Application of the Sobol’ Method to Large-Scale Aviation Environmental Policy-Making Tools

Doug Allaire and Karen Willcox
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

The Fifth Summer School on Sensitivity Analysis
Venice, September 12, 2008
Aviation Environmental Tools Suite

APMT = Aviation environmental Portfolio Management Tool
AEDT = Aviation Environmental Design Tool
EDS = Environmental Design Space
Aircraft Emissions Model

- Aircraft Emissions Model computes emissions inventories of CO$_2$, CO, NO$_x$, SO$_x$, etc.
- Millions of inputs, six general groups: fuel burn, temperature, pressure, relative humidity, fuel flow, reference emissions index
- Analysis of a “representative day”
 - 68,343 operations
 - Single deterministic run of the full day takes ~16 sec
 - One 10,000-sample MCS takes ~44 hr
Surrogate Modeling: Aircraft Emissions Model

- Output of interest (e.g. total NO$_x$) is aggregate sum of emissions from a set of N_o operations, each with N_s segments

\[
y_{tot} = \sum_{l=1}^{N_o} y_l = \sum_{l=1}^{N_o} \sum_{k=1}^{N_s} (\text{fuel burn})_{kl} (\text{emissions index})_{kl}
\]

\[
y_{tot} = \sum_{l=1}^{N_o} y_l = \sum_{l=1}^{N_o} \sum_{k=1}^{N_s} q_{kl} g_{kl} (r_{kl}, s_{kl}, t_{kl}, u_{kl}, v_{kl})
\]

- Can exploit the additive structure of the model to create a hierarchical surrogate model for uncertainty analysis and sensitivity analysis

- Certifying uncertainty analysis results computed with a surrogate model is essential
Surrogate Modeling with Quantified Confidence Intervals for Sensitivity Analysis

- The global sensitivity analysis of the aircraft emissions model can be decomposed by operations

\[
\tau_j = 1 - \frac{\sum_{l=1}^{N_o} (1 - \tau_{jl}) D_{y_l}}{\sum_{l=1}^{N_o} D_{y_l}}
\]

\[
S_j = \frac{\sum_{l=1}^{N_o} S_{jl} D_{y_l}}{\sum_{l=1}^{N_o} D_{y_l}}.
\]

- Sensitivity indices estimated using a subset of \(n_o \) flights, with rigorous confidence intervals that narrow as \(n_o \) increases
Total and Main Effect Sensitivity Indices

Sensitivity indices and 95% confidence intervals using \(n_o = 5000 \).

Width of 95% confidence interval for total effect sensitivity index of temperature as a function of surrogate model size.