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Abstract. Using recent progress on moment problems, and their connections with semidefinite optimization,
we present in this paper a new methodology based on semidefinite optimization, to obtain a hierarchy of upper
and lower bounds on linear functionals defined on solutions of linear partial differential equations. We apply
the proposed method to examples of PDEs in one and two dimensions, with very encouraging results. We pay
particular attention to a PDE with oblique derivative conditions, commonly arising in queueing theory. We
also provide computational evidence that the semidefinite constraints are critically important in improving the
quality of the bounds, that is, without them the bounds are weak.

1. Introduction

In many real-world applications of phenomena that are described by partial differential
equations (PDEs) we are primarily interested in a functional of the solution of the PDE,
as opposed to the solution itself. For example, we might be interested in the average
temperature along part of the physical boundary, rather than the entire distribution of
temperature in a mechanical device; or we might be interested in the average inventory
and its variability in a supply chain network; or finally, we might be interested in the
expected queue lengths at various stations in a queueing network.

Given that analytical solutions of PDEs are scarce, there is a large body of liter-
ature on numerical methods for solving PDEs. Excellent references can be found in
Quarteroni and Valli [19], Strang and Fix [23], Brezzi and Fortin [7]. Such methods
typically involve some discretization of the domain of the solution, and thus obtain an
approximate solution by solving the resulting equations, and matching boundary values
and initial conditions. Such approaches scale exponentially with the dimension, i.e., if
we use O(1/ε) points in each dimension, the size of systems we need to solve is of the
order of (1/ε)d for d–dimensional PDEs and result in accuracy of O(ε). There have been
some efforts to control this explosion. An approach based on Lagrangean duality that
performs computations using a coarse discretization, but provides bounds on the fine dis-
cretization solution based on the coarse discretization, is presented in Peraire and Patera
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[15], Paraschivoiu, Peraire and Patera [16] and Peraire and Patera [18]. For other duality
based methods see Brezzi and Fortin [7]. These methods all provide approximations to
the PDE and its linear functionals.

Given the interest in a functional of the solution of the underlying PDE, and the com-
putational difficulty of obtaining close approximations, it is desirable to obtain bounds on
the functional at a decreased computational burden. The discretization-based approaches
yield solutions that are approximations to the PDE solution, and in particular, cannot
provide guaranteed bounds on a functional of the solution.

The main focus of this work is to address exactly this point: providing guaranteed
upper and lower bounds, with decreased computational burden.

Contributions

Using recent progress on moment problems and their connections with semidefinite opti-
mization, we present a new methodology based on semidefinite optimization, to obtain a
hierarchy of upper and lower bounds on linear functionals, as well as bounds on the su-
premum and infimum functionals, for linear PDEs with coefficients that are polynomials
of the variables. The obtained bounds are guaranteed upper and lower bounds, and not
simply approximations. Indeed, for this reason, even the results obtained with minimal
computational effort may be of interest; while the upper and lower bounds may be loose
initially, they are nevertheless guaranteed bounds, and hence contain potentially useful
information. This is not the case for discretization-based solutions. If the discretization
is too coarse, then the approximation may be unable to capture the essential features of
the PDE, and the resulting solution may be useless.

We apply the proposed method to four examples of PDEs in one and two dimensions,
with very encouraging results. The first three examples are quite standard examples
from the literature, satisfying von Neumann, and Dirichlet boundary conditions. The
last example we consider is a PDE with oblique derivative boundary conditions. This is
motivated by a particular problem in queueing theory of networks. We discuss both the
physical application and the solution more extensively.

In our discussion of these examples, we also provide computational evidence that the
semidefinite constraints are critically important in improving the quality of the bounds,
that is, without them the bounds are weak. The numerical results further indicate fast
convergence. We pay particular attention to the quality of the bounds obtained with
minimal computational effort, that is, the first few points on the convergence curve. The
practicality and numerical stability of the proposed method depend on the numerical sta-
bility of semidefinite optimization codes, which are currently under intensive research.
In addition, the stability of the formulation itself is important. In the formulation we pro-
pose, we consider semidefinite matrices of a particular form. It is possible that moment
matrices lead to ill-conditioned problems, and thus that the formulation itself contributes
to the instability of the numerical solutions. Future research should consider different
parameterizations that lead to solutions with better stability properties. Specialized semi-
definite solvers could also alleviate this problem, since the semidefinite constraints are
all of the same form. We hope that progress in semidefinite optimization codes will lead
to improved performance for obtaining bounds on PDEs using the method of the present
paper.
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Moment Problems and Semidefinite Optimization

Semidefinite optimization is currently at the center of much research activity in the area
of mathematical programming, both from the point of view of new application areas (see
for example the survey paper of Vandenberghe and Boyd [26]) as well as algorithmic
development.

Problems involving moments of random variables arise naturally in many areas of
mathematics, economics, and operations research. Recently, semidefinite optimization
methods using moments have been applied to several problems arising in probability
theory, finance and stochastic optimization. Bertsimas [2] applies semidefinite optimi-
zation methods to find bounds for stochastic optimization problems arising in queueing
networks. Bertsimas and Popescu [4] and Lasserre [14] apply semidefinite optimization
methods to find best possible bounds on the probability that a multi-dimensional random
variable belongs in a set given a collection of its moments. In [5], Bertsimas and Popescu
use these methods to find best possible bounds for pricing financial derivatives without
assuming particular price dynamics. Lasserre [13] and Parrilo [17] present a method for
global optimization of polynomials based on moments and semidefinite optimization.

Structure of the Paper

The paper is structured as follows. In Section 2, we present the proposed approach. In
Section 3, we present four examples that show how the method works, how it performs
numerically, and also illustrate the method’s applicability to problems arising from con-
crete application areas. Finally, in Section 4, we provide some concluding remarks.

2. The Proposed Method

Suppose we are given partial differential operators L and G operating on some distribu-
tion space A:

L, G : A −→ A,

and we are interested in computing
∫

Gu(x),

where u ∈ A (note also that f ∈ A) satisfies the PDE,

Lu(x) = f (x), x = (x1, . . . , xd) ∈ � ⊂ R
d , (1)

including the appropriate boundary conditions on ∂�.
Eq. (1) is understood in the sense that both sides of the equation act in the same way

on a given class of functions D, i.e.,

Lu = f ⇐⇒
∫

(Lu)φ =
∫

f φ, ∀φ ∈ D,
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where D is taken to be some sufficiently nice class of test functions—typically a subset
of the smooth functions C∞.

We assume that the operators L and G are linear operators of orders r1, r2 respec-
tively, with coefficients that are polynomials of the variables. In Section 2.5, we discuss
extensions to the max and min functionals, which are nonlinear. For the linear case, we
have:

Lu(x) =
∑

|α|≤r1

Lα(x)
∂αu(x)

∂xα
, Gu(x) =

∑
|α|≤r2

Gα(x)
∂αu(x)

∂xα
,

where α = (i1, . . . , id) is a multi-index,

∂αu(x)

∂xα
= ∂

∑
k ik u(x)

∂x
i1
1 · · · ∂x

id
d

,

and Lα(x) and Gα(x) are multivariate polynomials (we discuss extensions in
Section 2.6). We restrict ourselves to the case where D is separable, that is, it has a
countable dense subset. In the context of the problems we consider, this restriction is
rather mild. For instance, if u has compact support, then we can assume the elements of
D have compact support, in which case by the Stone-Weierstrass theorem, D is separa-
ble. The condition that u have compact support may also be replaced by the (slightly)
weaker condition that u have exponentially decaying tails.

Let F = {φ1, φ2, . . . } generate (in the basis sense) a dense subset of D. Then, by
the linearity of integration we have

Lu = f ⇐⇒
∫

(Lu)φ =
∫

f φ, ∀φ ∈ D,

⇐⇒
∫

(Lu)φi =
∫

f φi, ∀φi ∈ F.

We discuss different choices for the subset F in Section 2.6. This paper focuses on the
subspace spanned by the monomials xα = x

i1
1 . . . x

id
d . Polynomials have the property

that they are closed under action by polynomial coefficient differential operators.
We obtain bounds by imposing the equalities above for increasing finite subsets of F.

When the basis elements are monomials, we obtain upper and lower bounds on
∫

Gu(x)

by solving the optimization problem

max/min :
∫

Gu(x)

such that :
∫

Lu(x)xα = ∫
f (x)xα, for all xα with degree less than N .

We show that we can reformulate this problem as a semidefinite optimization problem.
As such, it can be solved by black-box semidefinite solvers, such as the ones we use and
discuss below.
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The Adjoint Operator

The adjoint operator, L∗, is defined by the equation:∫
(Lu)φ =

∫
u(L∗φ), ∀u ∈ A, ∀φ ∈ D.

Therefore, if we have both L and L∗, then equality in the original PDE becomes:

Lu = f ⇐⇒
∫

(Lu)φ =
∫

f φ, ∀φ ∈ D,

⇐⇒
∫

(Lu)φi =
∫

f φi, ∀φi ∈ F,

⇐⇒
∫

u(L∗φi) =
∫

f φi, ∀φi ∈ F. (2)

To illustrate the computation of the adjoint operator, we consider the one–dimensional
case. The general term of this operator is, up to a constant multiple:

xa ∂b

∂xb
.

Using the notation φ̃ = xaφ, this term’s contribution to the adjoint operator is as follows.∫
�

xa(∂bu)φ =
∫

�

(∂bu)(xaφ) dx =
∫

�

(∂bu)φ̃ dx

= u(b−1)φ̃

∣∣∣
∂�

+ · · · + (−1)k+1u(b−k)φ̃(k−1)
∣∣∣
∂�

+ · · ·

+(−1)b+1uφ̃(b−1)
∣∣∣
∂�

+ (−1)b
∫

�

u∂bφ̃ dx.

The adjoint of a linear operator is composed of terms such as these. Thus, while perhaps
notationally tedious in higher dimensions, computing the adjoint of a linear partial differ-
ential operator with polynomial coefficients is essentially only as difficult as performing
the chain rule for differentiation on polynomials, and in particular, it may be easily
automated.

2.1. Linear Constraints

We define variables in an optimization sense, that we will subsequently seek to constrain,
and then optimize. We define variables corresponding to the full moments,

mα =
∫

�

xαu(x) =
∫

�

x1
i1 · · · xd

id u(x),

together with variables related to the boundary. These represent the integral of a mono-
mial against the solution to the PDE, u, or some directional derivative of u, along some
portion of the boundary, ∂�. For instance, we could have:

zα =
∫

∂�

xαu(x) =
∫

∂�

x1
i1 · · · xd

id u(x).
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The specific form of these variables depends on the nature of the boundary conditions we
are given (see Section 3 for specific examples). Therefore, for notational convenience,
we simply use z = {zα} to refer to the entire family of possible boundary moments. We
refer to the quantities mα and zα as moments, even though u(·) may not be a probability
distribution. Now consider Eqs. (2). We select as φi’s the family of monomials {xα}.
For the cases we consider, L, and thus L∗, are linear operators with coefficients that
are polynomials in x. Then, Eqs. (2) can be written as linear equations in terms of the
variables M = {mα} and z = {zα}. Thus, each monomial test function generates a linear
equation in M and z.

The general idea of using the adjoint equation to obtain relations that the moments
must satisfy has appeared in [3], and [12]. A more systematic use of the adjoint equa-
tion appeared in a restricted context in [21], for studying the steady–state distribution
of certain Markov processes. Semidefinite constraints are not used in [3], [12], or [21].
As we demonstrate below, the power of the semidefinite constraints is crucial for the
performance of the method in this more general context.

2.2. Objective Function Value

In the cases we consider, the operator G is also a linear operator with coefficients that
are polynomials of the variables (we consider an extension in Section 2.5). Then, the
functional

∫
Gu can also be expressed as a linear function of the variables M and z,

again by obtaining the adjoint operator G∗. By minimizing or maximizing this particular
linear function, we obtain upper and lower bounds on the value of the functional.

2.3. Semidefinite Constraints

Let us assume that the solution to the PDE is bounded from below, that is, u(x) ≥ u0.
The constant u0 may be unknown. In certain cases, u0 is naturally known; for example
if u(x) is a probability distribution, or if u(x) represents temperature, then u(x) ≥ 0.
In such cases, the formulation we present is greatly strengthened by the semidefinite
constraints.

We consider the vectorsF n(x)= [xα]|α|≤n and the semidefinite matrixF n(x)F n(x)′.
Then the matrices∫

�

(u(x) − u0)F n(x)F n(x)′,
∫

∂�

(u(x) − u0)F n(x)F n(x)′,

are also positive semidefinite for all n. Replacing
∫
(u(x) − u0)x

α by (mα − u0
∫

xα),
and similarly for the boundary moments, this leads to semidefinite constraints affine in
the variables (M, u0) and (z, u0).

Obtaining the complete set of constraints for these variables, is an extension to
multiple dimensions of the classical moment problem (see Akhiezer [1]). The problem
is to determine, given some sequence of numbers and a support set K , whether it is a valid
moment sequence, that is to say, whether the numbers given are indeed the moments of a
nonnegative function or distribution supported on K . In one dimension, if K = R, then
a given sequence of numbers {mi} is the set of moments of some nonnegative function
u(x) (i.e., mi = ∫ +∞

−∞ xiu(x)dx) if and only if the matrix
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M2n =




m0 m1 · · · mn

m1 m2 · · · mn+1
...

. . .
...

mn m2n




is positive semidefinite for every n. In the case where u(x) must have support on K =
[0, ∞), we need to add the additional constraint that the matrix

M2n+1 =




m1 m2 · · · mn+1
m2 m3 · · · mn+2
...

. . .
...

mn+1 m2n+1




also be positive semidefinite for all n. For a partial moment sequence, say, {mi}i≤N for
some N , the necessary and sufficient conditions for the {mi} to be true moments, are
that there exist a positive semidefinite extension to the sequence, i.e., there exist numbers
{m̂i}i≥N+1 such that the matrices M2n and M2n+1 given above, are positive semidefinite
for all n. This concept of a semidefinite extension condition is important in the sequel.

In multiple dimensions, it is generally unknown which are the exact necessary and
sufficient conditions for M = {mα} and z = {zα} to be a valid moment sequence, when
we are working over a general domain. For a wide class of domains, however, the posi-
tivstellensatz (see [6]) and in particular Schmüdgen’s distinguished representations (see
[22]) find such conditions. We review this work briefly, and use it to derive the necessary
and sufficient conditions for M = {mα} and z = {zα} to be a valid moment sequence
for the cases we consider.

An Operator Approach

Given a closed subset � of R
d , a sequence of numbers M = {mα} defines a valid

moment sequence if there exists a (nonnegative regular bounded Borel) measure µ such
that

mα =
∫

�

xαdµ, ∀α.

There are additional technical details, such as the precise definition of the spaces in
which µ must be taken to live, and their respective topologies. Since this paper is pri-
marily concerned with projections via linear functionals onto R, where the topology and
notions of convergence are the usual ones, we ignore the more technical details.

We define the linear operator

Hf =
∫

�

f (x)dµ.

Given a measure µ, H is completely defined. A given moment sequence M completely
specifies the restriction of H to all polynomial functions. If the sequence M is valid,
then it is necessary that Hf ≥ 0 whenever f ≥ 0 on �. A classical theorem says that
this is also sufficient:
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Theorem 1 (Haviland [9]). If � ⊆ R
n is closed, then M = {mα} defines a valid

moment sequence if and only if the linear operator H is nonnegative on all polynomials
that are nonnegative on �.

Theorem 1 implies that the problem of finding necessary and sufficient conditions for
M = {mα} and z = {zα} to be a moment sequence reduces to checking the nonneg-
ativity of the image of polynomials that are nonnegative on �. In one dimension, any
polynomial that is nonnegative may be written as a sum of squares of other polynomials.
Since the square of a polynomial may be written as a quadratic form, the nonnegativity
of the operator reduces to matrix semidefiniteness conditions. The Motzkin polynomial
in R

3,

P(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2,

is an example that shows that in higher dimensions, nonnegative polynomials may not
have sum of squares decompositions (see Reznick [20] for more details and historical
background). We are concerned with nonnegativity over a particular domain, �. There
has recently been much work concerning the representation of polynomials that are
positive over a given domain. We refer the interested reader to Lasserre [13] and Parrilo
[17] for further details of these representation theorems, as well as connections to semi-
definite optimization. Here, we use a result of Schmüdgen [22] that gives a representation
of all polynomials that are positive over a compact finitely generated semi-algebraic set
�, as defined in the theorem below. This leads to necessary and sufficient conditions for
a moment sequence to be valid on �.

Theorem 2 (Schmüdgen [22]). Suppose � := {x ∈ R
n : fi(x) ≥ 0, 1 ≤ i ≤ r} is

closed and bounded, where fi(x) are polynomials. Then a polynomial g(x) is positive
on � if and only if it is expressible as a sum of terms of the form

h2
I (x)

∏
i∈I

fi(x),

for I ⊆ {1, . . . , r}, possibly I = ∅, and hI some polynomial.

Theorems 1 and 2 lead to the following result.

Theorem 3. Given M = {mα}, there exists a function u(x) ≥ u0 such that

mα =
∫

�

(u(x) − u0)x
α, for all multi-indices α,

for a closed and bounded domain � of the form

� = {x ∈ R
d : f1(x) ≥ 0, . . . , fr (x) ≥ 0},

if and only if for all subsets I ⊆ {1, . . . , r}, and all n ≥ 0, the matrix obtained from the
expression ∫

�

(u(x) − u0)F n(x)F n(x)′
∏
i∈I

fi(x), (3)

by replacing
∫
(u(x) − u0)x

α by mα , is positive semidefinite.
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Proof. Let H denote the operator whose restriction to polynomial functions is defined
by the moment sequence M . If the moments M satisfy all the semidefinite conditions
for some n, then Hf ≥ 0 for every polynomial function f nonnegative on �, that is
expressible as a sum of terms of the form of Theorem 2, with degree at most 2n. By The-
orem 2, every positive polynomial has such an expression for some n, and by Theorem
1, nonnegativity of all polynomials is sufficient for M to be a valid moment sequence. ��
Examples of domains for which the above result applies include the unit ball in R

d ,
which can be written as

B = {x ∈ R
d : 1 − x2

1 − · · · − x2
d ≥ 0},

and the unit hypercube,

C = {x ∈ R
d : xi ≥ 0, 1 − xi ≥ 0, 1 ≤ i ≤ d},

as well as the nonconvex and disconnected domain:

D = {0, 1}d = {x ∈ R
d : xi(xi − 1) ≥ 0, xi(xi − 1) ≤ 0, 1 ≤ i ≤ d}.

We next make the connection to semidefinite constraints explicit. While all the results
can be easily generalized to d dimensions, for notational simplicity we consider d = 2,
assume that u0 = 0 and use � as the unit hypercube C in two dimensions. Note that in
this case there are four functions,

f1(x1, x2) = x1, f2(x1, x2) = 1 − x1, f3(x1, x2) = x2, f4(x1, x2) = 1 − x2,

defining the set �. Thus, there are 24 = 16 possible subsets I of {1, 2, 3, 4}. Each of
these subsets gives rise to a particular sequence of semidefinite constraints as follows.
Denoting the moment sequence as {mi,j }, if it is a valid moment sequence, then for
I = ∅ we must have



m0,0 m1,0 m0,1 m2,0 m1,1 m0,2 · · ·
m1,0 m2,0 m1,1 m3,0 m2,1 m1,2 · · ·
m0,1 m1,1 m0,1 m2,1 m1,2 m0,3 · · ·
m2,0 m3,0 m2,1 m4,0 m3,1 m2,2 · · ·
m1,1 m2,1 m1,2 m3,1 m2,2 m1,3 · · ·
m0,2 m1,2 m0,3 m2,2 m1,3 m0,4 · · ·

...
...

...
...

...
...

. . .




� 0.

For I = {2}, we obtain



m0,0 − m1,0 m1,0 − m2,0 m0,1 − m1,1 m2,0 − m3,0 · · ·
m1,0 − m2,0 m2,0 − m3,0 m1,1 − m2,1 m3,0 − m4,0 · · ·
m0,1 − m1,1 m1,1 − m2,1 m0,1 − m1,1 m2,1 − m3,1 · · ·
m1,1 − m2,1 m2,1 − m3,1 m1,2 − m2,2 m4,0 − m5,0 · · ·

...
...

...
...

. . .




� 0.

In practice, of course, we can only enforce the semidefiniteness of the truncated matri-
ces, say, those involving moments of total degree at most N . Proceeding in this way, we
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obtain 16 semidefinite constraints for each truncation level N . If � is the unit ball in d

dimensions, we have exactly two semidefinite constraints for each N . As we allow N to
grow, we get increasingly tighter necessary conditions. As in the one–dimensional case,
given some partial set of moments, {mα}|α|≤N , we can impose extension semidefinite
constraints: {mα}|α|≤N is valid only if for every K , there exist numbers {m̂α}N<|α|≤N+K

such that the truncated matrices of appropriate size are positive semidefinite. In the two–
dimensional examples to follow, we involve the extension parameter K explicitly, in
order to obtain direct numerical evidence of the power of the semidefinite constraints.

2.4. The Overall Formulation

We wish to solve for certain linear functionals of the PDE

Lu = f.

The variables of the optimization problem we formulate are the full moments mα =∫
�

xαu(x), and the boundary moments that may arise from integration against u or
some directional derivative of u along some portion of the boundary, for example, zα =∫
∂�

xαu(x). Also, we introduce the variable u0, a lower bound on u(x), x ∈ �. This
value might be naturally known. The semidefinite optimization consists of linear equal-
ity constraints, and semidefinite constraints. The linear constraints are generated from
the adjoint equation, ∫

�

u(L∗φ) =
∫

�

f φ,

for different test functions φ. We focus primarily on monomial test functions φα = xα .
The semidefinite constraints express the fact that the variables mα and zα are in fact
moments. Subject to these constraints, we maximize and minimize a linear function of
the variables that expresses the given linear functional. The overall steps of the formu-
lation process are then summarized as follows:

1. Compute the adjoint operator L∗.
2. Generate the ith equality constraint, 1 ≤ i ≤ n, by requiring that∫

u(L∗φi) =
∫

f φi.

This step is controlled by the degree–bound parameter N , which describes how many
monomial test functions will be used, i.e., N determines the value of n above.

3. Generate the semidefinite constraints among the moments that appear in the linear
constraints. Also, generate the semidefinite extension constraints. These are exten-
sions of the original semidefinite constraints, and they include variables not present
in the linear constraints. The level of extension is governed by the parameter K .
Note that the semidefinite constraints only depend on the domain � and not on the
operator L.

4. Compute upper and lower bounds on the given functional by solving a semidefinite
optimization problem over the intersection of the positive semidefinite cone and the
equality constraints.
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For each pair (N, K), this algorithm produces upper and lower bounds to the value of
the functional, and not just approximations. As these parameters increase, the upper and
lower bounds converge to each other, thus, in principle producing exact values for the
linear functional.

2.5. The Maximum and Minimum Operator

In some problems, such as some of those considered in the sequel, we naturally know
the lower bound u0, or perhaps we have a lower bound on u0. In these cases, the semi-
definite constraints strengthen the formulation significantly. On the other hand, if u0 is
not known, and if the linear constraints are strong, in the sense that they provide good
constraints on the set of feasible moment vectors, then the semidefinite constraints can
be used to obtain bounds on u0. In particular, as we illustrate in Examples 1 and 2 below,
we can use the semidefinite constraints to compute bounds on the (nonlinear) functionals
max and min. Indeed, suppose that the given functional is Gu = minx∈� u(x). Recall
that we have defined a variable u0, such that u(x) ≥ u0 for all x in the domain �. Thus
the function û := (u−u0) satisfies û(x) ≥ 0, for all x in �. Therefore the corresponding
moments, {m̂α}, computable from the moments of u(x) by the relation

m̂α = mα − u0

∫
�

xα,

satisfy all the semidefinite constraints, for every truncation |α| ≤ N . Conversely, if
u(x0) − u0 < 0 for some x0 in �, then by the sufficiency of the full semidefinite
conditions, there exists some N , and some semidefinite matrix condition, that at trunca-
tion N (and higher) is violated by the moments of (u(x) − u0). Therefore, if for some
chosen matrix truncation level N , we solve for u0,N the maximum value for which
the N–truncated matrices are all positive semidefinite, then we obtain an upper bound
u0,N ≥ u0, such that u0,N converges to u0 as N → ∞. In our case, however, we
do not have the actual moments {m̂α} of u, but rather some bounds, mα ≤ mα ≤ mα .
Therefore, for any truncation N , the maximum value ũ0,N for which the N–truncated
matrices of some sequence of numbers satisfying the moment bounds above, are all
positive semidefinite, will be at least u0,N . This follows because the true moments of u

are of course contained in the above moment bounds, and hence by allowing ourselves
to look at possibly other values within the bounds, the maximization can only yield a
value at least as large. Thus we have shown the following.

Proposition 1. If in the formulation of the semidefinite program as described above,
we maximize the variable u0, we obtain an upper bound to the actual minimum of u(x)

over its domain �.

A lower bound on the true value of the maximum of u(x) over its domain �, may
similarly be obtained.

Trying to find a lower bound on the minimum (respectively an upper bound on the
maximum) by this method, can only yield uninformative answers (i.e., −∞), since for
any u∗ ≤ min u(x), u(x) − u∗ is always nonnegative.
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Note that here the semidefinite constraints are critical, as without them we could not
obtain any information about the minimum or maximum of the function u(x) over its
domain. This is because the additional variable u0 is introduced linearly, and because of
the linearity of integration, cannot be calculated by the family of linear constraints.

2.6. Using Trigonometric Moments

Instead of choosing polynomials as test functions, we could choose other classes of test
functions. Polynomials are particularly convenient as they are closed under differentia-
tion. While this property is not a necessary condition for the proposed method to work, it
significantly limits the proliferation of variables we introduce. When the linear operator
has coefficients that are not polynomials, other bases might be more appropriate.

The trigonometric functions {sin(nx), cos(nx)} are also closed under differentiation
(again we can form products in higher dimensions, just as with monomials). Using trigo-
nometric functions as a basis of our test functions provides a straightforward way to deal
with linear operators with trigonometric coefficients. Indeed, the choice of test function
basis should depend on the coefficients of the linear operator. In Section 3.5, we present
an example of the use of the method with trigonometric test functions.

3. Examples

In this section, we illustrate our approach with four examples: (1) a simple homoge-
neous ordinary differential equation, (2) a more interesting ODE: Bessel’s equation, (3)
a two–dimensional partial differential equation (PDE) known as Helmholtz’s equation,
and (4) a two–dimensional PDE describing a diffusion, with oblique derivative condi-
tions. This is motivated by an application to network queueing theory. We discuss this
more extensively in Section 3.4.

3.1. Example 1: u′′ + 3u′ + 2u = 0

We consider the linear ODE with constant coefficients

u′′ + 3u′ + 2u = 0, (4)

with � = [0, 1] and with the boundary conditions u′(0) = −2e2 and u′(1) = −2. In
this case, we can easily analytically compute the solution u(x) = e2 · e−2x . We apply
the proposed method to obtain bounds on the moments. For simplicity of the exposition
we use the fact that u(x) ≥ 0.

We can compute the adjoint operator directly by integration by parts:
∫ 1

0
(u′′ + 3u′ + 2u)φ = u′φ

∣∣∣1

0
− uφ′

∣∣∣1

0
+ 3uφ

∣∣∣1

0
+

∫ 1

0
(uφ′′ − 3uφ′ + 2uφ).

We use φi(x) = xi , i = 0, . . . , N and let

mi =
∫ 1

0
xiu(x)dx.
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Together with the two unknown boundary conditions u(0) and u(1), we have N + 1
variables mi , i = 0, . . . , N for a total of N +3 variables. The linear equality constraints
generated by the adjoint equations are:

φ = 1 : ⇒ 3(u(1) − u(0)) + 2m0 = u′(0) − u′(1),

φ = x : ⇒ 2u(1) + u(0) − 3m0 + 2m1 = −u′(1),

φ = x2 : ⇒ u(1) + 2m0 − 6m1 + 2m2 = −u′(1),

...

φ = xN : ⇒ (3 − N)u(1) + N(N − 1)mN−2 − 3N · mN−1 + 2mN = −u′(1).

Since we assume that the solution has support on [0, 1], we apply Proposition 3 to derive
the two semidefinite constraints:



m0 m1 · · · mN

m1 m2 · · · mN+1
...

. . .
...

mN m2N


 � 0,




m0 − m1 m1 − m2 · · · mN − mN+1
m1 − m2 m2 − m3 · · · mN+1 − mN+2

...
. . .

...

mN − mN+1 m2N − m2N+1


 � 0.

Subject to these constraints, we maximize and minimize each of the mi , 0 ≤ i ≤ N , in
order to obtain upper and lower bounds for mi .

We applied two semidefinite optimization packages to solve the resulting SDPs: the
optimization package SDPA version 5.00 by Fujisawa, Kojima and Nakata [8] and the
Matlab-based package SeDuMi version 1.03, by Sturm [24]. We ran the semidefinite
optimizations on a Sparc 5.

In Table 1, we report the results from SDPA using monomials up to N = 14. As
SDPA exhibited some numerical instability, we replaced the equality constraints a′x = b

with −ε + b ≤ a′x ≤ b + ε with ε = 0.001. We see, as we would expect, that the
performance begins to deteriorate as we ask for bounds on higher order moments.

In Table 2, we report results using SeDuMi with N = 60. SeDuMi successfully
solved for the first 45 moments, such that the upper and lower bounds agree to 5 decimal
points.

By implementing the method we outlined in Section 2.5 to compute the minimum
and maximum of u(x), and using SeDuMi, we obtain the exact value for the maximum
of the function u(x) over [0, 1], to be u0 = 7.389. Again we note that it is the semidefi-
nite constraints that allow us to compute upper (resp. lower) bounds on the nonlinear
functional min (resp. max).

3.2. Example 2: The Bessel Equation

In this section, we consider Bessel’s differential equation

x2u′′ + xu′ + (x2 − p2)u = 0.
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Table 1. Upper and lower bounds for the ODE (4) for N = 14, using SDPA. The total computation time was
less than 15 seconds for all twelve SDPs

Variable LB UB

m0 3.1939 3.1951
m1 1.0969 1.1619
m2 0.5970 0.5997
m3 0.3957 0.3961
m4 0.2916 0.3179
m5 0.2280 0.8809

Table 2. Upper and lower bounds for the ODE (4) for N = 60, using SeDuMi. The total computation time was
under five minutes. For this simple example, our method computes upper and lower bounds for the moments,
that essentially coincide

Variable LB UB

m0 3.1945 3.1945
m1 1.0973 1.0973
m2 0.5973 0.5973
m3 0.3959 0.3959
m4 0.2918 0.2918
m5 0.2295 0.2295
m6 0.1884 0.1884
m7 0.1595 0.1595
m8 0.1382 0.1382
m9 0.1218 0.1218
m10 0.1088 0.1088
.
.
.

.

.

.
.
.
.

m20 0.0524 0.0524
.
.
.

.

.

.
.
.
.

m30 0.0344 0.0344
.
.
.

.

.

.
.
.
.

m40 0.0256 0.0256

The Bessel function and its variants appear in one form or another in a wide array of
engineering applications, and applied mathematics. Furthermore, while there are inte-
gral and series representations, the Bessel function is not expressible in closed form. The
series representation of the Bessel function, which can be found in, e.g., Watson [28],
is:

Jp(x) :=
∞∑

k=0

(−1)k(x/2)2k+p

k!(k + p)!
.

Also, over the appropriate range, the Bessel function is neither nonnegative, nor convex.
In order to avoid numerical difficulties from large constant factors, we solve a mod-

ified version of Bessel’s equation:

x2u′′ + xu′ + (49x2 − p2)u = 0. (5)
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The solution is u(x) = Jp(7x). Assuming we are given the value of the derivatives on
the boundary, using the monomials as the test functions, we obtain the adjoint equations:

φ = 1 : ⇒ −u(1) + (1 − p2)m0 + 49m2 = u′(1),

φ = x : ⇒ −2u(1) + (4 − p2)m1 + 49m3 = u′(1),

φ = x2 : ⇒ −3u(1) + (9 − p2)m2 + 49m4 = u′(1),

...

φ = xN : ⇒ −(N + 1)u(1) + ((N + 1)2 − p2)mN + 49mN+2 = u′(1).

In what follows, we choose p = 1. We used SeDuMi to compute the moments, and
also to compute the max and min. Recall from the discussion in Section 2.5 that while
we are able to obtain both upper and lower bounds for the moments, our method can
only compute upper bounds to the minimum of the solution, and lower bounds for the
maximum. Indeed, in the case of the Bessel function, the bounds we obtain for the min-
imum are greater than the actual value, and the bounds for the maximum are less than
the actual value. The true values are: min = −0.347 and max = 0.583. In Table 3, we
report the results from SeDuMi. SeDuMi reported severe numerical instabilities for the
computation of the maximum for the cases N = 30 and N = 40.

Next, we use a loose lower bound of u0 = −0.4, and we use SeDuMi to obtain
bounds on the moments. We give the first few in Table 4. As in Example 1, the results
are accurate (upper and lower bounds agree) to several decimal points.

3.3. Example 3: The Helmholtz Equation

In this section, we consider the two–dimensional PDE

�u + k2u = f, (6)

over � = [0, 1]2. We fix k = 1. Rather than a fixed number of boundary variables, in two
dimensions we have O(N) boundary variables. Partly for this reason, the semidefinite
constraints prove particularly critical for providing interesting (non-trivial) bounds to
the moments.

To compute the adjoint operator we need to use Stokes’s theorem:
∫

�

dω =
∫

∂�

ω.

We use the standard form of Green’s theorem here:
∫

�

∂2u

∂x2 · φ dxdy =
∫

�

uxxφ dxdy

= −
∫

�

uxφx dxdy +
∫

∂�

nxuxφ dS

=
∫

�

uφxx dxdy +
∫

∂�

(nxuxφ − nxuφx) dS,
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Table 3. Lower bounds for the maximum, and upper bounds for the minimum of the solution of Eq. (5) using
SeDuMi

N Minimum Maximum

20 -0.3087 0.4986
24 -0.3101 0.5068
30 -0.3111 0.5081
40 -0.3142 0.5046

Table 4. Upper and lower bounds on the moments of the solution to Eq. (5) for N = 24, using SeDuMi

Variable LB UB

m1 0.1766 0.1766
m2 0.0903 0.0903
m3 0.0583 0.0583
m4 0.0438 0.0438
m5 0.0361 0.0361

where the boundary ∂� of � is oriented to have unit outward normal (nx, ny). Thus, for
� the unit square, we have,

∫
∂�

nxuxφ dS =
∫ 1

0
(ux(x = 1, y)φ(x = 1, y) − ux(x = 0, y)φ(x = 0, y)) dy.

Again we consider the family of monomials,

F = {xi · yj }, for i, j ∈ N ∪ {0}.
In addition to the variables

mi,j =
∫ 1

0

∫ 1

0
xiyju(x, y)dxdy,

we also introduce the boundary moment variables denoting the integral of u(x, y), or
the partial derivatives ux = ∂

∂x
u and uy = ∂

∂y
u, over some portion of the boundary:

bx=1
i :=

∫ 1

0
u(x = 1, y)yi dy, dx=1

i :=
∫ 1

0
ux(x = 1, y)yi dy

bx=0
i :=

∫ 1

0
u(x = 0, y)yi dy, dx=0

i :=
∫ 1

0
ux(x = 0, y)yi dy

b
y=1
i :=

∫ 1

0
u(x, y = 1)xi dx, d

y=1
i :=

∫ 1

0
uy(x, y = 1)xi dx

b
y=0
i :=

∫ 1

0
u(x, y = 0)xi dx, d

y=0
i :=

∫ 1

0
uy(x, y = 0)xi dx.

We note again here that rather than the constant number of boundary variables in the
one–dimensional case, we haveO(N)boundary variables.The adjoint relationship above
yields:
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φ = 1 : ⇒ dx=1
0 − dx=0

0 + d
y=1
0 − d

y=0
0 + m0,0 =

∫
�

f dxdy

φ = xi : ⇒ dx=1
0 + i(i − 1)mi−2,0 + d

y=1
i − d

y=0
i + mi,0

=
∫

�

f · xi dxdy + ibx=1
0

φ = yj : ⇒ dx=1
j − dx=0

j + d
y=1
0 + j (j − 1)m0,j−2 + m0,j

=
∫

�

f · yi dxdy + jb
y=1
0

φ = xiyj : ⇒ dx=1
j + i(i − 1)mi−2,j + d

y=1
i + j (j − 1)mi,j−2 + mi,j

=
∫

�

f · xiyj dxdy + ibx=1
j + jb

y=1
i .

Either the {dx
i , d

y
j }, or the {bx

i , b
y
j }, are given as boundary values. In order to compare

with the exact solution, we select the boundary conditions such that u(x, y) = ex+y ,
and we assume we are given {bx

i , b
y
j }.

Role of Semidefinite Constraints

In part because of the proliferation of variables due to the boundary variables, the semi-
definite constraints are particularly important in higher dimensions for convergence of
the upper and lower bounds. To highlight this claim in our numerical examples, we have
introduced another parameter in the algorithm, relating specifically to the truncation level
of the moment matrices which we demand to be positive semidefinite. We let N denote
the degree in each dimension of the monomials used in the adjoint equation. For the
Helmholtz equation, this results in linear equations using moments up to xNyN , where
x, y are the two coordinates. Therefore the total degree of the highest order moment
is 2N , and the semidefinite matrices have rows and columns indexed by moments of
degree at most N . As discussed and explained in Section 2.3, in addition to semidefinite
conditions on some finite moment sequence, we may also impose semidefinite extension
conditions, i.e., we may demand that numbers exist that can extend the given semidefinite
matrix to a larger one that is again semidefinite. We introduce a parameter K that indexes
the degree of the semidefinite extension constraints that the moments must satisfy. Thus
the parameter pair (N, K) indicates that the moments are constrained by the linear equa-
tions generated by the monomials xiyj , for 0 ≤ i, j ≤ N , and furthermore, they must
satisfy the semidefinite moment matrix constraints, truncated to level |α| ≤ 2(N + K).

For this example, the full moments are given by integration over the unit square.
The boundary moments are given by integration over the unit interval. Therefore, as
discussed in Section 2.3, the full moments must satisfy 16 semidefinite constraints for
each truncation level, while the boundary moments must each satisfy two semidefinite
constraints for each truncation level. The number of monomials used to obtain linear
constraints is controlled by the parameter N , and the truncation level of the semidefinite
matrices is governed by (N + K).
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The true results, as computed by Maple 6.0, are reported in Table 5. We ran the
algorithm for various levels of N and K . First, using the commercial software AMPL,
which uses CPLEX, we obtained upper and lower bounds using only the linear equations
generated, and not imposing any semidefinite constraints (this may be thought of as the
K = −N case). The results without the semidefinite constraints are quite poor. They
are given in Table 6.

Next, we ran the algorithm for much smaller values of N : N = 3, 5, 6, but included
the accompanying semidefinite constraints. For N = 3, we used K = 0, and K = 4.
The results are in Table 7. For N = 5, 6 we used K = 0, thus imposing semidefinite
constraints truncated at level |α| ≤ 2N . These results are contained in Table 8. As the
numbers illustrate, the improvement is significant. Furthermore, the fact that interest-
ing bounds may apparently be obtained for small values of N and K , illustrates that
the global nature of the moment variables seems appropriate for global performance
measures, such as averages and variances.

3.4. Example 4: Reflected Brownian Motion

In this section, we consider a PDE with oblique derivative boundary conditions that
describes the distribution of a diffusion approximation to the queue–length process of
a two–station queue under heavy traffic conditions. In general, computing steady–state
performance measures of network queueing systems can be difficult, and there is a wealth
of literature addressing such problems, see for instance [3], [10], [25] and the references
therein.

Consider two parallel finite–capacity queues, Q1 and Q2, coupled so that when Q1
empties, it takes customers from Q2, and if Q2 is full, it transfers customers to Q1. In the
heavy traffic limit where the arrival rate approaches the service rate, the vector queue–
length process can be approximated by a diffusion, or a reflected Brownian motion; see,
for example, Harrison [10], Varadhan and Williams [27], and Harrison, Landau, and
Shepp [11]. This is a diffusion, or reflected Brownian motion, inside the unit square. It
satisfies Laplace’s equation, �u = 0, on the interior, and oblique derivative boundary
conditions on the four edges, given by the four angles {θ1, θ2, θ3, θ4}. Thus along edge i,
which we denote 
i , the derivative of the distribution of the diffusion in the direction θi

Table 5. Exact Results for the solution of the PDE (6)

Variable Value

m0,0 2.9525
m1,0 1.7183
m1,1 1.0000
m2,0 1.2342
m2,1 0.7183
m2,2 0.5159
m3,0 0.9681
m3,1 0.5634
m3,2 0.4047
m3,3 0.3175
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Table 6. Upper and lower bounds from linear optimization for N = 5, N = 10, N = 20. Significantly, even
for N = 20, the bounds are quite loose, and some, for instance m0,0, are completely uninformative

Variable LB, N = 5 UB, N = 5 LB, N = 10 UB, N = 10 LB, N = 20 UB, N = 20

m0,0 0.0000 +∞ 0.0000 +∞ 0.0000 +∞
m1,0 0.0000 4.3142 0.0000 4.0822 0.0000 3.8694
m1,1 0.7559 1.0881 0.8557 1.0419 0.9400 1.0120
m2,0 0.0000 4.6790 0.0000 4.6790 0.0000 4.6790
m2,1 0.0545 1.0563 0.1417 1.0059 0.1749 0.9753
m2,2 0.0000 0.9447 0.0000 0.9087 0.0000 0.9087
m3,0 0.0000 4.8743 0.0000 4.4932 0.0000 4.4414
m3,1 0.1692 0.6806 0.4015 0.6063 0.5025 0.5758
m3,2 0.0000 0.6383 0.0000 0.6105 0.0000 0.5989
m3,3 0.0000 0.5291 0.1684 0.3640 0.2573 0.3296

Table 7. Upper and lower bounds from the semidefinite optimization for N = 3, where we first use K = 0 and
K = 4. The improvement can be entirely attributed to the strengthened semidefinite constraints, controlled
by the parameter K . Note that already the bounds are quite good, in many cases revealing more than one
significant digit, where as the bounds obtained without imposing the semidefinite constraints in Table 6 for
much larger N , are significantly worse

Variable LB, N = 3, K = 0 UB, N = 3, K = 0 LB, N = 3, K = 4 UB, N = 3, K = 4

m0,0 2.5760 3.2009 2.9235 3.1707
m1,0 1.5393 1.7742 1.6944 1.7742
m1,1 0.9272 1.0428 0.9847 1.0130
m2,0 0.9691 1.3657 1.1123 1.3088
m2,1 0.5951 0.9491 0.7151 0.7458
m2,2 0.3677 0.5765 0.4948 0.5456
m3,0 0.7981 1.4707 0.8244 1.0478
m3,1 0.3048 0.7928 0.5054 0.5818
m3,2 0.0905 0.5717 0.3874 0.5133
m3,3 0.0530 0.6945 0.3017 0.3399

with respect to the inward normal, vanishes. This corresponds to the Brownian motion
being reflected instantaneously off of side k at an angle −θk from the normal. The x and
y values of the diffusion represent the normalized number of customers in the first and
second queue, respectively. Then, the problem we wish to solve is:

{�u = 0

cos θk

(
∂u(z)
∂n

)
+ sin θk

(
∂u(z)
∂σ

)
= 0, z ∈ 
k.

For the two–dimensional case, Trefethen and Williams [25] have obtained solutions to
this class of problems by using the Schwarz–Christoffel transformations to find the real
part of the analytic function (which, as they show, always exists) which conformally
maps the domain of the diffusion to another region with straight lines, with orientation
given by the angles of the oblique derivatives given in the problem definition. Because it
relies on conformal mapping, their method applies strictly to the two–dimensional case.

The performance measures of interest are the expected value of the queue length at
each of the two queues:

Eu(x) =
∫

�

xu(x, y), Eu(y) =
∫

�

yu(x, y),



154 D. Bertsimas, C. Caramanis

Table 8. Upper and lower bounds from the semidefinite optimization for N = 5, and N = 6, where we have
K = 0 for both. Again we see improvement, in some cases significant, over the N = 3 case. Still, we remark
that the most dramatic improvement is demonstrated in Table 7, when we first add the semidefinite extension
constraints, from (N = 3, K = 0), to (N = 3, K = 4)

Variable LB, N = 5, K = 0 UB, N = 5, K = 0 LB, N = 6, K = 0 UB, N = 6, K = 0

m0,0 2.9346 2.9848 2.9493 2.9568
m1,0 1.7122 1.7402 1.7122 1.7402
m1,1 0.9966 1.0009 0.9972 1.0009
m2,0 1.2299 1.2371 1.2310 1.2371
m2,1 0.7147 0.7245 0.7156 0.7245
m2,2 0.5113 0.5233 0.5132 0.5233
m3,0 0.9639 0.9734 0.9646 0.9734
m3,1 0.5605 0.5762 0.5608 0.5762
m3,2 0.4003 0.4120 0.4021 0.4120
m3,3 0.3106 0.3251 0.3146 0.3251

and also the integral with respect to arc length over each of the boundaries, 
k , repre-
senting the rate at which the diffusion hits 
k:

Ik =
∫


k

u(x, y).

Similarly to the previous examples considered, we obtain an adjoint relationship (see
[25]):

∫
�

u�φ +
4∑

k=1

∫

k

u

(
∂

∂n
φ − tan θk

∂

∂σ
φ

)
= 0,

where as usual, φ is our test function, which we take to be a monomial. Here, ∂
∂n

is the
normal derivative, and ∂

∂σ
is the tangent derivative, where the boundary is taken to be

oriented counterclockwise, consistent with the inward pointing normal direction. The
variables in this case are the full moments, {mij }, and the boundary moments, {bx=0

i },
{bx=1

i }, {by=0
i }, and {by=1

i }, where I1 = bx=0
0 , I2 = b

y=0
0 , I3 = bx=1

0 , and I4 = b
y=1
0 .

Thus in this example, we are interested in bounding not only the full moments, m01 and
m10, but also the four boundary moments. Imposing semidefinite moment conditions on
both the full moments, and also the boundary moments, we obtain the results given in
Table 9.

3.5. Trigonometric Test Functions

In this section, we illustrate the use of trigonometric test functions. We consider the
differential equation

u′′ + 2u′ + sin(2πx)u = 10 sin x − 20 cos x + (10 − 10 sin x) sin(2πx). (7)

If we attempt to use a polynomial basis, we encounter a proliferation of variables, since
the polynomials are not closed by action of the adjoint (which has a sin(2πx) term). We
use the family of test functions

φ2n(x) := sin(2πnx), φ2n+1(x) := cos(2πnx).
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Table 9. Upper and lower bounds for performance measures of the queueing network example, for N = 3, 6,
and 12, using SDPA. The actual values are: I1 = I4 = 0.805295, I2 = I3 = 1.610589, m1,0 = 0.551506, and
m0,1 = 0.448494

Variable LB, N = 3 UB, N = 3 LB, N = 6 UB, N = 6 LB, N = 12 UB, N = 12

m1,0 0.5010 0.5917 0.5502 0.5532 0.5515 0.5516
m0,1 0.4092 0.4988 0.4475 0.4509 0.4481 0.4488
I1 0.5011 0.9953 0.7771 0.8328 0.8017 0.8086

I2 = I3 1.5007 1.6798 1.6077 1.6134 1.6104 1.6107
I4 0.5011 0.9953 0.7771 0.8328 0.8017 0.8086

We define the variables:

m2n :=
∫

�

u(x)φ2n(x) dx

m2n+1 :=
∫

�

u(x)φ2n+1(x) dx.

The adjoint equations become:

φ1 = 1 : ⇒ 2u(1) − 2u(0) + m2 =
∫

�

f dx + u′(0) − u′(1),

φ2n = sin(2πnx) : ⇒ 2πn(u(0) − u(1)) + 1

2
m2(n−1)+1 − 1

2
m2(n+1)+1

−4π2n2m2n − 4πnm2n+1 =
∫

�

f φ2n dx

φ2n+1 = cos(2πnx) : ⇒ 2u(1) − 2u(0) + 1

2
m2(n+1) − 1

2
m2(n−1)

−4π2n2m2n+1 − 4πnm2n =
∫

�

f φ2n+1 dx + u′(0) − u′(1).

We assume we are given u′(0) and u′(1). The products cos(2πnx) · sin(2πkx) appear
in the semidefinite constraints. These can be rewritten as follows:

sin(2πnx) · cos(2πkx) = 1

2
(sin(2π(n + k)x) + sgn(n − k) sin(2π |n − k|x))

sin(2πnx) · sin(2πkx) = 1

2
(cos(2π(n − k)x) − cos(2π(n + k)x))

cos(2πnx) · cos(2πkx) = 1

2
(cos(2π(n − k)x) + cos(2π(n + k)x)).

We report in Table 10 upper and lower bounds for this ODE using trigonometric test
functions. We see that the bounds are much tighter for the even moments. While the
bounds are not as tight as in the earlier cases, nevertheless they do give an indication that
the proposed method may have applicability beyond polynomial coefficient operators.
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Table 10. Upper and lower bounds for the ODE (7) for N = 20 using SeDuMi

Variable LB UB

m0 0.1128 3.1239
m1 0.6730 1.0954
m2 0.0000 0.0294
m3 0.4471 0.7192
m4 0.0127 0.0130
m5 0.3349 0.5390
m6 0.0072 0.0073
m7 0.2678 0.4310
m8 0.0046 0.0047
m9 0.2231 0.3591
m10 0.0032 0.0032

3.6. Insights From The Computations

In this section, we summarize the major insights from the computations we performed.

1. In both one and two dimensions, the proposed method gives strong bounds in rea-
sonable times.

2. Perhaps the most encouraging finding is that the semidefinite constraints significantly
improve over the bounds from the linear constraints. In particular, the semidefinite
constraints together with only a few linear constraints, produce fairly informative
bounds. These bounds are guaranteed upper and lower bounds, rather than simply
approximations.

3. The semidefinite optimization solvers we used exhibited some numerical stability
issues, and the semidefinite moment conditions seem to contribute to the lack of
numerical stability of the black-box solvers.

4. Our experiments with trigonometric moments indicate that the proposed method
is not restricted to PDEs with polynomial coefficients, but can accommodate more
general coefficients by appropriately changing the underlying basis.

4. Concluding Remarks

We have presented a method for providing bounds on functionals defined on solutions
of PDEs, using semidefinite optimization methods. While we present a hierarchy of
increasingly tighter bounds, we emphasize that even at the initial steps, the bounds pro-
duced are, by virtue of their construction, guaranteed upper (respectively lower) bounds.
Discretization based methods are unable to produce such bounds.

For the case of monomial test functions, the algorithm proposed in this paper uses
degree N monomials, and hence O(Nd) variables. Compared to traditional discretization
methods, the proposed method provides bounds, as opposed to approximate solutions,
by solving a semidefinite optimization problem on O(Nd) variables. The computational
results at least for one and two dimensions indicate that we obtain relatively tight bounds
even with small to moderate N , which is encouraging.
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Despite considerable progress in recent years, the current state of the art of semidefi-
nite optimization codes, especially with respect to stability of the numerical calculations,
is not yet at the level of linear optimization codes. This is one of the major limitations of
the proposed method, as it relies on semidefinite optimization codes. Furthermore, the
fact that we use polynomial moments may also be partially responsible for leading to
ill-conditioned problems. It would be worth considering either different spanning fam-
ilies, or also different parameterizations which have better behavior. Furthermore, we
use general purpose black-box semidefinite codes even though we have a very partic-
ular formulation with a lot of structure. Indeed, the moment matrices depend only on
the structure of the support set, and are independent of the linear operator. The hope is
that progress in the area of numerical methods for semidefinite optimization codes, and
specifically codes with improved performance for moment matrices, will improve the
stability and performance of the proposed method as well.
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