even multiplicity, otherwise g(x) would
alter its sign in a neighborhood of a root. Let λi, i = 1, . . . , r, be its real roots with
corresponding multiplicity 2mi. Its complex roots can be arranged in conjugate pairs,
aj + ibj , aj − ibj , j = 1 . . . , h. Then,

g(x) = y2k

r∏
i=1

(x− λi)
2mi

h∏
j=1

((x− aj)
2 + b2j ).

The leading coefficient y2k needs to be positive. Thus, by expanding the terms in the
products, we see (cf. Proposition 4.2 below) that g(x) can be written as a sum of
squares of polynomials of the form

g(x) =

p∑
i=1

⎛
⎝ k∑

j=0

qijx
j

⎞
⎠

2

= x′
(k)Q

′Qx(k) = x′
(k)Xx(k),

with X = Q′Q positive semidefinite, from which (3.2) follows.
(b) We observe that g(x) ≥ 0 for x ≥ 0 if and only if g(t2) ≥ 0 for all t. Since

g(t2) = y0 + 0 · t + y1t
2 + 0 · t3 + y2t

4 + · · · + ykt
2k,

we obtain (3.3) by applying part (a).
(c) We observe that g(x) ≥ 0 for x ∈ [0, a] if and only if

(1 + t2)kg

(
at2

1 + t2

)
≥ 0 ∀t.

Since

(1 + t2)kg

(
at2

1 + t2

)
=

k∑
r=0

yra
rt2r(1 + t2)k−r

=

k∑
r=0

yra
r
k−r∑
l=0

(
k − r

l

)
t2(l+r)

=

k∑
j=0

t2j

(
j∑

r=0

yr

(
k − r

j − r

)
ar

)
,

by applying part (a) we obtain (3.4).
(d) We observe that g(x) ≥ 0 for x ∈ [a,∞) if and only if

g(a + t2) ≥ 0 ∀t.
Since

g(a + t2) =

k∑
r=0

yr(a + t2)r

=

k∑
r=0

yr

r∑
l=0

(
r

l

)
ar−lt2l

=

k∑
l=0

t2l

(
k∑

r=l

yr

(
r

l

)
ar−l

)
,
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by applying part (a) we obtain (3.5).

(e) We observe that g(x) ≥ 0 for x ∈ (−∞, a] if and only if

g(a− t2) ≥ 0 ∀t.

Since

g(a− t2) =

k∑
r=0

yr(a− t2)r

=

k∑
r=0

yr

r∑
l=0

(
r

l

)
ar−l(−t2)l

=

k∑
l=0

t2l

(
(−1)l

k∑
r=l

yr

(
r

l

)
ar−l

)
,

by applying part (a) we obtain (3.6).

(f) We observe that g(x) ≥ 0 for x ∈ [a, b] if and only if

(1 + t2)kg

(
a + (b− a)

t2

1 + t2

)
≥ 0 ∀t.

Since

(1 + t2)kg

(
a + (b− a)

t2

1 + t2

)
=

k∑
r=0

yr(a + bt2)r(1 + t2)k−r

=

k∑
r=0

yr

r∑
m=0

(
r

m

)
ar−mbmt2m

k−r∑
j=0

(
k − r

j

)
t2j

=

k∑
l=0

t2l

(
l∑

m=0

k+m−l∑
r=m

yr

(
r

m

)(
k − r

l −m

)
ar−mbm

)
,

by applying part (a) we obtain (3.7).

We next show that problem (3.1) can be written as a semidefinite optimization
problem. Corresponding formulations, which we omit here for the sake of conciseness,
can be obtained similarly for the problem of establishing lower bounds, i.e., problem
(2.1) in which we replace maximization by minimization.

Theorem 3.2. Given the first k moments (M1, . . . ,Mk) (we let M0 = 1) of a
random variable X defined on Ω we obtain the following tight upper bounds.

(a) If Ω = R+, the tight upper bound on P (X ≥ a) is given as the solution of the
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semidefinite optimization problem

minimize
k∑

r=0

yrMr

subject to 0 =
∑

i,j:i+j=2l−1

xij , l = 1, . . . , k,

(y0 − 1) +

k∑
r=1

yra
r = x00,

k∑
r=l

yr

(
r

l

)
ar−l =

∑
i,j:i+j=2l

xij , l = 1, . . . , k,

0 =
∑

i,j:i+j=2l−1

zij , l = 1, . . . , k,

l∑
r=0

yr

(
k − r

l − r

)
ar =

∑
i,j:i+j=2l

zij , l = 0, . . . , k,

X,Z � 0.

(3.8)

If Ω = R, then the last equation in (3.8) should be replaced by

(−1)l
k∑

r=l

yr

(
r

l

)
ar−l =

∑
i,j:i+j=2l

zij , l = 0, . . . , k.

(b) If Ω = R+, the tight upper bound on P (a ≤ X ≤ b) is given as the solution
of the semidefinite optimization problem

minimize

k∑
r=0

yrMr

subject to 0 =
∑

i,j:i+j=2l−1

xij , l = 1, . . . , k,

l∑
m=0

k+m−l∑
r=m

yr

(
r

m

)(
k − r

l −m

)
ar−mbm=

(
k

l

)
+

∑
i,j:i+j=2l

xij , l = 0, . . . , k,

0 =
∑

i,j:i+j=2l−1

zij , l = 1, . . . , k,

yl =
∑

i,j:i+j=2l

zij , l = 0, . . . , k,

X,Z � 0.

(3.9)

If Ω = R, then the last equation in (3.9) should be replaced by

(−1)l
k∑

r=l

yr

(
r

l

)
ar−l =

∑
i,j:i+j=2l

zij , l = 0, . . . , k,
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and the following equations added:

0 =
∑

i,j:i+j=2l−1

uij , l = 1, . . . , k,

k∑
r=l

yr

(
r

l

)
br−l =

∑
i,j:i+j=2l

uij , l = 0, . . . , k,

U � 0.

Proof.
(a) The feasible region of problem (3.1) for S = [a,∞) and Ω = R+ becomes

g(x) =

k∑
r=0

yrx
r ≥ 1 ∀x ∈ [a,∞) and g(x) ≥ 0 ∀x ∈ [0, a).

By applying Proposition 3.1(c), (d) we obtain (3.8). If Ω = R, we apply Proposi-
tion 3.1(d), (e).

(b) The feasible region of problem (3.1) for S = [a, b] and Ω = R+ becomes

g(x) =

k∑
r=0

yrx
r ≥ 1 ∀x ∈ [a, b] and g(x) ≥ 0 ∀x ∈ [0,∞).

By applying Proposition 3.1(b), (f) we obtain (3.9). If Ω = R, we apply Proposi-
tion 3.1(d), (e), (f).

3.2. Closed-form bounds. In this section, we present closed-form bounds when
moments up to third order are given. We define the squared coefficient of variation

C2
M =

M2−M2
1

M2
1

, and the third-order coefficient of variation D2
M =

M1M3−M2
2

M4
1

. Let

δ > 0.
Theorem 3.3. The following bounds in Table 2 are tight for k = 1, 2, 3.
The bounds marked with an asterisk (∗) assume that δ < 1 (the other case is

trivial). The following definitions are used:

f1(C
2
M , D2

M , δ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min

(
C2

M

C2
M + δ2

,
1

1 + δ
· D2

M

D2
M + (C2

M − δ)2

)
, if δ > C2

M ,

1

1 + δ
· D2

M + (1 + δ)(C2
M − δ)

D2
M + (1 + C2

M )(C2
M − δ)

, if δ ≤ C2
M ,

f2(C
2
M , D2

M , δ) = 1 − (C2
M + δ)3

(D2
M + (C2

M + 1)(C2
M + δ))(D2

M + (C2
M + δ)2)

,

f3(C
2
M , D2

M , δ) = min

(
1, 1 + 33 D2

M + C4
M − δ2

4 + 3(1 + 3δ2) + 2(1 + 3δ2)
3
2

)
.

The proof of the theorem is given in Popescu [33].

4. The (n, k, Ω)-bound problem: Semidefinite formulations and com-
plexity. In this section, we generalize the results of the previous section to the mul-
tivariate case by investigating the (n, k,Ω)-bound problem. For a fairly general class
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Table 2

Tight bounds for the (1, k,Ω)-problem for k ≤ 3.

(k, Ω) P (X > (1 + δ)M1) P (X < (1 − δ)M1) P (|X −M1| > δM1)

(1,R+) 1
1+δ

1∗ 1∗

(2,R)
C2

M

C2
M

+δ2
C2

M

C2
M

+δ2
min

(
1,

C2
M
δ2

)

(3,R+) f1(C2
M , D2

M , δ) f2(C2
M , D2

M , δ)∗ f3(C2
M , D2

M , δ)∗

of semialgebraic sets S and Ω, i.e., sets that are given as intersections of inequali-
ties involving polynomials, we propose a sequence of increasingly stronger, asymp-
totically exact upper bounds by solving semidefinite optimization problems. This
includes the case when Ω is a bounded polyhedron, or a semialgebraic set such that
Ω ⊆ {x ∈ Rn | x′x ≤ M2} and M is known a priori. Note that it is not necessary
for the sets S and Ω to be convex. We expect that in general an exact semidefinite
formulation, if it exists, may be exponential in n even for fixed k. This fact should
not be surprising, given that in section 4.2 we prove that it is NP-hard to find best
possible bounds for the (n, k,Rn)-bound problem for k ≥ 4. We also show that it is
NP-hard to find best possible bounds for the (n, k,Rn

+)-bound problem for k ≥ 2.

4.1. Semidefinite programming formulations. The approach we follow in
this section has its origin in the work of Shor [41]. Recently it has been used by
Lasserre [24] and Parrilo [32] to provide semidefinite relaxations for discrete opti-
mization and nonconvex optimization problems.

In dimension n = 1, we have seen in the proof of Proposition 3.1 that a polynomial
in one dimension is nonnegative if and only if it can be written as a sum of squares of
polynomials. Clearly, in multiple dimensions if a polynomial can be written as a sum of
squares of other polynomials, then it is nonnegative. Hilbert, in a nonconstructive way,
has shown that it is possible for a polynomial in higher dimensions to be nonnegative
without being a sum of squares. Motzkin (see Reznick [35]) has shown that the
polynomial

M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2

is nonnegative without being a sum of squares of polynomials. The connection between
nonnegative polynomials and sum of squares representations has a long history that
is nicely outlined in Reznick [35]. In this paper we will rely on the following theorem
due to Putinar [34].

Theorem 4.1 (Putinar [34]). Suppose that the set

K = {x ∈ Rn | gi(x) ≥ 0, i ∈ I}

is compact and there exists a polynomial h(x) of the form

h(x) = h0(x) +
∑
i∈I

hi(x)gi(x),

such that {x ∈ Rn | h(x) ≥ 0} is compact and hi(x), i ∈ I ∪ {0} are polynomials that
have a sum of squares representation. Then, for any polynomial g(x) that is strictly
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positive for all x ∈ K, there exist pi(x), i ∈ I ∪ {0}, that are sums of squares such
that

g(x) = p0(x) +
∑
i∈I

pi(x)gi(x).(4.1)

Putinar [34] shows that the conditions for Theorem 4.1 to hold are relatively mild. In
particular, examples of sets K that satisfy the conditions of Theorem 4.1 include the
following.

(a) One of the defining inequalities of K represents a compact set {x ∈ Rn |
gl(x) ≥ 0}. This is the case, for example, when gl(x) = c − (x − x0)

′Q(x − x0), and
Q 
 0.

(b) K is a bounded polyhedron.
(c) K is compact, and there is a bound M a priori known such that K ⊆ {x ∈

Rn | x′x ≤ M2}.
While Theorem 4.1 guarantees the existence of the representation in (4.1), it does

not give any information on the degree of the polynomials pi(x). From Theorem 4.1 it
is natural to investigate when a polynomial is a sum of squares. Let x(d) be the vector
of all monomials in the variables x1, . . . , xn of degree d and below. For example, for
n = 2, d = 2,

x(2) = (1, x1, x2, x
2
1, x1x2, x

2
2)

′.

There are a =
(
n+d
d

)
such monomials.

Proposition 4.2. The polynomial f(x) of degree 2d has a sum of squares de-
composition if and only if there exists a positive semidefinite matrix Q for which
f(x) = x

′
(d)Qx(d).

Proof. To simplify notation, let x = x(d) throughout the proof. An arbitrary
polynomial of degree 2d can be written as f(x) = x

′Qx for some a× a matrix Q (the
matrix Q is not unique, however). If Q � 0, then Q = HH ′ for some H, and thus,

f(x) = x
′HH ′

x =

a∑
i=1

(H ′
x)2i .

Since (H ′
x)i is a polynomial, we have expressed f(x) as a sum of squares of the

polynomials (H ′
x)i.

Conversely, suppose that f(x) has a sum of squares decomposition

f(x) =

l∑
i=1

hi(x)2 =

l∑
i=1

(h′
ix)2 =

l∑
i=1

x
′(hih

′
i)x = x

′

(
l∑

i=1

(hih
′
i)

)
x = x

′Qx,

where hi is the vector of coefficients of the polynomial hi(x). Since Q =
∑l

i=1(hih
′
i) �

0, the proposition follows.
Therefore, if the sets Ω and S satisfy the conditions of Theorem 4.1, by applying

Proposition 4.2, we can express problem (2.2) as a semidefinite optimization problem.
Suppose that the sets Ω and S are semialgebraic sets, given by

Ω =

{
x ∈ Rn | ωi(x) =

∑
κ∈Jl

ωi
κx

κ ≥ 0, i = 1, . . . , r

}
,

S =

{
x ∈ Rn | si(x) =

∑
κ∈Jt

siκx
κ ≥ 0, i = 1, . . . ,m

}
,
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where ωi
κ, siκ ∈ R, that is Ω and S are defined by polynomial inequalities. We use

the notation δκ,0 = 1 if κ = 0, and zero, otherwise.
Theorem 4.3. If the sets Ω and S satisfy the conditions of Theorem 4.1, then

for every ε > 0 there exists a nonnegative integer d ∈ Z+ (representing the degree of
the polynomials in (4.1)), such that the objective function value ZD in problem (2.2)
satisfies |ZD − ZD(d)| ≤ ε, where ZD(d) is the value of the following semidefinite
program:

ZD(d) = min
∑
κ∈Jk

yκσκ

subject to yκ − δκ,0 = q0
κ +

m∑
i=1

∑
η ∈Jd, θ ∈Jt

η+θ = κ

qiηs
i
θ ∀κ ∈ Jk,

0 = q0
κ +

m∑
i=1

∑
η ∈Jd, θ ∈Jt

η + θ = κ

qiηs
i
θ ∀κ ∈ Js+d \ Jk,

yκ = p0
κ +

r∑
i=1

∑
η ∈Jd, θ ∈Jl

η + θ = κ

piηω
i
θ ∀κ ∈ Jk,

0 = p0
κ +

r∑
i=1

∑
η ∈Jd, θ ∈Jl

η + θ = κ

piηω
i
θ ∀κ ∈ Jl+d \ Jk,

qiκ =
∑

η,θ∈Jd ,η+θ=κ

qiη,θ ∀κ ∈ Jd, i = 0, 1, . . . ,m,

piκ =
∑

η,θ∈Jd, η+θ=κ

piη,θ ∀κ ∈ Jd, i = 0, 1, . . . ,m,

Qi = [qiη,θ]η,θ∈Jd
� 0, i = 0, 1, . . . , r,

P i = [piη,θ]η,θ∈Jd
� 0, i = 0, 1, . . . ,m.

(4.2)

Proof. We first remark that the value of the dual problem (2.2) equals that of the
following strict inequality formulation:

ZD = inf
y∈R|Jk|

∑
κ∈Jk

yκσκ

subject to g(x) =
∑
κ∈Jk

yκx
κ > 1 ∀x ∈ S,

g(x) =
∑
κ∈Jk

yκx
κ > 0 ∀x ∈ Ω.

(4.3)

This problem may not admit an optimal solution. However, for any ε > 0 there exists
a feasible polynomial gε resulting in an objective value that is less than ZD + ε. Fix
ε > 0 and let g = gε. For this particular g, from Theorem 4.1 and Proposition 4.2,
the above feasibility constraint g(x) > 0 for all x ∈ Ω is equivalent to

g(x) = p0(x) +

m∑
i=1

pi(x)ωi(x),
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where pi(x) = x
′P i

x, P i � 0, and x includes monomials up to a certain degree d0.
Writing

pi(x) =
∑
η∈Jd

piηx
η, ωi(x) =

∑
θ∈Jl

ωi
θx

θ,

we have that g(x) > 0 for x ∈ Ω if and only if

g(x) :=
∑
κ∈I

yκx
κ =

∑
η∈Jd

p0
ηx

η +

r∑
i=1

⎛
⎝∑

η∈Jd

piηx
η

⎞
⎠(∑

θ∈Jl

ωi
θx

θ

)
.

Equating terms, we obtain the third and fourth sets of linear constraints in problem
(4.2), corresponding to the degree d0.

Similarly, one can translate the feasibility constraint g(x)−1 > 0 for all x ∈ S into
the first two sets of constraints in problem (4.2), corresponding to a certain degree d1.
It follows that the vector of coefficients y of the polynomial g is feasible for problem
(4.2) with degree d = max(d0, d1), so ZD(d) ≤ ZD + ε.

On the other hand, for any d, problem (4.2) is a restriction of problem (4.3) for
feasible polynomials of degree d, so ZD(d) ≥ ZD, and the desired result follows.

Theorem 4.3 gives an asymptotically exact sequence of semidefinite formulations
(4.2) of problem (2.2). Unfortunately, the sizes of these formulations are not bounded
by a polynomial in n, even for fixed k, as they depend on the degree d of the polyno-
mials appearing in (4.1). This is not surprising, given our NP-hardness results in the
next section. Nevertheless, we can obtain increasingly better upper bounds on ZP by
solving semidefinite problems of size polynomially bounded in n for fixed k. Indeed,
since any g that can be represented using sums of squares of polynomials of degree d
can clearly also be represented using sums of squares of polynomials of degree d + 1,
we obtain a family of semidefinite relaxations as follows.

Corollary 4.4. ZP = ZD ≤ ZD(d) ≤ · · · ≤ ZD(2) ≤ ZD(1).

4.2. On the complexity of the (n, k, Ω)-bound problem. In this section,
we show that the separation problem associated with problem (2.2) for the cases
(n, k,Rn

+), (n, 2k,Rn) are NP-hard for k ≥ 2. By the equivalence of optimization
and separation (see Grötschel, Lovász, and Schrijver [11]), solving problem (2.2) is
NP-hard as well in these cases. Finally, since strong duality (Theorem 2.2) holds
in these instances, solving the (n, k,Rn

+)-bound problems for k ≥ 2 and solving the
(n, k,Rn)-bound problems with k ≥ 4 is NP-hard.

The (n, 2k + 1,Rn)-bound problem does not make a case on its own, since an
odd degree polynomial cannot be nonnegative over all of Rn. This means that in
the corresponding dual problem, the variables y corresponding to (2k + 1)-degree
coefficients must be zero for the problem to be feasible. Thus the (n, 2k + 1,Rn)-
bound problem reduces to the (n, 2k,Rn)-bound problem. In other words, if the
highest-order moments that are known are of odd order, they can be disregarded as
they will not improve the bound.

4.2.1. The complexity of the (n, k,Rn
+)-bound problem. The separation

problem is equivalent to the following problem.
Problem k-SEP+: Given a multivariate polynomial g(x) with rational coefficients

and degree k, and a (nonempty) set S ⊆ Rn
+, does there exist x ∈ Rn

+ such that
g(x) < χS(x)?
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Proposition 4.5. Problem k-SEP+ is NP-hard for k ≥ 2, even for polyhedral
sets S.

Proof. Consider the following problem of checking if a given matrix is not copos-
itive.

Problem COPOS: Given a matrix H with rational entries, does there exist x ∈ Rn
+

such that x′Hx < 0?
This problem is NP-hard (see Murty and Kabadi [29]). We will prove that the

problem COPOS reduces to Problem k-SEP+. Since COPOS is NP-hard, so is k-
SEP+.

Consider first the case k = 2, g(x) = x′Hx + 1, where H has rational entries,
and S = Rn

+. Problem 2-SEP+ is equivalent to the question of whether the matrix
H is not copositive. Now, for arbitrary k ≥ 2, consider the k-degree polynomial
g(x) = xk

n + (x1, . . . , xn−1)H(x1, . . . , xn−1)
′ + 1, where H has rational entries, and

S = Rn
+. The separation problem k-SEP+ amounts in this case to checking g(x) < 1

for some nonnegative x, which is equivalent to checking if matrix H is not copositive,
therefore it is NP-hard.

4.2.2. The complexity of the (n, 2k,Rn)-bound problem for k ≥ 2. For
k ≥ 2, the separation problem can be formulated as follows.

Problem 2k-SEP: Given a multivariate polynomial g(·) with rational coefficients
and degree 2k ≥ 4, and a (nonempty) set S ⊆ Rn, does there exist x ∈ Rn such that
g(x) < χS(x)?

Proposition 4.6. Problem 2k-SEP is NP-hard for k ≥ 2 even for polyhedral sets
S.

Proof. As in the previous proof, we show that the problem COPOS polynomial
time reduces to Problem 2k-SEP for k ≥ 2. Since COPOS is NP-hard (see Murty and
Kabadi [29]), it follows that 2k-SEP is also NP-hard.

Consider first the case k = 2, g(x) = (x2
1, . . . , x

2
n)′H(x2

1, . . . , x
2
n) + 1, where H

has rational entries, and S = Rn. Problem 4-SEP is equivalent to the question of
whether the matrix H is not copositive. Now, for arbitrary k ≥ 2, consider the
2k-degree polynomial g(x) = x2k

n + (x2
1, . . . , x

2
n−1)H(x2

1, . . . , x
2
n−1)

′ + 1, where H has
rational entries, and S = Rn. The separation problem 2k-SEP amounts in this case
to checking g(x) < 1 for some x ∈ Rn, which is equivalent to checking if matrix H is
not copositive; therefore it is NP-hard.

5. The (n, 1, Ω)-bound problem. In this section, we address the (n, 1,Ω)-
bound problem. For convex sets S, the tight bound for the (n, 1,Rn

+)-bound problem
is computed in (5.2) as the solution of n convex optimization problems. We present
a polynomial time algorithm for more general sets.

Given a vector M > 0 representing the means of a random vector X defined in
Rn

+, we would like to find tight bounds on P (X ∈ S) for a convex set S. Marshall
[26] derived a tight bound for the case that S = {xi ≥ (1 + δi)Mi, i = 1, . . . , n} (see
(5.3) below).

Theorem 5.1. The tight (n, 1,Rn
+)-upper bound for a convex event S is given by

sup
X∼M

P (X ∈ S) = min

(
1,

1

infx∈S maxi=1,...,n
xi

Mi

)
.(5.1)

Proof. Since only first moments are given, the condition that the vector of mo-
ments is in the interior is trivially satisfied, and thus Theorem 2.2 applies. The
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corresponding dual problem (2.2) is

ZD = min a′M + b

subject to a′x + b ≥ 1 ∀x ∈ S,

a′x + b ≥ 0 ∀x ∈ Rn
+.

If the optimal solution (a0, b0) satisfies minx∈S a′0x + b0 = κ > 1, then the solution
(a0

κ , b0
κ ) has value ZD/κ < ZD. Therefore, infx∈S a′0x+b0 = 1. By a similar argument

we have that b0 ≤ 1. Moreover, since a′x + b ≥ 0 for all x ∈ Rn
+, a ≥ 0, and b ≥ 0.

We thus obtain

ZD = min a′M + b

subject to inf
x∈S

a′x = 1 − b,

a ≥ 0, 0 ≤ b ≤ 1.

Let a = λv, where λ ≥ 0 is a scalar, and v ≥ 0 is a vector with ‖v‖ = 1. We obtain

ZD = min (1 − b)
v′M

infx∈S v′x
+ b

subject to v ≥ 0, ‖v‖ = 1, 0 ≤ b ≤ 1.

Thus,

ZD = min

(
1, min

‖v‖=1,v≥0

v′M

infx∈S v′x

)

= min

(
1,

1

max‖v‖=1,v≥0 infx∈S
v′x
v′M

)

= min

(
1,

1

infx∈S max‖v‖=1,v≥0
v′x
v′M

)

= min

(
1,

1

infx∈S maxi=1,...,n
xi

Mi

)
.

We exchanged the order of max and inf (see [36, p. 382]); then we relied on the fact

that max‖v‖=1,v≥0
v′x
v′M is attained at v = ej , where

xj

Mj
= maxi=1,...,n

xi

Mi
.

Denote φ(x) = maxi=1,...,n
xi

Mi
, so φ(x) = xi

Mi
whenever x ∈ Si. The last term in

(5.1) can be written as

1

infx∈S φ(x)
= max

i=1,...,n
sup
x∈Si

1

φ(x)
= max

i=1,...,n
sup
x∈Si

Mi

xi
= max

i=1,...,n

Mi

infx∈Si xi
.

This shows that the bound in Theorem 5.1 can be obtained by solving n convex
optimization problems:

sup
X∼M

P (X ∈ S) = min

(
1, max

i=1,...,n

Mi

infx∈Si
xi

)
,(5.2)

where Si = {x ∈ S | xi

Mi
≥ xj

Mj
∀j �= i} is the convex subset of S for which the

mean-rescaled ith coordinate is largest. Remark that infx∈Si xi = 0 for some i if and
only if 0 is a boundary point of S, in which case the bound is trivially 1.
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When we specialize bound (5.2) for the set S = {x | xi ≥ (1 + δi)Mi, ∀i =
1, . . . , n}, we obtain

sup
X∼M

P (X1 ≥ (1 + δ1)M1, . . . , Xn ≥ (1 + δn)Mn) = min
i=1,...,n

1

1 + δi
,(5.3)

which represents a multidimensional generalization of Markov’s inequality due to
Marshall [26]. In particular, for a univariate random variable, in the case that
S = [(1 + δ)M,∞), this is exactly Markov’s inequality:

sup
X∼M

P (X ≥ (1 + δ)M) =
1

1 + δ
.

5.1. Extremal distributions for the (n, 1,Rn
+)-bound problem. In this

section, we construct a distribution that achieves bound (5.1). We will say that the
bound (5.1) is achievable, when there exists an x∗ ∈ S such that

min

(
1,

1

infx∈S maxi=1,...,n
xi

Mi

)
=

Mi

x∗
i

< 1.

In particular, the bound is achievable when the set S is closed and M /∈ S.
Theorem 5.2. (a) If M ∈ S or if the bound (5.1) is achievable, then there is an

extremal distribution that exactly achieves it.
(b) Otherwise, there is a sequence of distributions defined on Rn

+ with mean M ,
that asymptotically achieves it.

Proof. (a) If M ∈ S, then the extremal distribution is simply P (X = M) = 1.
Now suppose that M /∈ S and the bound (5.1) is achievable. We assume without
loss of generality that the bound equals M1

x∗
1
< 1, and it is achieved at x∗ ∈ S with

x∗
1

M1
= maxi=1,...,n

x∗
i

Mi
, i.e., x∗ ∈ S1. The random variable

X =

⎧⎪⎪⎨
⎪⎪⎩
x∗, with probability p =

M1

x∗
1

,

v =
x∗

1M −M1x
∗

x∗
1 −M1

, with probability 1 − p = 1 − M1

x∗
1

,

has mean E[X] = M and is nonnegative: vi =
Mix

∗
1−M1x

∗
i

x∗
1−M1

≥ 0 for all i since
x∗
1

M1
=

maxi=1,...,n
x∗
i

Mi
. Moreover, v /∈ S, or else convexity of S implies M = px∗+(1−p)v ∈ S,

a contradiction. Therefore,

P (X ∈ S) = P (X = x∗) =
M1

x∗
1

.

(b) If M /∈ S and the bound (5.1) is not achievable, then we construct a sequence
of nonnegative distributions with mean M that approach it. Suppose without loss of

generality that infx∈S maxi=1,...,n
xi

Mi
= infx∈S

x1

M1
=

x∗
1

M1
. Thus, bound (5.1) equals

min(1, M1

x∗
1

). Consider a sequence xk ∈ S1 with xk
1 → x∗

1, so limk→∞ maxi=1,...,n
xk
i

Mi
=

limk→∞
xk
1

M1
=

x∗
1

M1
, and a sequence pk, 0 < pk < min(1, M1

xk
1

) so that pk → min(1, M1

x∗
1

).

Therefore the random variables

Xk =

⎧⎪⎨
⎪⎩
xk, with probability pk,

vk =
M − pkx

k

1 − pk
, with probability 1 − pk,
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are nonnegative with mean E[Xk] = M . Also vk /∈ S or else M ∈ S, so P (Xk ∈
S) = P (Xk = xk) = pk → min(1, M1

x∗
1

). This shows that the sequence of nonnegative

distributions Xk with mean M asymptotically achieves the bound (5.1).

5.2. A polynomial time algorithm for unions of convex sets. In this
section, we present a polynomial time algorithm that computes a tight (n, 1,Ω)-bound
for events S and Ω that can be decomposed as a disjoint union of a polynomial (in n)
number of convex sets such that we can solve linear optimization problems over them
in polynomial time. Examples include polyhedra and sets defined by semidefinite
constraints. Our overall strategy is to formulate the problem as an optimization
problem, consider its dual, and exhibit an algorithm that solves the corresponding
separation problem in polynomial time.

In this case we are given the mean vector M = (M1, . . . ,Mn) of an n-dimensional
random variable X with domain Ω that can be decomposed in a polynomial (in n)
number of convex sets, and we want to derive tight bounds on P (X ∈ S). Problem
(2.2) can be written as follows:

ZD = min y′M + y0

subject to g(x) = y′x + y0 ≥ χS(x) ∀x ∈ Ω.
(5.4)

The separation problem associated with problem (5.4) is defined as follows: given a
vector a and a scalar b we want to check whether g(x) = a′x+b ≥ χS(x), for all x ∈ Ω,
and if not, we want to exhibit a violated inequality. The following algorithm achieves
this goal.

Algorithm A.
1. Solve the problem infx∈Ω g(x) (note that the problem involves a polynomial

number of convex optimization problems; in particular if Ω is polyhedral, this
is a linear optimization problem). Let z0 be the optimal solution value and
let x0 ∈ Ω be an optimal solution.

2. If z0 < 0, then we have g(x0) = z0 < 0; this constitutes a violated inequality.
3. Otherwise, we solve infx∈S g(x) (again, the problem involves a polynomial

number of convex optimization problems, while if S is polyhedral, this is a
linear optimization problem). Let z1 be the optimal solution value and let
x1 ∈ S be an optimal solution.
(a) If z1 < 1, then for x1 ∈ S we have g(x1) = z1 < 1; this constitutes a

violated inequality.
(b) If z1 ≥ 1, then a, b are feasible.

The above algorithm solves the separation problem in polynomial time, and thus the
(n, 1,Ω)-upper bound problem is polynomially solvable (see Nesterov and Nemirovskii
[30] and Grötschel, Lovász, and Schrijver [11]).

6. The (n, 2,Rn)-bound problem. In this section, we address the (n, 2,Rn)-
bound problem. Rather than assuming that E[X] and E[XX ′] are known, we assume
equivalently that the vector M = E[X] and the covariance matrix Γ = E[(X −
M)(X −M)′] are known and that Γ is invertible. Given a set S ⊆ Rn, we find tight
upper bounds, denoted by supX∼(M,Γ) P (X ∈ S), on the probability P (X ∈ S) for
all random vectors X defined on Rn with mean M = E[X] and covariance matrix
Γ = E[(X − M)(X − M)′]. If the set S is convex, we review the work of Marshall
and Olkin [27], who solved the problem as a convex optimization problem. If the set
S is a union of convex sets, over which we can optimize a convex quadratic function
efficiently, we provide a polynomial time algorithm.
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6.1. The (n, 2,Rn)-bound problem for a convex set. The following result
is due to Marshall and Olkin [27], who give a constructive proof. An alternative,
optimization based proof is provided in Popescu [33].

Theorem 6.1 (Marshall and Olkin [27]). The tight (n, 2,Rn)-upper bound for a
convex event S is given by

sup
X∼(M,Γ)

P (X ∈ S) =
1

1 + d2
,(6.1)

where d2 = infx∈S(x−M)′Γ−1(x−M) is the squared distance from M to the set S,
under the norm induced by the matrix Γ−1.

The actual formulation provided by Marshall and Olkin [27] is the following:

sup
X∼(0,Γ)

P (X ∈ S) = inf
a∈S⊥

1

1 + (a′Γa)−1
,(6.2)

where S⊥ = {a ∈ Rn | a′x ≥ 1 ∀x ∈ S}, is the so-called antipolar of S (a.k.a
“blocker”, or “upper-dual”). The above result is with zero mean, but can be easily
extended for nonzero mean by a simple transformation (see [27, p. 1013, eqs. (7.8)–
(7.9)], or the first part of the proof of Theorem 6.2). Given that (a′Γa)(x′Γ−1x) ≥
(a′x)2 ≥ 1 for all x ∈ S, a ∈ S⊥, one can easily see that the bound (6.1) is at least
as tight as (6.2). Equality follows from nonlinear gauge duality principles (see Freund
[8]).

Marshall and Olkin [27] construct an extremal distribution of a random variable
X ∼ (M,Γ), so that P (X ∈ S) = 1/(1 + d2) with d2 = infx∈S(x −M)′Γ−1(x −M).
We will say that the bound d is achievable, when there exists an x∗ ∈ S such that
d2 = (x∗ −M)′Γ−1(x∗ −M). In particular, d is achievable if the set S is closed.

Theorem 6.2 (see [27]).
(a) If M /∈ S and if d2 = infx∈S(x−M)′Γ−1(x−M) is achievable, then there is

an extremal distribution that exactly achieves the bound (6.1).
(b) Otherwise, if M ∈ S or if d2 is not achievable, then there is a sequence of

(M,Γ)-feasible distributions that asymptotically approach the bound (6.1).

Bounds on tail probabilities. Given a vector M = (M1, . . . ,Mn)′, and an
n×n positive definite, full rank matrix Γ, we derive next tight bounds on the following
upper, lower, and two-sided tail probabilities of a random vector X = (X1, . . . , Xn)′

with mean M = E[X] and covariance matrix Γ = E[(X −M)(X −M)′]:

P (X > Me+δ) =P (Xi > (1 + δi)Mi ∀i = 1, . . . , n),

P (X < Me−δ) =P (Xi < (1 − δi)Mi ∀i = 1, . . . , n),

P (X > Me+δ or X < Me−δ) =P (Xi −Mi > δiMi ∀i, or Xi −Mi < −δiMi ∀i),

where δ = (δ1, . . . , δn)′, and we denote Mδ = (δ1M1, . . . , δnMn)′. In order to obtain
nontrivial bounds we require that not all δiMi ≤ 0, which expresses the fact that the
tail event does not include the mean vector.

The one-sided Chebyshev inequality. In the following, we find a tight bound
for P (X > Me+δ). The bound immediately extends to P (X < Me−δ).

Proposition 6.3. (a) The tight multivariate one-sided (n, 2,Rn)-Chebyshev
bound is

sup
X∼(M,Γ)

P (X > Me+δ) =
1

1 + d2
,(6.3)
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where d2 is given by

d2 = min x′Γ−1x(6.4)

subject to x ≥ Mδ,

or alternatively d2 is given by the gauge dual problem of (6.4)

1

d2
= min x′Γx(6.5)

subject to x′Mδ = 1,

x ≥ 0.

(b) If Γ−1Mδ ≥ 0, then the tight bound is expressible in closed form:

sup
X∼(M,Γ)

P (X > Me+δ) =
1

1 + M ′
δΓ

−1Mδ
.(6.6)

Proof. (a) Applying the bound (6.1) for S = {x | xi > (1 + δi)Mi ∀i = 1, . . . , n},
and changing variables we obtain (6.3). The alternative expression (6.5) for d2 follows
from elementary gauge duality theory (see Freund [8]).

(b) The Kuhn–Tucker conditions for problem (6.4) are as follows:

2Γ−1x− λ = 0, λ ≥ 0, x ≥ Mδ, λi(xi − (Mδ)i) = 0 ∀i.

The choice x = Mδ, λ = 2Γ−1Mδ ≥ 0 (by assumption) satisfies the Kuhn–Tucker
conditions, which are sufficient (this is a convex quadratic optimization problem).
Thus, d2 = M ′

δΓ
−1Mδ, and hence, (6.6) follows.

The two-sided Chebyshev inequality. The following result provides a tight
bound for P (X > Me+δ or X < Me−δ).

Proposition 6.4 (see [27]).
(a) The tight multivariate two-sided (n, 2,Rn)-Chebyshev bound is

sup
X∼(M,Γ)

P (X > Me+δ or X < Me−δ) = min(1, t2),(6.7)

where

t2 = min x′Γx(6.8)

subject to x′Mδ = 1,

x ≥ 0.

(b) If Γ−1Mδ ≥ 0, then the tight bound is expressible in closed-form:

sup
X∼(M,Γ)

P (X > Me+δ or X < Me−δ) = min

(
1,

1

M ′
δΓ

−1Mδ

)
.(6.9)

This formulation follows via gauge duality principles from the original zero-mean
result of Marshall and Olkin [28].

In the univariate case Mδ = δM and Γ = σ2. Therefore, Γ−1Mδ = δM
σ2 ≥ 0, and

the closed-form bound applies, i.e.,

P (X > (1 + δ)M) ≤ C2
M

δ2 + C2
M

,(6.10)
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where C2
M = σ2

M2 is the coefficient of variation of the random variable X. The usual

Chebyshev inequality is given by P (X > (1+ δ)M) ≤ C2
M

δ2 . Inequality (6.10) is always
stronger. Moreover, there exist extremal distributions that satisfy it with equality
(see Theorem 6.2). The original univariate result can be traced back to the 1937 book
of Uspensky [46], and is mentioned later by Marshall and Olkin (1960) [27], [28], but
has not received much attention in modern probability textbooks.

6.2. The tight (n, 2,Rn)-bound for unions of convex sets. We are given
first- and second-order moment information (M,Γ) on the n-dimensional random
variable X, and we would like to compute supX∼(M,Γ) P (X ∈ S). Recall that the
corresponding dual problem can be written as

ZD = min
Y,y,y0

Y • Γ + y′M + y0

subject to g(x) = x′Y x + y′x + y0 ≥ χS(x) ∀x ∈ Rn.
(6.11)

We consider convex sets for which we can solve a convex quadratic optimization
problem over them in polynomial time. Examples include polyhedra and sets defined
by semidefinite constraints. The separation problem corresponding to problem (6.11)
can be stated as follows: Given a matrix H, a vector c, and a scalar d, we need to
check whether g(x) = x′Hx + c′x + d ≥ χS(x) for all x ∈ Rn, and, if not, we need to
find a violated inequality. Notice that we can assume without loss of generality that
the matrix H is symmetric.

The following algorithm solves the separation problem in polynomial time.
Algorithm B.
1. If H is not positive semidefinite, then one can exhibit a polynomial size

x0 ∈ Qn so that x′
0Hx0 < −1. Let c0 = c′x0, so g(λx0) < −λ2 + λc0 + d

for any scalar λ. Choosing λ large enough (e.g., λ > |c0| +
√
|d|) so that

g(λx0) < 0, produces a violated inequality.
2. Otherwise, if H is positive semidefinite, then we do the following:

(a) We test if g(x) ≥ 0 for all x ∈ Rn by solving the convex optimization
problem

inf
x∈Rn

g(x).

Let z0 be the optimal value. If z0 < 0, we find x0 such that g(x0) < 0,
which represents a violated inequality.

(b) Otherwise, we test if g(x) ≥ 1 for all x ∈ S by solving a polynomial
collection of convex optimization problems

inf
x∈S

g(x).

Let z1 be the optimal value. If z1 ≥ 1, then g(x) ≥ 1 for all x ∈ S, and
thus (H, c, d) is feasible. If not, we exhibit an x1 such that g(x1) < 1,
and thus we identify a violated inequality.

Since we can solve the separation problem in polynomial time, we can also solve
(within ε) the (n, 2,Rn)-bound problem in polynomial time (in the problem data and
log 1

ε ).

7. Concluding remarks. In this paper we characterized the (n, k,Ω)-bound
problem. We provided polynomial time algorithms via semidefinite programming algo-
rithms for the (1, k,Ω)-bound problem, and via convex optimization methods, for the
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(n, 1,Rn
+), (n, 2,Rn)-bound problems. We showed that the (n, k,Rn

+) and (n, k,Rn)-
bound problems are NP-hard for k ≥ 2, respectively k ≥ 4. We also provided a family
of semidefinite relaxations of polynomial size for the general (n, k,Ω)-bound problem
that provide increasingly stronger bounds.
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