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Linear regression models are traditionally built through trial and error to balance many competing goals such as predictive
power, interpretability, significance, robustness to error in data, and sparsity, among others. This problem lends itself naturally
to a mixed integer quadratic optimization (MIQO) approach but has not been modeled this way because of the belief in
the statistics community that MIQO is intractable for large scale problems. However, in the last 25 years (1991–2015),
algorithmic advances in integer optimization combined with hardware improvements have resulted in an astonishing 450
billion factor speedup in solving mixed integer optimization problems. We present an MIQO-based approach for designing
high quality linear regression models that explicitly addresses various competing objectives and demonstrate the effectiveness
of our approach on both real and synthetic data sets.
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1. Introduction
We consider the linear regression model with response vector
yn×1, model matrix X = 6x11 0 0 0 1xp7 ∈ <n×p, regression
coefficients Â ∈ <p×1 and errors Å ∈ <n×1:

y = XÂ+ Å0

The linear regression model is a powerful tool for modeling
the relationship between a dependent variable and explanatory
variables and is well studied in theory as well as widely
applied in practice. However, going from raw data to a
high quality linear regression model is a nontrivial task;
the modeler must ensure that all modeling assumptions are
met while building a parsimonious model that is able to
separate signal from noise. The modeler rarely builds a single
model. Rather, an iterative process of refinement is applied
to produce the best possible model. This task manifests itself
as a series of checks during the model building process: is
there evidence of multicollinearity? of outliers? Are there
too many variables present, or not enough? How well does
the model generalize? What about measurement error in the
data or missing data? Are the variables significant? Does the
resulting model make sense for the application at hand? And
so on.

The modeler must balance these competing objectives
in the construction of a regression model. In this paper,
we propose an algorithmic, optimization-based method for
jointly balancing such objectives.

1.1. The Aspirations of the Work

Currently, regression modeling is done in a fairly ad hoc
manner. The various properties of a high quality linear
regression model are typically built into the model one at a
time and through repeated trial and error by the modeler.
Hence, there is no guarantee that the final model produced
satisfactorily addresses all of them, let alone optimally
addresses them. The goal of this work is to design an
optimization-based algorithm that simultaneously takes into
account these desirable properties and, whenever it is not
possible to satisfy all these properties simultaneously, the
algorithm provides a guarantee that it is indeed infeasible
to do so. The output of such an algorithm is a set of
high quality regression models containing as many of the
desired properties as possible. As measure of quality we use
out-of-sample R2 and the ability of the model to achieve
interpretability, significance, robustness to error in data, and
sparsity.

We feel that humans and machines have different strengths
and our proposed approach aims to utilize both these
strengths. The modeler typically has subject matter expertise;
for example, the modeler may know of a particular structure
present in the data or can require that certain variables be
present in the final model. Whereas humans have intuition
and contextual knowledge and understanding, computers
have significantly more computational power. Our aspiration
in this work is to empower modelers with a methodology
that builds models with properties that a human modeler can
require based on intuition and expertise.
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1.2. Current Practice

Fitting regression models has long been viewed as an art,
left to the savvy modeler who manages often-competing
goals. The result is that two modelers may begin with the
same set of data and end with quite different models.

We consulted several widely used regression textbooks
(Regression Analysis by Example by Chatterjee et al. 2012,
Applied Regression Analysis by Draper and Smith 1998,
Linear Regression Analysis by Seber and Lee 2003, and
Applied Linear Regression by Weisberg 2014) to see how
modelers are instructed to approach the difficult task of
fitting a linear regression model, and our findings show that
although many textbooks discuss these competing objectives
individually, most textbooks do not provide guidance to
modelers on how to balance these objectives in organizing
their search for the best model. For instance, Draper and
Smith (1998), Seber and Lee (2003), and Weisberg (2014)
each contain a chapter on model selection and discuss topics
such as selection criteria, the best subset problem, stepwise
methods, shrinkage methods, and computational approaches.
Many techniques are offered, but little guidance is provided
as to which method a modeler should use, if any, under
particular circumstances. The Chatterjee et al. (2012) text
also contains a chapter on model selection with a similar
set of topics but differs from the other texts in that it also
provides a potential strategy for fitting regression models. In
our experience, many modelers follow a process similar to
what is outlined in Chatterjee et al. (2012). We summarize
their suggestions here and henceforth refer to this as “the
standard approach”:

1. Examine the variables one by one, looking for outliers
and making transformations.

2. Construct pairwise scatterplots for each variable, if
possible. Examine the correlation matrix and delete redun-
dant variables. Calculate the condition number of the cor-
relation matrix to understand the extent of the effect of
multicollinearity.

3. Fit the full ordinary least squares model and delete
variables with insignificant t-tests. For the reduced model,
examine the residuals for linearity, heteroscedasticity, auto-
correlation, and outliers.

4. See if additional variables can be dropped and/or if
new variables need to be brought in. Repeat step 3.

5. Check variance inflation factors (VIFs) and residual
diagnostics.

6. Validate the fitted model on a test set or use other
methods such as cross validation, bootstrapping, etc.

In (Chatterjee et al. 2012, p. 311), the authors are quick
to note that the procedure they outline is frequently imple-
mented synchronously rather than entirely sequentially, and
that it may be necessary to repeat the steps several times.
They qualify their recommended steps by noting that “one
important component that we have not included in our
outlined steps is the subject matter knowledge of the analyst
in the area in which the model is constructed. 0 0 0After all
is said and done, statistical model building is an art. The

Table 1. Desirable properties of a linear regression model
and how they are incorporated into the model.

Paper
Property section MIQO model

General sparsity 301 Constraint (5d)
Group sparsity 302 Constraint (5e)
Limited pairwise multicollinearity 302 Constraint (5f)
Nonlinear transformations 302 Constraint (5g)
Robustness 303 Objective (5a)
Stable to outliers 304 Objective (5a)
Modeler expertise 305 Constraint (5h)
Statistical significance 306 Constraint (5i)
Low global multicollinearity 307 Constraint (5i)

techniques that we have described are the tools by which
this task can be attempted methodically.”

In contrast, our goal is to design an algorithm that elim-
inates the modeler’s tedious task of repeating the model-
building steps several times and to produce a high quality
set of models.

1.3. Contribution and Structure of the Paper

In this paper, we propose a mixed integer quadratic opti-
mization (MIQO) approach to model a variety of desired
properties in statistical models. In Table 1 we summarize the
properties we model and how they are built into the MIQO
model in §4. Our approach provides the only methodology
we are aware of to construct linear regression models that
impose statistical properties simultaneously. Using both real
and synthetic data, we demonstrate that the approach is
generally applicable, is tractable in the sense of providing
solutions in realistic timelines, and provides a guarantee
of suboptimality because it is based on an MIQO model.
Specifically, when the MIQO is infeasible, we obtain a
guarantee that imposing distinct statistical properties is
simply not feasible.

The paper is structured as follows. We begin in §2
with a brief review of mixed integer optimization and the
computational speedups witnessed in the past 25 years. In §3,
we introduce and discuss the desirable statistical properties
we want the regression model to have. In §4, we develop the
MIQO-based algorithm to impose these properties. In §5, we
provide evidence of our algorithm’s abilities using a wide
variety of real and synthetic data sets. We conclude in §6.

2. Mixed Integer Optimization Background
In this section, we present a brief overview of mixed inte-
ger optimization (MIO), including the simply astonishing
advances it has enjoyed in the last 25 years.

The general form of an MIQO problem is as follows:

min 8ÁT QÁ+ÁT a9

s0t0 AÁ¶ b

�i ∈ 801191 ∀ i ∈ ©

�j ∈�+1 ∀ j y ©1

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

98
.2

17
.2

02
.2

34
] 

on
 1

3 
Fe

br
ua

ry
 2

01
6,

 a
t 0

9:
26

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Bertsimas and King: An Algorithmic Approach to Linear Regression
4 Operations Research 64(1), pp. 2–16, © 2016 INFORMS

Figure 1. Peak supercomputer speed in GFlop/s
(log scale) from 1994 to 2015.
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where a ∈�m, A ∈�k×m, b ∈�k, and Q ∈�m×m (positive
semidefinite) are the given parameters of the problem;
�+ denotes the nonnegative reals, the symbol ¶ denotes
element-wise inequalities and we optimize over Á ∈ �m

containing both discrete (�i1 i ∈ ©) and continuous (�i1 i y ©)
variables, with ©⊂ 811 0 0 0 1m9. We note that in the MIQO
problems, we consider the integer variables are restricted to
be binary. For additional background on MIO, see Bertsimas
and Weismantel (2005). Subclasses of MIQO problems
include convex quadratic optimization problems (©= �),
mixed integer (Q = 0m×m) and linear optimization problems
(©= �1Q = 0m×m). Modern integer optimization solvers such
as Gurobi and CPLEX are able to tackle MIQO problems.

In the last 25 years (1991–2015) the computational power
of MIO solvers has increased at an astonishing rate. In
Bixby (2012), to measure the speedup of MIO solvers,
the same set of MIO problems was tested on the same
computers using 12 consecutive versions of CPLEX and
version-on-version speedups were reported. The versions
tested ranged from CPLEX 1.2, released in 1991 to CPLEX
11, released in 2007. Each version released in these years
produced a speed improvement on the previous version,
leading to a total speedup factor of more than 29,000
between the first and last version tested (see Bixby 2012
and Nemhauser 2013 for details). Gurobi 1.0, an MIO
solver that was first released in 2009, was measured to have
similar performance to CPLEX 11. Version-on-version speed
comparisons of successive Gurobi releases have shown a
speedup factor of more than 27 between Gurobi 6.0, released
in 2015, and Gurobi 1.0 (Bixby 2012, Nemhauser 2013).
The combined machine-independent speedup factor in MIO
solvers between 1991 and 2015 is 780,000. This impressive
speedup factor is due to incorporating both theoretical and
practical advances into MIO solvers. Cutting plane theory,
disjunctive programming for branching rules, improved
heuristic methods, techniques for preprocessing MIOs, using
linear optimization as a black box to be called by MIO
solvers, and improved linear optimization methods have
all contributed greatly to the speed improvements in MIO
solvers (see Bixby 2012).

In addition, the past 20 years have also brought dramatic
improvements in hardware. Figure 1 shows the exponentially
increasing speed of supercomputers over the past twenty
years, measured in billion floating point operations per second,
available from Top500.org (2013). The hardware speedup
from 1994 to 2015 is approximately 105075 ∼ 5701000. When
both hardware and software improvements are considered, the
overall speedup is approximately 450 billion! Note that the
speedup factors cited here refer to mixed integer linear opti-
mization problems, not MIQO problems. The speedup factors
for MIQO problems are similar. MIO solvers provide both
feasible solutions as well as lower bounds to the optimal value.
As the MIO solver progresses toward the optimal solution,
the lower bounds improve and provide an increasingly better
guarantee of suboptimality, which is especially useful if the
MIO solver is stopped before reaching the global optimum. In
contrast, heuristic methods do not provide such a certificate of
suboptimality.

The belief that MIO approaches to problems in statistics
are not practically relevant was formed in the 1970s and
1980s and it was at the time justified. Given the astonishing
speedup of MIO solvers and computer hardware in the
last 25 years, the mindset of MIO as theoretically elegant
but practically irrelevant is no longer supported. In this
paper, we demonstrate that by using MIQO it is possible
incorporate many beneficial statistical properties into the
linear regression optimization problem itself. We provide
empirical evidence of the success of the method.

3. Desirable Properties of a Linear
Regression Model

In this section, we review desirable characteristics of a
linear regression model. We discuss our MIQO approach to
build these properties into a model and contrast it to other
approaches to achieving each property.

3.1. General Sparsity

When the number of potential features is large, we often
wish to identify a critical subset that is primarily responsible
for producing the response. This leads to more interpretable
models and aids prediction accuracy by eliminating noise
variables to increase the model’s ability to generalize. For
this reason, we want to develop linear regression models
with a specified number k of nonzero coefficients �. This
number k is called the sparsity of the model.

To achieve sparsity, we follow the approach of Bertsimas
et al. (2015) and use a combination of continuous and
discrete optimization methods to efficiently solve the best
subset regression problem (Miller 1990). That is, we will
solve the following problem for all values of k ∈ 811 0 0 0 1 p9
and return the solution and value of k with the smallest
residual sum of squares:

min
Â

1
2�y − XÂ�

2
2 subject to �Â�0 ¶ k0 (1)
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We will formulate Problem (1) as an MIQO problem and
warm-start the MIQO using discrete first order methods
as described in Bertsimas et al. (2015). Solving the best
subset regression problem as an MIQO provides a solution
with a guarantee on its suboptimality even if we terminate
the MIQO early. It extends to other objective functions and
can accommodate side constraints on the coefficients of the
linear regression, and we will heavily take advantage of this
to ensure that our linear regression model contains all of the
desired properties.

Using optimization to solve the best subset regression
problem is not a new approach; the method for best subset
regression introduced in Furnival and Wilson (1974) is an
MIQO-based method. However, it is only capable of solving
the best subset problem accurately for values of p ¶ 30.
The MIQO approach outlined in Bertsimas et al. (2015) is
significantly more scalable, largely because of the advances
in computer hardware, the improvements in MIO solvers,
and the specific warm-start techniques developed therein.

Because of the difficulty of scaling algorithms like the
approach in in Furnival and Wilson (1974), research on the
best subset regression problem in the past few decades has
mainly focused on methods that solve a convex approximation
of Problem (1). For example, Lasso (Tibshirani 1996, Chen
et al. 1998) is a popular model that solves the following
problem:

min
Â

{

1
2�y − XÂ�

2
2 +��Â�1

}

0 (2)

The l1 penalty on Â in Problem (2) shrinks the coefficients
toward zero and sets many coefficients to be exactly zero,
which induces a sparse estimate of Â. Under sufficient
regularity conditions, it has been shown that the sparsity
pattern of this solution perfectly coincides with the true
underlying sparsity pattern (Bühlmann and Van De Geer
2011). However, the regularity conditions required to guaran-
tee this are difficult to verify in practice and are not typically
satisfied by highly correlated data—which is a common
occurrence in practice.

3.2. Selective Sparsity

We use the term “selective sparsity” to refer to situations
where we would like to constrain the joint inclusion of sub-
sets of independent variables. Modeling selective sparsity via
MIQO can cover a broad range of settings and we will con-
sider several here: group sparsity, pairwise multicollinearity,
and nonlinear transformations.

Group Sparsity. Some applications exhibit a block- or
group-sparse structure, with groups of independent vari-
ables whose coefficients are either all zero or all nonzero.
Categorical variables, when expressed as a collection of
dummy variables, form a natural group structure. Clear
group formations also appear in compressed sensing (Eldar
and Kutyniok 2012), microarray analysis (Ma et al. 2007),
and other applications.

By encoding this structure directly into the MIQO model,
we ensure that the resulting solution preserves the group
sparsity property. Moreover, MIQO can easily handle over-
lapping groups—a common phenomenon in microarray data,
where some genes may play a role in several functional
groups (Jacob et al. 2009). Group sparsity has been highly
studied in recent years (for example, see Yuan and Lin
2006, Bach 2008, and Zhao et al. 2009). The most common
approach is group Lasso, proposed by Yuan and Lin (2006),
and therefore much of the literature focuses on how well
the group sparsity property is recovered. With an MIQO
approach, a feasible solution guarantees the group sparsity
property. To the best of our knowledge, there has not been
previous work on group sparsity via MIQO.

Limited Pairwise Multicollinearity. A near-linear re-
lationship between independent variables obfuscates the
relationship of each feature to the response and leads to
unstable parameter estimates. To avoid these issues and
produce interpretable models, a high quality regression model
will contain features that are as orthogonal as possible. Thus,
we suggest using pairwise correlation as a measurement
of multicollinearity and building in selective sparsity by
limiting the independent variables in the regression model
to those that have relatively low pairwise correlation. This
is a standard technique in practice—for example, in their
textbook, Tabachnick and Fidell (2001) recommend that
independent variables with a pairwise correlation more than
0.70 should not be included in multiple regression analysis.

Other methods of managing multicollinearity include
principal components regression (Massy 1965) and partial
least squares (Wold et al. 1984), which transform the data to
produce new, uncorrelated feature variables. Although these
effectively solve the issue of multicollinearity, it may be
difficult to interpret the new features and therefore unclear
the extent to which the original variables affect the response.
Penalized regression, which gives biased estimates but
reduces variance, is another common method of attacking the
inflated variances that result from multicollinearity. Although
this may induce lower variances, the shrinkage induced by
these methods does not actually make the data any less
correlated, and hence we do not view it as an appropriate
tool for encouraging interpretable models.

Detecting Appropriate Nonlinear Transformations.
The data may not be collected in the units that are most
explanatory of the dependent variable. It may turn out that a
nonlinear transformation of an independent variable results in
a new variable that can explain the variance in the dependent
variable much better than the original measured variable
could.

Typically, modelers detect the need for nonlinear transfor-
mations through graphical examination and trial and error.
We are not aware of any other automated methods of doing
this. For a fixed set of nonlinear transformations, MIQO can
optimally determine whether to use the original variable
or a transformed version of the variable. For any variable
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j for which nonlinear transformations may be desired, we
simply include all the potential transformed versions of
the variable in the data set passed to the algorithm. Let
the set Tj contain the original variable j and its nonlinear
transformations. Then we incorporate selective sparsity by
including a constraint in the MIQO model that at most one
of the variables from the set Tj can appear in the final model.

3.3. Robustness

Data quality varies widely based on the nature of the data
being collected and the collection process. It is very common
that the data used in regression models are inaccurate.
Robust optimization directly addresses errors in the data
by considering uncertainty sets for the data and calculates
solutions that are immune to worst-case uncertainty under
these sets (see Ben-Tal et al. 2009 and Bertsimas et al. 2011).
For the linear regression problem with data 4y1X5, the data
associated with the independent variables have error ãX that
belong to a given uncertainty set U . For example,

U = 8ãX � �ãX�p1q ¶ â91 where �A�p1q = max
�z�q=1

�Az�p0

The robust least squares problem is then

min
Â

max
ãX∈U

1
2�y − 4X +ãX5Â�

p
p0 (3)

The key result is as follows.

Theorem 1 (Bertsimas and Fertis 2009, Xu et al. 2009).
Problem (3) is equivalent to

min
Â

{

1
2�y − XÂ�

p
p + â�Â�q

}

0 (4)

For p = 2 and q = 1, Theorem 1 recovers Lasso. This
result demonstrates that penalized regression models like
Lasso are actually robust models against uncertainty in data.
Although Lasso is revered for its ability to induce sparse
solutions and much work has been done on the ability of
Lasso to recover the true model (see Bühlmann and Van
De Geer 2011 for an overview of the conditions under which
Lasso identifies the true sparsity pattern), its predictive
power is a result of being robust to uncertainty in data.
Bertsimas et al. (2015) compare exact subset selection in
linear regression models using MIQO and Lasso and report
that although the predictive accuracy of MIQO and Lasso are
comparable, Lasso produces models that are not particularly
sparse. In our algorithm, we regularize our MIQO model as
a way to immunize the model from data uncertainty. Because
there are many cases in which regularization alone is not
able to ensure sparsity (Raskutti et al. 2011, Zhang 2014,
Mazumder et al. 2011, Greenshtein et al. 2006, Zhang and
Zhang 2012, Shen et al. 2013), we use the regularization
approach in addition to the general sparsity approach outlined
in §3.1. The robust optimization approach focuses on the
worst-case error in the data. The approach is flexible in
that it can handle different regularization parameters for
different corresponding coefficients. For a characterization
of the relation between robustification and regularization,
see Bertsimas and Copenhaver (2014).

3.4. Stability Against Outliers

In the ideal modeling scenario, all data are representative of
the population from which they are gathered. The presence
of outliers can seriously impede the model’s generalization
ability, so we would like to develop regression models that
avoid the effect of outliers. Toward this goal we can use
a median regression objective function rather than a least
squares objective. The least squares objective is known to
produce coefficients that are highly sensitive to outliers.
Coefficient sensitivity to outliers is typically quantified using
the metric of finite sample breakdown point Donoho and
Huber (1983). The least squares objective leads to estimates
with a limiting breakdown point of zero (Hampel 1971).
The least absolute deviations objective, which minimizes the
l1-norm of the residuals rather than the l2-norm, also has
a breakdown point of zero. However, the least median of
squares (LMS) objective, introduced in Rousseeuw (1984),
minimizes the median of the l2-norm of the residuals. The
limiting breakdown point of LMS estimators is 50%—the
maximum achievable. In Bertsimas and Mazumder (2014),
the authors formulate the LMS regression problem using
MIQO. Their approach is easily adapted to our setting. To
address outliers, we can adopt the LMS objective in place of
the least squares objective in Problem (5) while retaining
the other constraints and the regularization parameter in the
objective.

3.5. Modeler Expertise

In some cases, the modeler has particular expertise with the
application at hand. In that case, the modeler might wish to
specify that certain independent variables must be included
in the final regression model because of a known correlation
with the response. This can be incorporated directly into the
model building process by adding a constraint to the MIQO
model.

3.6. Statistical Significance

Statistical inference relies not just on parameter estimates
but also on specifications of uncertainty and confidence
regarding those estimates. It is critical when interpreting
parameters to have a sense of whether the model is truly
detecting an underlying relationship between the variable
and the response. The standard way of quantifying this in
the scientific literature is through the concept of statistical
significance. An independent variable in a regression model
is labeled as “statistically significant” if, in the presence of
the other variables in the model, the probability � that the
observed effect occurred by chance is low, conventionally
5% or less. Modelers typically exclude insignificant variables
from regression models because they can only give murky
interpretations of their effects on the response.

We would like our algorithm to provide confidence inter-
vals and judge whether a given variable is statistically
significant. However, we would also like our methodology to
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be free of distributional assumptions, to handle high dimen-
sional settings, and to incorporate regularization, as described
§3.3. All these properties invalidate the standard least squares
assumptions. Our approach, then, is not to compromise these
goals but rather to use bootstrapping techniques to generate
confidence intervals and test for statistical significance. The
bootstrap method was introduced in the seminal paper Efron
(1979), and bootstrapped confidence intervals have been
shown to be asymptotically more accurate than standard
confidence intervals obtained using sample variance and
normality assumptions (DiCiccio and Efron 1996).

Coming up with analytical formulae for significance mea-
sures and confidence intervals in regularized, potentially
high-dimensional settings is challenging and an area of
current research (see Javanmard and Montanari 2013 and
Lockhart et al. 2014, for example). We prefer our methodol-
ogy to be flexible and able to handle a variety of objective
functions and constraints, and so instead we opt for a boot-
strapping approach, which harnesses the power of modern
computing.

3.7. Low Global Multicollinearity

We note that it is possible to have multicollinearity without
having any high pairwise correlations; see Ryan (2008) for
an example where four variables all have pairwise correlation
¶ 0057 but have a perfect linear relationship. Thus, using a
pairwise correlation threshold as a surrogate for eliminating
multicollinearity may not catch all cases of multicollinearity.

Global multicollinearity can be measured by checking
the condition number of the correlation matrix resulting
from the submatrix of included variables. A high condition
number indicates a multicollinearity problem. A condition
number greater than 15 is usually taken as evidence of
multicollinearity and a condition number greater than 30 is
usually an instance of severe multicollinearity (Chatterjee
et al. 2012).

4. Overall Approach
In this section, we describe our overall approach for pro-
ducing high quality regression models. The method can be
applied to any data set that an analyst wishes to model using
linear regression. The algorithm is composed of three stages:
(1) preprocessing, (2) building and solving the MIQO model,
and (3) generating any additional constraints and repeating
step (2).

4.1. Stage 1: Preprocessing

The first stage begins with data set preprocessing and parame-
ter setting. The data set is split randomly 50%/25%/25% into
a training, validation, and test set. Each set is standardized
so that the training set has columns with zero mean and unit
l2-norm. The modeler may also choose to set the number
of robustification parameters â to be tested in the model
(the default is 10) and �, the maximum pairwise correla-
tion that will be allowed between included variables (the

default is 0.8). The algorithm then generates the correlation
matrix for the training data and identifies variables that are
correlated in absolute value beyond � and calls this set of
pairs of variables ¨£, for highly correlated variables. The
algorithm identifies categorical variables and expresses them
as groups of dummy variables. At this point, the modeler can
specify any additional group-sparsity structure. We denote
the mth set of group-sparse variables as §³m. The modeler
can specify a set of variables to be considered for a nonlinear
transformation and generates transformed versions of those
variables. The default transformations for variable x are
x21 x1/21 and logx. We denote the mth set of transformed
variables by ḿ. If the modeler believes the data set to
contain a significant number of outliers, he can specify
at this point to use the median objective function rather
than the least squares objective. Finally, the modeler can
specify a set © of variables to be included in the model that
capture the modeler’s subject expertise. Then the algorithm
calculates kmax, the maximum possible subset size such that
the selective sparsity and modeler expertise constraints are
still feasible. This is determined by solving a maximum
independent set problem. We construct a graph containing
vertices corresponding to each of the p potential variables
and an edge between nodes i1 j such that 4i1 j5 ∈¨£. Then
a maximum independent set, or stable set, for this graph is a
set such that no two vertices are adjacent. The cardinality of
this set is exactly equal to the maximum value of k that will
result in a feasible MIO model and is the objective value of
the following MIO problem:

kmax = max
z

p
∑

i=1

zi

s0t0 zi + zj ¶ 1 ∀ 4i1 j5 ∈¨£

zi ∈ 801191 i = 11 0 0 0 1 p0

Since the graph contains at least one node, the optimal
value kmax is at least one and the algorithm sets the parameter
kmax to the objective value and then proceeds to determine a
set of â values to test. By default, the set is logarithmically
spaced between 0 and the value of â that would force Â= 0
if the problem were completely unconstrained. This allows a
wide variety of robustification parameters to be tested. At
this point, all the parameters of the algorithm have been set
and the algorithm proceeds to Stage 2.

4.2. Stage 2: The MIQO model

The algorithm solves the following MIQO model for each
value of k from 1 to kmax and each value of â using the
training data y and X.

min
Â1 z

{

1
2�y − XÂ�

2
2 + â�Â�1

}

1 (5a)

s0t0 zl ∈ 801191 l = 11 0 0 0 1 p1 (5b)

−zl ¶ �l ¶zl1 l = 11 0 0 0 1 p1 (5c)
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p
∑

l=1

zl ¶ k1 (5d)

z1 = · · · = zl411 0 0 0 1 l5 ∈§³m1 ∀m1 (5e)

zi + zj ¶ 1 ∀ 4i1 j5 ∈¨£1 (5f)
∑

i∈´m

zi ¶ 1 ∀m1 (5g)

zl = 1 ∀ l ∈ ©1 (5h)
∑

l∈³i

zl ¶ �³i� − 1 ∀³11 0 0 0 1 Sj 0 (5i)

In the objective function (5a), the robustification parameter
â immunizes the resulting model against uncertainty in the
data; see Equation (4). In constraint (5b), a binary indicator
variable zl is introduced for every �l in the model. For
a large enough constant , the constraint (5c) ensures
that �l will be nonzero only if zl = 1. The parameter 
can be estimated from data (see Bertsimas et al. 2015 for
details). The constraint (5d) limits the number of total
variables that will be included in the model. This ensures
general sparsity of the resulting model. The constraints in
(5e)–(5g) are selective sparsity constraints. For the mth
set of variables with a group sparsity structure, the set of
constraints defined in (5e) ensures that the variables in §³m

are either all zero or all nonzero. The set of constraints in
(5f) ensures that the resulting model is free from extreme
pairwise multicollinearity. The set ḿ refers to the mth
variable that was flagged as a candidate for transformation
and all of its possible nonlinear transformations. The set
of constraints (5g) ensure that at most one of the variables
from the set ḿ will be included in the final model for each
of the candidate variables m. If © 6= �, constraint (5h) will
be included in the model and will ensure that each of the
specified independent variables appears in the final model.
(5i) is a set of constraints to exclude particular solutions ³i,
such as those with high global multicollinearity or containing
variables that are statistically insignificant. ³i is the set of
indices corresponding to nonzero Â value in the ith solution.
The initial MIQO model will not contain line (5i); these
constraints will be generated in Stage 3, if necessary.

The output of the MIQO model is a set of variables Â∗

and z∗. We measure and record the out-of-sample R2 on the
validation set using this Â∗. Once the MIQO model is run
for all potential values of k and â , the algorithm chooses
the three sets of Â with the highest R2 on the validation set
as the top three regression models and proceeds to Stage 3.

4.3. Stage 3: Generating Additional Constraints

We denote the top three sets of Â by ³11³21 and ³30 For
each of the sets ³i1 the algorithm computes the significance
levels for each of the variables via bootstrap methods and
calculates the condition number of the model. If a set ³i

produces undesirable results—a condition number higher
than desired or a model with insignificant variables—the

algorithm generates the MIQO constraint (5i) to exclude that
set from the candidates of sets of best regression models.

Excluding set ³i can be achieved by “cutting off” the
corner from the binary hypercube formed by the z variables
using the constraint

∑

l∈³i
zl ¶ �Si� − 1. For example, to

exclude set ³1 = 8114179, we can insert the constraint
z1 + z4 + z7 ¶ 2 into Problem (5) and resolve.

The algorithm generates these additional constraints to
exclude sets ³11 0 0 0 1³j as needed and returns to Stage 2.
The modeler may set the maximum condition number that is
acceptable in the model as well as the number of iterations
permitted between Stage 2 and Stage 3. The defaults are 30
and 3, respectively. In our experience, if a linear regression
model is a good fit for the data, few iterations are necessary.

When the algorithm ends, it presents the top three models,
along with their condition numbers and confidence intervals
of the bootstrapped coefficients. Confidence histograms and
diagnostic plots can also be generated.

4.4. Contrast with the Standard Approach

In many ways, our algorithm simply automates several of the
steps outlined in the standard approach. Moreover, both our
algorithm as well as the standard approach validate models
out of sample rather than relying on in-sample criteria. This
ensures that the model selected does not overfit the training
data. However, we highlight a few key differences.

1. Our algorithm does not have to choose which model
properties to favor by performing the steps in a certain order;
since it is based on optimization, these properties can be
addressed jointly rather than sequentially. For example, rather
than noticing pairwise multicollinearity and preemptively
deleting one variable, our MIQO model simply chooses which
variable is best to delete in the course of the optimization.

2. Our algorithm is capable of handling data sets with
more variables than a modeler can address manually. The
steps suggested in Chatterjee et al. (2012) become difficult
when p is large, and the modeler must often resort to
a computational method for variable selection prior to
performing the rest of the steps.

3. Our algorithm is capable of returning a set of high
quality models rather than focusing on refining a single good
model.

As an example, we illustrate our algorithm’s performance
on two data sets and compare it to a model that a modeler
might develop using these data.

4.5. Example 1

We compare and contrast our algorithm with the standard
approach using the Croq’Pain data set from Bertsimas and
Freund (2004).

The data set originally comes from Croq’Pain, a French
“restaurant rapide,” and contains data on sixty Croq’Pain
stores. For each store, the data set provides information on
the store and the surrounding area. There are a total of 16
variables provided per store (see Table 2 for details).
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Table 2. Variables in the Croq’Pain data set.

Variable Description

EARN Operating earnings in $1,000s
SIZE Total area inside store
EMPL Number of employees as of Dec. 31, 1994
P15 Number of 15- to 24-year-olds in a 3 km radius
P25 Number of 25- to 34-year-olds in a 3 km radius
P35 Number of 35- to 44-year-olds in a 3 km radius
P45 Number of 45- to 54-year-olds in a 3 km radius
P55 Number of people age 55+ in a 3 km radius
TOTAL Total population in a 3 km radius
INC Average income in town/neighborhood

surrounding site
COMP Number of competitors in 1 km radius
NCOMP Number of restaurants that do not compete with

Croq’Pain in a 1 km radius
NREST Number of non-restaurant businesses in a 1 km radius
PRICE Monthly rent per square meter of retail properties

in the same locale
CLI Cost of living index
K Invested capital

The case described in Bertsimas and Freund (2004) asks
the student to use these data to build a regression model to
help Croq’Pain decide whether to open a new store. The
decision will be based on the store’s performance ratio,
which is measured as the ratio of operating earnings to
invested capital. The goal is to build a high quality regression
model with performance ratio as the dependent variable, and
the first step of this—the fitted model with all independent
variables included—is given in Bertsimas and Freund (2004).
Recall that we measure predictive quality using out of
sample R2.

The Standard Approach. The model with all 14 inde-
pendent variables has an R2 value of 0.867. Five of the 14
variables are significant at the 0.05 level, and it seems that
some of the coefficient estimates may take the opposite signs
from what is expected. For example, the coefficients for
number of employees and for total surrounding population
are both negative.

A quick look at the correlation matrix shows that there
are a number of independent variables which are highly
correlated: for example, P35 and TOTAL have a corre-
lation coefficient of 0.96. However, the 14 × 14 matrix
is unwieldy to work with manually. Instead of trying to
eliminate correlated variables first, we begin to refine this
model by removing variables that are insignificant at the 0.05
level, starting with those with the lowest t-value. Removing
variables one at a time according to this method until all
variables left are significant results in a new model with
only five independent variables (SIZE, P15, INC, NREST,
and PRICE) and a training set R2 value of 0.856. At this
point, the number of independent variables is low enough
to investigate the correlation matrix manually. None of the
remaining five independent variables has correlation over
0.18 in magnitude, so we feel assured that multicollinearity
is not a problem in this reduced model. We “sign-check”

each of the remaining five independent variables and validate
that the signs agree with our intuition. We move on to
residual diagnostics and check for normality of the residuals
by plotting a histogram and for heteroscedasticity by plotting
each of the independent variables against the residuals. There
is no evidence of nonnormality or of heteroscedasticity.
Therefore, we use this model as the final model.

MIQO-Based Approach. In the original case in Bert-
simas and Freund (2004), the students are first instructed
to train their model using the entire data set. The second
part of the case asks them to rebuild using the first 50 data
points to train the model and the last 10 to validate. Because
our MIQO-based approach requires a training set and a
validation set, we adopt the second option.

We run our MIQO-based algorithm on the data set using
the default settings: 0.8 as the maximum pairwise correlation
and 10 potential values of â . It takes less than one minute
to run and returns a model with five independent variables:
SIZE, P15, INC, NREST, and PRICE; exactly the same five
we chose via the standard approach. The first four variables
are significant at the 0.001 level, the last at the 0.01 level.
The model has an out-of-sample validation set R2 value
of 0.80.

With the Croq’Pain data, the MIQO-based approach and
the standard approach produced essentially the same model.
In cases like these, we feel the main advantage of the MIQO-
based approach is the amount of time saved from iterating
through potential models. Although the computational time
executing the MIQO-based approach is longer, the total
time spent model building is far shorter. In other cases, the
standard approach may not lead to as clear of a path to a
high quality solution, or the data set may contain enough
variables to render it intractable for a human modeler. It
is these cases for which the MIQO-based approach is not
simply a time saver but a strong improvement over existing
tools. The next example illustrates this case.

4.6. Example 2

We consider the Ames Housing Data set (DeCock 2011).
The data set originally comes from the Ames City Assessor’s
Office and contains data on property sales in Ames, Iowa,
between 2006 and 2010. The variables include discrete,
continuous, nominal, and ordinal variables that describe the
quality and quantity of physical attributes of each property
sold. The physical attributes measured include building
type and style, square footage and lot details, quality and
materials of the property’s interior and exterior, and many
more. The data set was curated for use as a final group
project in a semester-long regression class and is available
along with full details in DeCock (2011). The prepared
data set contains 2,930 observations and 80 variables. After
expanding categorical variables into dummy variables and
removing outliers and missing values, the final number of
observations and variables is 2,271 and 315, respectively.
The potential project described in DeCock (2011) asks the
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student to use these data to build a regression model to
predict housing sale prices.

The Standard Approach. This data set is large and
complex enough that there is no single clear best model.
Indeed, this is the motivation in DeCock (2011) behind
assigning this data set as a final course project; the richness
of the data leads to fruitful discussion of students’ different
approaches. DeCock (2011) mentions that by using only the
categorical variable for neighborhood and the two continuous
variables that together make up the property’s total square
footage leads to a model that explains 80% of the variability.
At the other end of the spectrum, the author also admits to
spending a fair amount of time constructing a 36-variable
model (using some variables he created through recoding
and interactions) that explains 92% of the variation in sales.
DeCock (2011) does not give further details of the model.
Although this may be overly complicated, it illustrates the
challenge of building a high quality regression model using
the standard approach.

MIQO-Based Approach. After removing missing values
and splitting the data set into training, validation, and test
sets, we ran our MIQO-based algorithm on the data set using
the default settings: 0.8 as the maximum pairwise correlation
and 10 potential values of â .

The best model generated contained 20 independent
variables, all of which were significant at the 0.05 level, and
had a test set R2 value of 0.920. This is competitive with the
predictive power of the more complicated 36-variable model
constructed by DeCock (2011) while being more interpretable
and still retaining statistically significant variables. The
best MIQO model contained variables such as the overall
quality and condition of the property, whether the property is
identified as being in a particular neighborhood, the number
of half bathrooms, whether the foundation of the home was
constructed from stone or not, the year the garage was built,
various measurements of square footage, and the type of
electrical system.

5. Computational Experiments
In this section, we illustrate our algorithm’s capabilities by
demonstrating its performance on a wide variety of data sets.
We include data sets that are real as well as synthetic, that
are from the classical overdetermined regime with n> p
as well as from the undetermined high-dimensional regime
with n< p, and that contain various different structures and
built-in properties. Our goal is to demonstrate that all of the
desirable characteristics outlined in §3 can be achieved with
MIQO in practical settings.

We begin by examining basic data sets, where all variables
are continuous and there is no special structure. In such
data sets, the main properties we would like to ensure are
interpretability (via general sparsity and limited pairwise
multicollinearity constraints) and robustness (via a regular-
ization parameter in the objective function). We consider

synthetic examples to highlight the algorithm’s performance
on these properties individually and real data sets in which
we look at desirable properties jointly. In each case, we
compare our algorithm’s performance to Lasso because
Lasso is designed to give interpretability and robustness.

We then provide results for data sets with additional
features: data sets with the group sparsity property, with
variables that need a nonlinear transformation, with outliers,
and so on. We again compare our results to Lasso and
compare them also to the published approach taken by the
modeler, if available, or to specific algorithms designed for
the setting at hand (e.g., group Lasso for the group sparsity
case).

Synthetic Data. We generated data such that xi ∼

N401è51 i = 11 0 0 0 12n are independent realizations from a p-
dimensional multivariate normal distribution with mean zero
and covariance matrix è 2= 4�ij5. The data were randomly
split 50%/25%/25% into training, validation, and test set,
respectively. The columns of the X matrix were standardized
such that the training set had columns with zero mean and
unit l2-norm. For a fixed Xn×p1 we generated the response y
as follows: y = XÂ+ Å, where �i

iid
∼ N401�25. We denote

the number of nonzeros in Â by k. The choice of X1Â1�
determines the signal-to-noise ratio (SNR) of the problem,
which is defined as

SNR =
var4x′Â5

�2
0

In particular, we took �ij = ��i−j� for i1 j ∈ 811 0 0 0 1 p9 ×

811 0 0 0 1 p9. In our experiments, we consider k = 10 and
�i = 1 for i ∈ 811 0 0 0 1 p9 such that i mod p/k = 0 to generate
k equally spaced values.

Real Data. We tested our algorithm on twelve publicly
available datasets. The datasets White Wine Quality, Red
Wine Quality, Yacht Hydrodynamics, and CPU were obtained
from the University of California Irvine Machine Learning
Repository (Bache and Lichman 2014). We obtained the
data sets Elevator, Pyrimidines, and Compact from a data
repository at the University of Porto (Torgo 2014). We
obtained the data sets LPGA 2008, LPGA 2009, and Airline
Costs from a data repository at the University of Florida
(Winner 2014). We obtained the Diabetes data set from the
lars package within R. The HIV data set comes from the
study Rhee et al. (2006) and is available at Hastie (2015).

Computational Specifications. All computational tests
were performed on a Dell Precision T7600 computer with
an Intel Xeon E52687W (3.1 GHz) processor, 16 cores,
and 128 GB of RAM. We used Gurobi 6.0.0 (Gurobi
Inc. 2014) as the optimization solver, and implemented
the algorithm in Julia 0.3.3 (Bezanson et al. 2012), a
technical computing language. We used JuMP 0.7.0 (Lubin
and Dunning 2015), an algebraic modeling language package
for Julia, to interface with Gurobi. We used the GLMNet
0.0.2 package in Julia to compute Lasso solutions. We used
the grplasso package 0.4–4 in R (R Core Team 2014) to
compute group Lasso solutions.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

98
.2

17
.2

02
.2

34
] 

on
 1

3 
Fe

br
ua

ry
 2

01
6,

 a
t 0

9:
26

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Bertsimas and King: An Algorithmic Approach to Linear Regression
Operations Research 64(1), pp. 2–16, © 2016 INFORMS 11

5.1. Basic Structure

Our main goals are to achieve interpretability and robustness
while retaining predictive power. To judge how well our
algorithm achieves interpretability, we will report on the size
k of the subset chosen, the maximum pairwise correlation,
and the condition number of the final model. Although our
algorithm returns the top three models, we only present
results for the top model for brevity. To judge robustness
and predictive power, we will report on the â chosen by the
algorithm on the validation set and the test set R2 value. We
will compare these results to the size k of the subset chosen
by Lasso, the maximum pairwise correlation in the Lasso
model, and the test set R2 value in the Lasso model. We
selected the best regularization parameter for Lasso by its
performance in the validation set. For the synthetic data sets,
we also report the number of true positives achieved by each
algorithm.

We aim to return solutions in practical amounts of time, so
we imposed a time limit on each optimization problem solved:
20 seconds in the n > p case and 40 seconds in the n < p case.
Often optimality is reached before the time limit. Note that
for each data set, Kmax × (# of values of â tested) × (# of
iterations of Stage 3) MIQO problems are solved.

We present results in Tables 3–8 for synthetic data sets
for the default parameters of the algorithm: 10 values
of â tested and 0.8 as the maximum pairwise correlation
allowed. Each experiment corresponds to two rows in a
table. The top row presents average results over five trials
of the same experiment and the bottom row presents the
standard error. We use the following notation: SNR = signal-
to-noise ratio, K∗ = value of k chosen by the algorithm,
TP = number of true nonzero variables identified by the
algorithm, MaxCor = the maximum pairwise correlation
present in the final model, and Cond = condition number.
Time for the MIQO algorithm is presented in hours and is
not meant to accurately benchmark the best possible time
but to show that it is computationally tractable to solve
these problems in a practical amount of time on standard
computers.

Tables 3 and 4 show results for data sets designed to
illustrate general sparsity, for the n > p and n < p case,
respectively. Here we observe that the MIQO algorithm
consistently identifies the true nonzero variables and does
not bring more than one to two additional noise variables
into the model. In contrast, Lasso does correctly identify the
true nonzero variables but brings ≈ 24 noise variables into
the model in the n> p case and ≈ 45 noise variables into
the model in the n< p case. The MIQO models and Lasso
models perform similarly in terms of predictive power (out
of sample R2).

Tables 5 and 6 show results for data sets designed to
illustrate pairwise multicollinearity for the n> p and n< p
case, respectively. Again in these cases, the MIQO models
and Lasso models perform similarly in terms of predictive
power. However, the final Lasso models contain very high
pairwise collinearity and condition numbers that indicate

severe multicollinearity issues. On the other hand, the MIQO
algorithm returns models that generally have half or less of
the maximum pairwise collinearity as the corresponding
Lasso model, and the condition numbers do not show
evidence of severe multicollinearity.

Tables 7 and 8 show results for data sets designed to
illustrate robustness for the n > p and n < p case, respectively.
As described in §3.3, Lasso is designed to be robust to error
in data. Indeed, in both the n > p and n < p case, Lasso and
the MIQO algorithm achieve similar predictive power. The
maximum pairwise collinearity and condition numbers of
the MIQO-based models are lower.

We present results on real data in Table 9. All optimization
problems were solved to optimality except for the Diabetes
data set and HIV data set, where a time limit of 20 seconds
per optimization problem solved was enforced. Again, for
each data set, Kmax × (# of values of â tested) × (# of
iterations of Stage 3) MIQO problems are solved. Note that
n here indicates the size of the training data set—the original
data set has 2n observations.

Our algorithm achieves similar predictive performance to
Lasso but is significantly more interpretable, choosing fewer
variables in general and successfully limiting the degree of
multicollinearity present in the final model.

We notice that the Pyrimidines data set has significantly
lower predictive power than Lasso. This is the price of
insisting on interpretability, despite a relatively low ratio of
observations to variables. We demonstrate the algorithm’s
performance on this data set when the maximum correlation
threshold is set to 1 (i.e., no limit) and record the performance
in Table 10.

In these cases, it is up to the analyst to judge which model
is preferable; one with better predictive performance or one
with coefficients that are more interpretable. The benefit
of using our algorithm is that it is simple for an analyst to
tweak the parameters and quickly understand the tradeoffs.

5.2. Special Structure

Nonlinear Transformations. We investigate our algo-
rithm’s capability to identify when a nonlinear transformation
of an independent variable may be useful. For this task,
we used the Concrete Compressive Strength data set from
Yeh (1998) available in the UCI Machine Learning Reposi-
tory Bache and Lichman (2014). The data set contains 8
independent variables and 1,030 observations. As before,
we randomly split the data set into a training set (50%),
validation set (25%), and test set (25%).

The independent variable is the compressive strength of
concrete, and the dependent variables are the ingredients as
well as the age of the concrete (see Table 11 for details).
The practical goal in civil engineering is to design a concrete
mixture that will have high compressive strength. However,
concrete compressive strength is known to be a highly
nonlinear function of its age and ingredients.
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Table 3. Sparsity: n= 500, p = 100, �= 0, ãX = 0.

SNR MIQO â ∗ K∗ TP R2 MaxCor Cond Time Lasso K∗ TP R2 MaxCor Cond

6.32 00014 1006 10 00716 00119 1061 00448 3408 10 00701 00148 20782
00010 00358 0 00007 00007 0002 00011 3051 0 00007 00010 00127

3.16 00011 1006 10 00909 00119 1027 00439 3404 10 00904 00148 20805
00010 00358 0 00003 00007 0029 00011 3072 0 00002 00010 00146

1.58 00011 10 10 00975 00117 1058 00304 3406 10 00974 00160 20797
00009 0 0 00001 00007 0004 00011 4040 0 00001 00016 00194

Table 4. Sparsity: n= 100, p = 500, �= 0, ãX = 0.

SNR MIQO â ∗ K∗ TP R2 MaxCor Cond Time Lasso K∗ TP R2 MaxCor Cond

10.54 00107 1002 10 00991 00249 20664 1000 55 10 00982 00323 139
0 00028 00179 0 00000 00026 00195 0008 7033 0 00001 00006 97
6.32 00041 10 10 00976 00231 20793 1018 56 10 00952 00323 11472
0 00023 0 0 00001 00018 00217 0000 8078 0 00003 00006 11290
3.16 00076 11 10 00896 00216 30348 1064 5802 10 00813 00343 51215
0 00027 00283 0 00006 00012 00192 0042 9010 0 00012 00014 41634

Table 5. Pairwise multicollinearity: n= 500, p = 100, true K = 10, �= 009, ãX = 0.

SNR MIQO â ∗ K∗ TP R2 MaxCor Cond Time Lasso K∗ TP R2 MaxCor Cond

8.73 0002 10000 10000 0099 0040 4015 0030 34040 10000 0099 0091 126028
0001 0000 0000 0000 0001 0017 0002 2065 0000 0000 0000 13015

4.37 0002 10040 10000 0095 0047 5065 0034 37020 10000 0094 0091 146036
0002 0036 0000 0000 0007 1025 0004 3066 0000 0000 0000 20083

2.18 0003 11040 9060 0081 0063 7092 0063 36060 10000 0081 0091 142017
0002 0054 0022 0001 0008 2025 0015 3037 0000 0001 0000 18089

Table 6. Pairwise multicollinearity: n= 100, p = 500, true K = 10, �= 008, ãX = 0.

SNR MIQO â ∗ K∗ TP R2 MaxCor Cond Time Lasso K∗ TP R2 MaxCor Cond

10.54 00090 1004 10 00990 00331 5058 1099 5602 10 00979 00850 11908
0 00029 00358 0 00001 00089 1048 00517 2092 0 00004 00005 802
6.32 00049 1004 10 00976 00436 6011 2012 57 10 00941 00846 122019
0 00020 00219 0 00003 00118 1024 00395 2065 0 00010 00005 7047
3.16 00037 1204 808 00835 00433 4038 2011 6102 908 00768 00846 24504
0 00011 00219 0072 00041 00099 0051 00514 3070 00179 00029 00005 11709

Table 7. Robustness: n= 500, p = 100, true K = 10, �= 0, ãX ∼ Uniform(012).

SNR MIQO â ∗ K∗ TP R2 MaxCor Cond Time Lasso K∗ TP R2 MaxCor Cond

6.32 00011 10 10 00975 00117 1058 00448 3406 10 00974 00160 20797
00009 00000 0 00001 00007 0004 00011 4040 0 00001 00016 00194

3.16 00011 1006 10 00909 00119 1027 00439 3404 10 00904 00148 20805
00010 00358 0 00003 00007 0029 00011 3072 0 00002 00010 00146

1.58 00014 1006 10 00716 00119 1061 00304 3408 10 00701 00148 20782
00010 00358 0 00007 00007 0002 00011 3051 0 00007 00010 00127

Table 8. Robustness: n= 100, p = 500, true K = 10, �= 0, ãX ∼ Uniform(011).

SNR MIQO â ∗ K∗ TP R2 MaxCor Cond Time Lasso K∗ TP R2 MaxCor Cond

10.54 00065 1006 906 00880 00282 20777 10173 5308 10 00856 00376 5308
0 00036 00607 00358 00034 00021 00131 00000 4066 0 00013 00018 2205
6.32 00044 10 904 00828 00246 20716 10643 5304 10 00829 00357 10703
0 00025 00632 00358 00033 00017 00268 00419 7069 0 00029 00014 7503
3.16 00038 11 904 00769 00262 20475 10876 6108 10 00705 00338 76300
0 00025 0085 00358 00030 00027 00585 00420 10027 0 00035 00010 54608
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Table 9. Results for basic structure real data sets.

Data set n p MIQO K∗ R2 MaxCor Lasso K∗ R2 MaxCor

CPU 105 6 5 00869 00716 6 00861 00716
Yacht 154 6 1 00600 NA∗ 1 00602 NA∗

White quality 21499 11 10 00270 00619 9 00280 00828
Red quality 800 11 6 00384 0040 7 00386 0069
Compact 41096 21 15 00717 00733 21 00725 00942
Elevator 81280 18 10 00808 00678 15 00809 00999
Pyrimidines 37 26 15 00175 00781 20 00367 00928
LPGA 2008 78 6 2 00877 0002 3 00873 00234
LPGA 2009 73 11 7 00814 00784 10 00807 00943
Airline costs 15 9 2 00672 00501 9 00390 00973
Diabetes 221 64 4 00334 00423 14 00381 00672
HIV 528 98 11 00945 00662 39 00944 00760

∗Note that both the MIQO and Lasso algorithms choose only one independent variable for the Yacht Hydrodynamics data set; hence, there is no maximum
pairwise correlation in this case.

Table 10. Results when the maximum correlation threshold is set to 1.

Data set n p MIQO K∗ R2 MaxCor Lasso K∗ R2 MaxCor

Pyrimidines 37 26 18 0.375 0.870 20 0.367 0.928

On the original data, both our algorithm and Lasso chose
to use all covariates and produced a test set R2 of 0.609. We
then reran our algorithm with an extended data set, which
contained each of the original columns x as well as three
transformed versions of each column: x21

√
x, and log(x).

For the variables that take zero values (blast furnace slag, fly
ash, and superplasticizer), we adjusted the log transformation
to be log(x+ 0000001). We included Constraint (5g) in the
optimization model to ensure that for each column x, at most
one of x, x21

√
x, and log(x) appeared in the final model.

As expected, the inclusion of transformed covariates
significantly improved upon the models created with just
the original variables. The MIQO algorithm selected six
covariates to appear in the top model. The six covariates
chosen were blast furnace slag, water, log(fly ash), log(super
plasticizer), log(day), and cement1/2. Each covariate was
significant at the �= 00001 level and test set R2 was 0.823, a
significant improvement over the original test set R2 of 0.609.

We also tested Lasso on the data set that included the
nonlinear transformations. Lasso selected a model with 12
covariates that resulted in a test set R2 of 0.834. In addition

Table 11. Independent variables in the concrete com-
pressive strength data set.

Variable Units

Concrete compressive strength MPa
Cement kg/m3

Blast furnace slag kg/m3

Fly ash kg/m3

Water kg/m3

Superplasticizer kg/m3

Coarse aggregate kg/m3

Fine aggregate kg/m3

Age Day

to the first five covariates chosen by our algorithm, Lasso
also selected cement2, super plasticizer2, day2, log(cement),
log(coarse aggregate), log(fine aggregate), and

√
cement.

In our opinion, the minor increase in test set R2 does not
warrant using a significantly less interpretable model.

Although the number of variables went from 8 to 32 when
we included nonlinear transformations, the MIQO algorithm
took the same amount of time (roughly 1–1.5 minutes) to
execute in both cases. By imposing limiting constraints
on transformations and pairwise correlation, the feasible
space is not significantly enlarged by including nonlinear
transformations.

Group Sparsity. We demonstrate our results in a group
sparsity setting using the Energy Efficiency data set from
Tsanas and Xifara (2012) available on the UCI Machine
Learning Repository (Bache and Lichman 2014). The data set
has 768 observations of six continuous independent variables
and two categorical independent variables. The independent
variables describe building properties (see Table 12 for
details). There are two dependent variables available: heating

Table 12. Independent variables in the energy
efficiency data set.

Variable Type

Relative compactness Continuous
Surface area Continuous
Wall area Continuous
Roof area Continuous
Overall height Continuous
Orientation Categorical; 4 levels
Glazing area Continuous
Glazing area distribution Categorical; 6 levels
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load and cooling load. We test our method on both dependent
variables.

The binary expansion of the categorical variable orien-
tation into three new binary variables and of glazing area
distribution into five new binary variables meant that the
data set passed to the algorithm contained 14 independent
variables. When we ran the algorithm, the best model con-
tained three variables: wall area, overall height, and glazing
area. We found identical results when predicting cooling
load. Our algorithm chose not to use either of the categorical
variables provided. The top heating load model had test set
R2 of ≈ 0088 and the top cooling load model had test set R2

values of ≈ 00850
In Tsanas and Xifara (2012), the original study of this

data set, the authors found that wall area, roof area, and
relative compactness were the variables that appear mostly
associated with heating load and cooling load, although all
variables appear in their model. Using the Random Forest
method, they also found importance scores for each variable
and found that glazing area was the most important variable
even though it is not the most correlated with either output
variable. However, from an engineering perspective, it can be
intuitively understood that the glazing area is of paramount
significance.

We find it notable that our algorithm did not identify
the same three variables as most critical for predicting the
responses and could not have: because of the correlation of
−0086 between roof area and relative compactness, these
two variables could not have both been in our algorithm’s
final model. However, glazing area, which the authors point
out as having paramount significance, is in all three of our
top models for both response variables.

We also tested group Lasso. The group Lasso models
for predicting the two response variables each chose to use
13 of the 14 variables, including both categorical variables.

Table 13. Results for the combined example.

� ãX MIQO â ∗ K∗ TP R2 MaxCor Cond Time Lasso K∗ TP R2 MaxCor Cond

0.5 0 00026 1004 10 00981 00437 40654 1014 4606 10 00969 00836 11801
00020 00219 0 00001 00020 00382 0017 4015 0 00004 00007 1704

0.5 1 00000 1102 10 00913 00556 60995 1034 6508 10 00854 00798 42400
00000 00522 0 00013 00073 10422 0022 6097 0 00017 00006 17705

0.5 2 00030 1100 9 00742 00501 50291 1088 69 902 00598 00708 8114701
00027 00490 00283 00030 00061 00508 0042 8054 00179 00045 00006 6199305

1 0 00026 1102 10 00931 00468 50322 1008 4506 10 00878 00836 11309
00022 00522 0 00007 00018 00531 0004 3099 0 00016 00007 1802

1 1 00041 1004 10 00878 00478 40998 1061 6902 10 00759 00796 36208
00036 00219 0 00016 00059 00696 0043 4092 0 00033 00006 9604

1 2 00099 908 706 00573 00436 40224 1064 7204 806 00503 00702 57308
00041 00867 00219 00042 00061 00576 0042 5089 00358 00064 00006 22800

2 0 00090 10 808 00720 00451 40687 1035 3904 806 00599 00836 7400
00045 00283 00335 00046 00025 00289 0023 4001 00456 00055 00007 9076

2 1 00116 904 802 00614 00426 40262 2005 5304 708 00509 00782 11305
00037 00358 00593 00078 00025 00137 0039 4041 00955 00067 00010 2007

2 2 00032 802 4 00245 00403 30506 1046 5508 508 00368 00680 8114104
00017 00657 00980 00129 00074 00720 0022 1001 00522 00061 00011 7123600

The only variable excluded was surface area. The heating
load model had a test set R2 of ≈ 0091 and the cooling load
model had a test set R2 value of ≈ 0086.

5.3. Combined Example

In the previous sections we have demonstrated how our
algorithm can handle a wide variety of individual situations:
detecting sparsity, limiting pairwise correlation, identifying
nonlinear transformations, and others. In this section, we
will show the full force of our algorithm: to identify all
these properties when presented together. Specifically, we
consider an example whose structure incorporates general
sparsity, selective sparsity in terms of both high pairwise
multicollinearity and group sparsity, and modeler expertise
in a single data set. We test this example on the high-
dimensional case where n= 100 and p = 11000.

We generated a synthetic data matrix X for n = 100,
p = 500 according to the process outlined in §5.1, using
a value of � = 008 to ensure that there is high pairwise
multicollinearity present between some columns of X. To
generate nonlinear transformations, for each column j of X
we included an additional column consisting of the squared
entries of j , bringing the total number of potential covariates
up to 1,000. As before, we consider k= 10. However, we
generated �i = 1 so that seven positive values occurred
in the original 500 columns and three were located in the
500 transformed columns. The response y was generated
as before as y = XÂ+ Å. To test our robustness to error in
data, we generated a matrix ãX ∼ Unif(01 f ) and considered
X +ãX for various values of f . We assume the modeler has
some expertise with this sort of data and knows one of the
values of i such that �i is truly nonzero. Finally, the modeler
is also aware of a group sparsity structure and knows that
�a1�b1�c1 and �d are all either all zero or all nonzero and
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that �e1�f 1�g , and �h are either all zero or all nonzero,
where 8a1 b1 c1d9 ∈ 8i � �i = 19 and 8e1 f 1 g1h9 ∈ 8i � �i = 09.

Table 13 presents results for this combined example. As
before, the top row presents average results over five trials
of the same experiment and the bottom row presents the
standard error.

6. Conclusions
In this paper, we have leveraged the power of MIQO and
proposed an approach for incorporating a variety of desired
properties into a linear regression model. Our approach
provides the only methodology we are aware of to construct
models that impose statistical properties simultaneously.
This results in a generally applicable, unified framework
for addressing all aspects of the model-building process.
Using both real and synthetic data, we demonstrate that the
approach produces high quality linear regression models in
realistic timelines.
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