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Abstract

We present a class of high-order finite element methods that can conserve the
linear and angular momenta as well as the energy for the equations of lin-
ear elastodynamics. These methods are devised by exploiting and preserving
the Hamiltonian structure of the equations of linear elastodynamics. We show
that several mixed finite element, discontinuous Galerkin, and hybridizable dis-
continuous Galerkin (HDG) methods belong to this class. We discretize the
semidiscrete Hamiltonian system in time by using a symplectic integrator in or-
der to ensure the symplectic properties of the resulting methods, which are called
symplectic Hamiltonian finite element methods. For a particular semidiscrete
HDG method, we obtain optimal error estimates and present, for the symplec-
tic Hamiltonian HDG method, numerical experiments that confirm its optimal
orders of convergence for all variables as well as its conservation properties.
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1. Introduction

Elastodynamics is a Hamiltonian system endowed with crucial properties
such as symplectic structure and Hamiltonian preservation. In addition, in
the absence of external loading and dissipation, elastodynamics exhibits fun-
damental conservation properties in linear momentum and angular momentum5

as well as the total energy. These fundamental properties of elastodynanmics
play a key role both in mathematics and engineering applications. Numeri-
cal discretizations of elastodynamics need not, and in general will not, inherit
the Hamiltonian structure as well as the conservation of both momentum and
energy. Discretization schemes that do not conserve momentum and energy10

often suffer from error accumulation for long time-integration. Therefore, it is
of considerable interest to develop numerical methods that inherit these crucial
properties of elastodynamics. Significant attention has been paid to the devel-
opment of time-integration schemes that conserve momentum and energy for
elastodynamics [16, 18, 17, 24, 37, 37, 39, 38]. In order for the fully discrete15

system resulting from temporal and spatial discretizations of elastodynamics to
inherit its Hamiltonian structure, the spatial discretization method must result
in a Hamiltonian semidiscrete system and the time-integration scheme must be
symplectic. When such space discretization is a finite element method, we call
the resulting numerical method a symplectic Hamiltonian finite element method.20

Pioneering works on numerical methods based on finite element discretiza-
tions which took advantage of the Hamiltonian structure of the equations of
elastodynamics are the 2001 method in [6] and the 2005 method proposed in
[21]. Although the time-marching method proposed in [6] was dissipative and
only second-order accurate, the time-marching method proposed in [21] was ex-25

actly non-dissipative and could achieve high-order accuracy of any order. The
authors managed to prove, through remarkable manipulations, that their time-
marching method defines a Hamiltonian system which conserves the discrete
Hamiltonian. On the other hand, it is interesting to note that the time-marching
method is equivalent to a Runge-Kutta Gauss method and is symplectic. So, in30

hindsight, it is not a surprise that the resulting method defines a Hamiltonian
dynamical system. The method proposed in [21] seems to be, to the best of our
knowledge, the first symplectic Hamiltonian finite element method.

The second symplectic Hamiltonian finite element method was proposed in
2008, [42]. It used the discontinuous Galerkin (DG) method for the space dis-35

cretization of some linear hyperbolic systems like the rotating shallow water
equations, and the acoustic wave and 2D Maxwell equations. The resulting DG
method coincided with the classic DG method with alternating fluxes devised
back in 2002 in [43] in the case in which the material parameters are constant.
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However, a crucial difference is that in the method proposed in [42], the dis-40

cretization in time is carried out by means of a symplectic method in order
to prevent the drifting of the energy. In 2013, this approach was applied to
the linearized incompressible Euler equations [33]. In 2015, a third symplectic
Hamiltonian finite element method was proposed in [23]. The discretization
by the mixed method was proven to preserve the Hamiltonian structure of the45

acoustic wave equation. The resulting semidiscrete scheme was then discretized
in time with symplectic methods [23]. Also in 2015, a new DG method was in-
troduced by using the Lagrangian structure of the acoustic wave equation in [3];
no mention of symplectic time-marching schemes was made though. In 2018, a
similar construction was carried out for the equations of elastodynamics in [4].50

In 2017, we proposed the first symplectic Hamiltonian finite element method
using the HDG method to discretize in space the acoustic wave equation [36]. In
this paper, we extend that work and show how to devise symplectic Hamiltonian
finite element methods for the equations of elastodynamics on a domain Ω in
Rd, d = 2, 3, namely,

ρ ü−∇·(C ε(u)) = f , in Ω, ∀t ∈ (0, T ], (1a)

with boundary and initial conditions

u = uD on ΓD × (0, T ], C ε(u)n = σN on ΓN × (0, T ], (1b)

u(0) = u0, u̇(0) = v0 in Ω. (1c)

For simplicity, we discretize the above equations in space by using mixed (using
the compliance tensor), DG and HDG (using the stiffness tensor) methods. The
DG and HDG methods, can be viewed as stabilized mixed methods, [11], like
the mixed methods constructed by the Hu-Washizu variational principle, see,
for example, [5, 9, 25].55

We show that, as a direct consequence of the Hamiltonian structure of these
methods, the linear and angular momenta, and the total energy remain constant
in time whenever ΓD = ∅, and f and σN are zero.

In the equation of motion (1a), the vector displacement is denoted by u,
the linearized strain tensor is denoted by ε(u) := (∇u + ∇uT)/2, and the60

divergence operator acting on tensor-valued functions is denoted by ∇·. We
assume that Ω is a bounded polygonal domain in Rd with Lipschitz boundary
∂Ω =: ΓD ∪ ΓN and ΓD ∩ ΓN = ∅, the density ρ = ρ(x) is a positive and
bounded function, the stiffness tensor C = C(x) is a symmetric, positive definite
as bounded linear operator, and the data f(t), uD(t) and σN (t) lie in [L2(Ω)]d,65

H1/2(ΓD)d and H−1/2(ΓN )d, respectively, for all t ≥ 0. We omit the space
dependence of the variables and only display their time dependence. We use
the dot (Newton’s) notation for the time derivatives and the standard notation
of differential operators for spatial differentiation [36].

This paper can be considered as a stepping stone toward devising symplec-70

tic Hamiltonian finite element methods for the equations of large deformation.
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Here, our goal is to devise methods for linear elastodynamics which conserve
the linear and angular momenta as well as the energy. We have three main
contributions. The first is that we show how to achieve this not only for the
HDG method but for a wide variety of finite element discretizations. The sec-75

ond is that we switch from the canonical Hamiltonian formulation used in [36]
to the formulation using Poisson brackets and prove that they are equivalent.
The third is that we obtain optimal error estimates for all the approximate vari-
ables of the HDG method. Therefore, the approximate stress and strain of the
HDG method converges one order higher than those of traditional finite element80

methods such as DG methods [42] and continuous Galerkin (CG) methods.
Our approach is different from the one used in [42, 33] because we do not

obtain the space discretization by constructing a a suitable discrete Poisson
bracket which would guarantee the Hamiltonian structure of the resulting dis-
cretization. Instead, we directly verify that several schemes, mixed, HDG and85

DG, do have such a structure. A similar difference can be made between our
work and that in [3, 4] since they use the Lagrangian formulation of the equa-
tions instead of the Hamiltonian one, and since they do not advocate the use
of symplectic time-integrators. Finally, let us point out that our approach is
closest to the one carried out in [23] but we do use a different Hamiltonian, and90

we show how to handle the case in which the Neumann condition is different
from zero.

The organization of the paper is as follows. In the next section, we give the
modern definition of a Hamiltonian dynamical system and we show that the
equations of elastodynamics define one. We also show the three conservation95

laws we are interested in by using the Hamiltonian structure of the equations.
In Section 3, we display examples of Hamiltonian finite element methods. In
Section 4, we prove that these spatial discretizations yield semidiscrete schemes
with a Hamiltonian structure. We also show that, as a consequence, the three
conservation laws under consideration also hold. In Section 5, we obtain the100

symplectic Hamiltonian finite element method by discretizing in time with a
symplectic method. In Section 6, we carry out several numerical experiments
which confirm the high-order accuracy and the conservation properties of the so-
called HDGk+ method. We end briefly discussing some extensions and ongoing
work.105

2. The Hamiltonian structure of elastodynamics

In this section, we describe the main properties of the exact solution which
we want to preserve under discretization. We start by showing that, when the
data f , σN and uD are independent of time, the equations of elastodynamics
define a Hamiltonian dynamical system. We then use this information to deduce110

the conservation laws of linear elastodynamics, namely, those of the linear and
angular momenta, and that of the energy.
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2.1. A Hamiltonian formulation

We rewrite the boundary-value problem for the equation of elastodynamics
as a first-order system as follows:

u̇ = v in Ω× (0, T ], (2a)

ρ v̇ = ∇· (Cε(u)) + f in Ω× (0, T ], (2b)

u = uD on ΓD × (0, T ], (2c)

Cε(u)n = σN on ΓN × (0, T ]. (2d)

If we consider that the mappings t 7→ (u(t),v(t)) are orbits on a smooth man-
ifold M, the above boundary-value problem can be considered as a dynamical115

system. We want to show that this is a Hamiltonian dynamical system.
To define such a system, we use a slight extension of the definition of a

Hamiltonian system used in [30], see also [29]. We say that the above system is
a Hamiltonian dynamical system (or that it has a Hamiltonian formulation or
that it has a Hamiltonian structure) if we can rewrite it as

Ċ = {C,H}, (3)

for the coordinates functionals C, defined on the phase affine space M, which
are identified with a space of test functions T . Here H is the Hamiltonian, a
functional on M; {·, ·} is the Poisson bracket, a bilinear form on the space of
linear functionals on M which satisfies the so-called Jacobi identity.120

In [30], the triple (M, {·, ·}, H) is called a Hamiltonian dynamical system.
With our definition, we also have to specify the coordinates functionals C and
the space of test functions T . This is the only, slight difference between the
original definition of a Hamiltonian dynamical system in [30] and the one used
here. We find this addition useful when dealing with weak formulations of the125

equations and with those of their discretizations.
Let us show that the equations of elastodynamics define a Hamiltonian dy-

namical system. We first consider the case in which the data f , σN and uD are
independent of time. In this case, the Hamiltonian is

H(u(t),v(t)) =
1

2

∫
Ω

(ρv(t) · v(t) + Cε(u(t)) : ε(u(t))) (4a)

−
∫

Ω

f · u(t)−
∫

ΓN

σN · u(t)

Note that the Hamiltonian coincides with the energy only when f and σN are
zero. The Poisson bracket is

{F,G} =

∫
Ω

ρ−1

(
δF

δu
· δG
δv
− δF

δv
· δG
δu

)
, (4b)

for F = F (u,v) and G = G(u,v) functionals on M, where δF
δu and δF

δv denote
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the functional derivatives of the functional F . We then have that

δH = lim
ε→0

1

ε

(
H(v + εδv,u+ εδu)−H(v,u)

)
=

∫
Ω

(ρv · δv + Cε(u) : ε(δu))−
∫

Ω

f · δu−
∫

ΓN

σN · δu,

that the phase manifold and the space of test functions are given by

M = {ω ∈ L2(Ω)d : ∇ · (Cε(ω)) ∈ L2(Ω)d, ω = uD on ΓD} × L2(Ω)d, (4c)

T = C∞(Ω)d × {η ∈ C∞(Ω)d : η = 0 on ΓD}, (4d)

and the coordinates functionals are

Cu(φ) =

∫
Ω

ρu · φ, Cv(ψ) =

∫
Ω

ρv ·ψ, (4e)

for (φ,ψ) ∈ T . Now, by taking C := Cu(φ) and C := Cv(ψ) in the equation
(3), we obtain∫

Ω

ρ u̇ · φ = Ċu(φ) = {Cu(φ), H} =

∫
Ω

ρ−1 δCu(φ)

δu
· δH
δv

=

∫
Ω

ρv · φ, (5a)∫
Ω

ρ v̇ ·ψ = Ċv(ψ) = {Cv(ψ), H} = −
∫

Ω

ρ−1 δCv(ψ)

δv
· δH
δu

(5b)

= −
∫

Ω

Cε(u) : ε(ψ) +

∫
Ω

f ·ψ+

∫
ΓN

σN ·ψ,

(5c)

for all (φ,ψ) test functions in T . Since this is a weak formulation of the first
two equations of elastodynamics (2), a standard argument shows that equation
(5a) gives the equation (2a), and that equation (5c) gives the equation (2b)
as well as equation (2d). The equation (2c) is automatically satisfied by the130

definition of the phase manifoldM. This shows that the equations (2) define a
Hamiltonian dynamical system.

Let us now consider the case in which the data f , σN and uD do depend
on time. In this case, a direct differentiation with respect to time gives that

Ḣ(u(t), v(t), t) = −
∫

Ω

ḟ(t) · u(t)−
∫

ΓN

σ̇N (t) · u(t) +

∫
ΓD

u̇D(t) · (Cε(u(t))n).

(6)

Hence, it is necessary to have the data independent of time for the equations of
elastodynamics to be a Hamiltonian dynamical system. Since we are interested
in the case in which the Hamiltonian is constant in time, in view of the above135

identity, in the remaining of the paper, we assume that the data uD, f and
σN are independent of time. Of course, all the schemes we consider can be
trivially extended to the case in which the data depend on time.

6



2.2. Conservation laws

We next state the classical conservation laws of linear elastodynamics for the
linear and angular momenta, and the energy. We show that they are a direct
consequence of the fact that, if J = J(u(t),v(t)) is a functional defined on the
orbits t 7→ (u(t),v(t)) of a Hamiltonian dynamical system, then

J̇ = {J,H}. (7)

Proposition 2.1. Let (u,v) be any solution of the boundary-value problem (2).140

Then the linear momentum I(v) =
∫

Ω
ρv, the angular momentum J(v) =∫

Ω
x × ρv, and the total energy E(u,v) =

∫
Ω

(
1
2ρv · v + 1

2 Cε(u) : ε(u)
)

are
constant in time whenever ΓD = ∅, and f and σN are zero.

Proof. These conservation laws can be deduced by using the Hamiltonian
structure of the equations in question. Indeed, by (7), to show that the func-145

tional J = J(u,v) is constant in time, we only have to show that {J,H} = 0.
Take J := η · I(v) where η is any three-dimensional constant vector. Then,

since ΓD = ∅, we have that T = C∞(Ω) × C∞(Ω) and we can write that J =
Cv(ψ) where ψ = η. As a consequence, {J,H} = 0 by the equation (5c) and
the fact η is a constant vector. Since the vector η was arbitrary, this proves the150

conservation of the first quantity in time.
Now, take J := η · J(v) where η is again any three-dimensional constant

vector. Then, by a similar argument, we see that J = Cv(ψ) where ψ = η×x.
As a consequence, {J,H} = 0 by the equation (5c) and the fact η is a constant
vector. Since the vector η was arbitrary, this proves the conservation of the155

second quantity.
Finally, for J := E, the conservation in time follows from the fact that,

when f and σN are zero, E = H and from the fact that {H,H} = 0, by the
antisymmetry of the Poisson bracket.

This completes the proof. �160

3. The semidiscrete Finite element methods

In this section, we describe the finite element methods we are going to con-
sider for the space discretization of the equations of elastodynamics. So, after
introducing the notation, we describe the semidiscrete method for mixed meth-
ods, and for both the HDG and DG methods. For simplicity, we restrict our165

attention to methods using symmetric approximate stresses. We end by describ-
ing the HDG method we are going to use in our numerical results.

3.1. Notation

Let Th = {K}, for 0 < h < 1, be a family of conforming triangulations of
Ω. Let hK be the inner diameter of an element K in Th and we define by h the170

maximum over the elements.
We assume that the triangulation Th is shape-regular, see [10], and define

the following sets
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∂Th: the set of ∂K for all elements K of the triangulation Th,

Fh: the set of all the faces of the triangulation Th,175

F0
h: the set of the interior faces of the triangulation Th,

FNh : the set of faces lying on the boundary ΓN ,

FDh : the set of faces on the boundary ΓD.

Now we introduce some notation for inner products. Let D ∈ Rd, we denote
by (·, ·)D the inner product for vectors w,v ∈ [L2(D)]d and tensors χ,σ ∈
[L2(D)]d×d, that is,

(w,v)D =

∫
D

w · v, (χ,σ)D =

∫
D

χ : σ.

Similar definitions for the inner products in (d − 1)-dimensional domains are
considered. Then, we define the inner products over the triangulation Th and
the sets of boundary and faces of Th

(χ,σ)Th =
∑
K∈Th

(χ,σ)K , (w,v)Th =
∑
K∈Th

(w,v)K

〈w,v〉E =
∑
F∈E
〈w,v〉F , 〈w,v〉∂Th=

∑
K∈Th

〈w,v〉∂K

where E denotes a collection of faces, for instance E = ∂K,Fh,F0
h,FDh ,FNh .

Furthermore, we introduce some standard discontinuous Galerkin notation
for the averages and jumps over faces. For an interior face F ∈ F0

h, we have
two elements K− and K+ such that F = ∂K+ ∩ ∂K−, and denoting the trace
of a scalar, vector, or tensor valued function φ to the boundary of K± by φ±.
Then, we define the average and jump on F ∈ Fh of a vector function w and
its exterior trace wext by

{{w}} :=

{
1
2 (w+ +w−) if F ∈ F0

h,
w if F ∈ FDh ∪ FNh ,

Jw ⊗ nK :=

{
w+ ⊗ n+ +w− ⊗ n− if F ∈ F0

h,
w ⊗ n −wext ⊗ n if F ∈ FDh ∪ FNh .

We take as the exterior trace wext a boundary data. For example, on ΓD, we180

take uexth := uD. There is no need to define the exterior trace on ΓN .
Similarly, we define the average and jump on F ∈ Fh of a tensor function χ

and its exterior trace χext by

{{χ}} :=

{
1
2 (χ+ + χ−) if F ∈ F0

h,
χ if F ∈ FDh ∪ FNh .

JχnK :=

{
χ+n+ + χ−n−, if F ∈ F0

h

χn − χextn if F ∈ FDh ∪ FNh .
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We take as the exterior trace χn a boundary data. For example, on ΓN , we
take σexth := σN . There is no need to define the exterior trace on ΓD.

Next, we define the finite element space for symmetric tensors, and the space
for vectors by

V M
h = {χ ∈ [L2(Ω)]d×d ∩ S, ],∇ · χ ∈ [L2(Ω)]d : χ|K ∈ V (K),∀K ∈ Th}, (8a)

V h = {χ ∈ [L2(Ω)]d×d ∩ S : χ|K ∈ V (K),∀K ∈ Th}, (8b)

Wh = {w ∈ [L2(Ω)]d : w|K ∈W (K),∀K ∈ Th}, (8c)

where V (K) and W (K) are local finite element spaces which determine the
numerical method. By S we denote the set of symmetric-valued matrices.185

3.2. Mixed finite element methods

3.2.1. For steady-state

The mixed methods for the steady-state problem

−∇·(σ) = f , Aσ = ε(u) in Ω, u = uD on ΓD, and σn = σN on ΓN ,

seek approximations of (u,σ), (uh,σh), in the space Wh × V M
h,σN

, where

V M
h,σN

= {χ ∈ V M
h : χn = σN on ΓN}.

They are determined as the solution of

−(∇·σh,w)Th = (f ,w)Th ∀ w ∈Wh, (9a)

(Aσh,χ)Th + (uh,∇·χ)Th = 〈uD,χn〉ΓD
∀ χ ∈ V M

h,0. (9b)

Here A = C−1 is the compliance tensor. Examples of these mixed methods can
be found in [8, 2, 7, 19, 20].

3.2.2. The semidiscrete scheme190

We define the semidiscrete scheme in a way which will be suitable to uncov-
ering its Hamiltonian structure. Thus, the semidiscrete scheme defines the ap-
proximation to (u(t),v(t)), (uh(t),vh(t)), as the element of the space Wh×Wh

satisfying the equations

(u̇h(t),w)Th = (vh(t),w)Th ∀ w ∈Wh, (10a)

(ρ v̇h(t),w)Th = (∇·σh(t),w)Th + (f ,w)Th ∀ w ∈Wh, (10b)

where σh(t) is the element of V M
h,σN

which solves the equation

(Aσh(t),χ)Th + (uh(t),∇·χ)Th = 〈uD,χn〉ΓD
∀ χ ∈ V M

h,0. (10c)

We complete the definition of the scheme by setting the initial condition as
follows:

(uh(0),v(0)) := (Π(u0), P (v0)),

9



for some projections Π, P into Wh.
To be able to define the Hamiltonian for this semidiscrete scheme in the case

in which σN is not zero, we must introduce an approximation to u(t)|ΓN
. So,

we take ûh(t) as the element of {χn|ΓN
: χ ∈ V M

h } which solves the equation

〈ûh(t),χn〉ΓN
= (Aσh(t),χ)Th + (uh(t),∇·χ)Th − 〈uD,χn〉ΓD

∀ χ ∈ V M
h .

(11)
Using the fact that σh and uh solve the equation (10c), it is not difficult to
show that ûh(t) is well defined. Moreover, the function ûh(t) can be computed
in a face-by-face manner.

3.3. The HDG and DG semidiscrete methods195

3.3.1. For steady-state

The HDG and DG methods for the steady-state problem

−∇·(σ) = f , σ = Cε(u) in Ω, u = uD on ΓD, and σn = σN on Γ,

define (uh,σh, εh) as the solution of

(σh,∇w)K − 〈σ̂hn,w〉∂K = (f ,w)K ∀w ∈W (K), (12a)

(σh,χ)K − (C εh,χ)K = 0 ∀χ ∈ V (K), (12b)

(εh,χ)K + (uh,∇·χ)K−〈ûh,χn〉∂K = 0 ∀χ ∈ V (K). (12c)

The definition of the method is completed by the choice of the local finite element
spaces V (K) and W (K), and by the definition of the numerical traces σ̂hn and
ûh.

For the HDG methods, the numerical trace ûh is a new variable and σ̂h is
given by

σ̂hn = σhn− τ(PMuh − ûh) on ∂Th, (13)

where τ is the so-called stabilization function which we take to be constant200

on each face of ∂K for any K ∈ Th. When the operator PM in (13) is not
the identity, it is L2 projection onto the space Mh. In this case the resulting
stabilization is usually called the Leherenfled-Schöberl stabilization, see [26,
Remark 1.2.4] and [27].

The numerical trace ûh lies in the space

Mh = {µ ∈ L2(Fh)d : µ|F ∈M(F ),∀F ∈ Fh},

and is defined as the solution of

〈σ̂hn, µ〉∂Th\ΓD
= 〈σN , µ〉ΓN

,

〈ûh, µ〉ΓD
= 〈uD, µ〉ΓD

for all µ ∈Mh. Examples of these methods can be found in [40, 41, 32, 31, 12,205

34].
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For the DG methods, the numerical traces are defined by

σ̂h =


{{σh}}+ C11Juh ⊗ nK− JσhnK⊗C12 if F ∈ F0

h,

σh + C11Juh ⊗ nK if F ∈ FDh ,
σN if F ∈ FNh ,

(14a)

ûh =


{{uh}}+ Juh ⊗ nK ·C12 + C22JσhnK if F ∈ F0

h,

uD if F ∈ FDh ,
uh + C22(σhn− σN ) if F ∈ FNh .

(14b)

An example is the DG method proposed in [14]. When C22 = 0, the method is
called an LDG method. Some of these DG methods can become HDG methods
when the parameters C11,C12 and C22 are suitably defined as was shown in [11]
in the framework of steady-state diffusion.210

3.3.2. Semidiscrete schemes

The HDG and DG schemes approximate (u(t),v(t)) by the element (uh(t),vh(t))
of Wh ×Wh which solves the equations

(u̇h(t),w)Th = (vh(t),w)Th ∀ w ∈Wh,
(15a)

(ρ v̇h(t),w)Th = −(σh(t),∇w)Th + (f ,w)Th + 〈σ̂h(t)n,w〉∂Th ∀ w ∈Wh,
(15b)

where (εh(t),σh(t)) is the element of V h × V h solution of

(εh(t),χ)Th + (uh(t),∇·χ)Th − 〈ûh(t),χn〉∂Th = 0 ∀χ ∈ V h, (15c)

(σh(t),χ)Th − (C εh(t),χ)Th = 0 ∀χ ∈ V h, (15d)

and ûh(t) is the element of Mh which solves

〈σ̂h(t)n, µ〉∂Th\ΓD
= 〈σN , µ〉ΓN

(15e)

〈ûh(t), µ〉ΓD
= 〈uD, µ〉ΓD

, (15f)

for all µ ∈Mh. The initial condition is of the form

(uh(0),v(0)) := (Π(u0), P (v0)),

for some projections Π, P into Wh. To complete the scheme, the numerical
traces ûh(t) and σ̂h(t)n are chosen as described in the previous subsection.

3.4. The HDGk+ semidiscrete scheme

To end this section, we describe the HDG method we are going to use in
our numerical experiments. It is denoted by HDGk+ and uses the local spaces
introduced in [35], namely,

V (K) = [Pk(K)]d×d ∩ S, W (K) = [Pk+1(K)]d, M(F ) = [Pk(F )]d. (16)
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for any element K ∈ Th and face F ∈ Fh.215

To be able to prove optimal error estimates, we take the initial data uh(0)
as the first component of the approximate solution (uh(0), εh(0),σh(0)) given
by the HDGk+ method applied to

−∇ · σ(0) = −∇· (C ε(u0)), σ(0) = C ε(0) in Ω,

u(0) = uD on ΓD, σ(0)n = σN on ΓN .

The initial approximation of the velocity vh(0) is taken as the L2-projection
onto the space Wh of v0.

We also need to assume that the following elliptic regularity condition

‖Φ‖H2(Ω)d + ‖Cε(Φ)‖H1(Ω)d×d ≤ Creg‖∇ · (Cε(Φ))‖L2(Ω)d , (17)

holds for any Φ ∈ H1(Ω)d and finite right-hand side of the above inequality.

Theorem 3.1. We have, for k ≥ 1,

‖C(ε(T )− εh(T ))‖L2(Ω)d×d + ‖ρ(v − vh)‖L2(Ω)d ≤ C Θhm(1 + T ),

for 1 ≤ m ≤ k, where Θ :=
∑3
i=0 supt∈[0,T ]

(
‖σ(i)‖Hm(Ω)d×d + ‖u(i)‖Hm+1(Ω)d

)
.

Moreover, if the elliptic regularity inequality (17) holds, then

‖u(T )− uh(T )‖L2(Ω)d ≤ CΘhm+1(1 + T ),

for 1 ≤ m ≤ k + 1.220

The proof of this result is extremely similar to that provided in [15] for a related
scheme. Indeed, in [15], new techniques were provided for the analysis of an
HDGk+ method proposed in [35] for the equations of linear elasticity. These
techniques were used to analyze the semidiscrete scheme resulting from the space
discretization of the equations of elastodynamics (formulated with a second225

order-time derivative and with the compliance tensor) by the HDGk+ method.
This new analysis allows to simplify the quasi uniformity assumption on the

mesh of the original paper [35]. The main differences between the semidiscrete
scheme in [15] and the scheme under consideration is that they use a formulation
with two time derivatives whereas we use a first-order system, and that they230

use the the compliance tensor A = C−1 whereas we use the stiffness tensor
C tensor. When both tensors are well defined, the differences between these
two formulations are really minor and can even produce superclose approximate
solutions, as proved in [13] for the steady-state diffusion problem.

4. The Hamiltonian structure of the semidiscrete methods235

In this section we present the main results. We prove that, under space
discretization by the mixed, DG and HDG methods, the resulting dynamical
system is Hamiltonian. We do this in two equivalent ways. In Section 4.1, we
use the approach using Poisson brackets sketched in Section 2, and in Section
4.2, the canonical approach for finite dimensional ODEs. We end in Section 4.3,240

by proving the conservation properties of the semidiscrete schemes.
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4.1. The Poisson brackets approach

We prove the Hamiltonian structure of the semidiscrete schemes by using the
approach sketched in Section 2. Indeed, we claim that the three semidiscrete
methods define a Hamiltonian dynamical system for which245

(i) the phase space is Mh = Wh ×Wh,

(ii) the Poisson bracket is

{F,G}h = (ρ−1 δF

δuh
,
δG

δvh
)Th − (ρ−1 δF

δvh
,
δG

δuh
)Th .

(iii) The Hamiltonians, for each of the methods, are

HM
h (uh,vh) =

1

2
((ρvh,vh)Th + (Aσh,σh)Th)− (f ,uh)Th − 〈σN , ûh〉FN

h
,

HHDG
h (uh,vh) =

1

2
((ρvh,vh)Th + ( C εh, εh )Th)− (f ,uh)Th − 〈σN , ûh〉FN

h

+
1

2
〈τ(PMuh − ûh), PMuh − ûh〉∂Th ,

HDG
h (uh,vh) =

1

2
((ρvh,vh)Th + ( C εh, εh )Th)− (f ,uh)Th − 〈σN , ûh〉FN

h

− 1

2
C11〈Juh ⊗ nK, Juh ⊗ nK〉F0

h∪F
D
h

− 1

2
C22〈JσhnK, JσhnK〉F0

h∪F
N
h
,

(iv) the coordinates functionals are Cuh
= (ρuh, φ)Ω and Cvh = (ρvh, ψ)Ω,

(v) the space of test functions is Th = Wh ×Wh.

Let us prove the claim.

4.1.1. The semidiscrete mixed method250

Theorem 1 (Hamiltonian structure of the semidiscrete mixed methods).
The semidiscrete mixed finite element method (10) defines a Hamiltonian dy-
namical system.

Proof. Using the definition of HM
h , we get that

δHM
h = (δvh, ρvh)Th + (δσh,Aσh)Th − (δuh,f)Th − 〈δûh,σN 〉FN

h
.

We now need to write the variations of σh and ûh in terms of the variation of
uh. So, by the equation (11) relating σh, ûh and uh, we have that

〈δûh(t),χn〉ΓN
= (Aδσh(t),χ)Th + (δuh(t),∇·χ)Th ∀ χ ∈ V M

h ,

and taking χ := σh, we obtain

〈δûh(t),σN 〉ΓN
= (Aδσh(t),σh)Th + (δuh(t),∇·σh)Th ,
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This implies that

δHM
h = (δvh, ρvh)Th − (δuh,∇·σh)Th − (δuh,f)Th .

As a consequence, by the definition of the discrete Poisson bracket, we get that

(ρ u̇h,w)Th = Ċuh
(w) = {Cuh

(w), HM
h }h = (

δHM
h

δvh
,w)Th = (ρvh,w)Th ,

(ρ v̇h,w)Th = Ċvh(w) = {Cvh(w), HM
h }h = −(

δHM
h

δuh
,w)Th = (∇·σh,w)Th

+ (f ,w)Th ,

for all w ∈Wh. In other words, the equations defining the semidiscrete mixed
methods define a Hamiltonian dynamical system. This completes the proof.255

�

4.1.2. The semidiscrete HDG method

Theorem 2 (Hamiltonian structure of the semidiscrete HDG methods).
The HDG method defined in (15) with numerical traces given by (13) defines a
Hamiltonian dynamical system.260

Proof. Taking the variation of the functional HHDG
h , we obtain

δHHDG
h = (ρvh, δvh)Th + (Cεh, δεh)Th − (f , δuh)Th − 〈σN , δûh〉FN

h

+ 〈τ(PMuh − ûh), δ(PMuh − ûh)〉∂Th .

From equation (15d) with χ := δεh, we have that (Cεh, δεh)Th = (σh, δεh)Th .
If we now take the variation in equation (15c) and set χ := σh, we obtain

(Cεh, δεh)Th = −(∇·σh, δuh)Th+〈σhn, δûh〉∂Th = (σh,∇δuh)Th−〈σhn, δ(uh−ûh)〉∂Th .

Hence, δHHDG
h equals to

(ρvh, δvh)Th + (σh,∇δuh)Th − 〈σhn, δ(uh − ûh)〉∂Th − (f , δuh)Th − 〈σN , δûh〉FN
h

+ 〈τ(PMuh − ûh), δ(PMuh − ûh)〉∂Th
= (ρvh, δvh)Th + (σh,∇δuh)Th − 〈σ̂hn, δ(uh − ûh)〉∂Th − (f , δuh)Th − 〈σN , δûh〉FN

h

+ 〈τ(PMuh − ûh), δ(PMuh − ûh)〉∂Th + 〈(σ̂h − σh)n, δ(uh − ûh)〉∂Th
= (ρvh, δvh)Th + (σh,∇δuh)Th − 〈σ̂hn, δuh〉∂Th − (f , δuh)Th

+ 〈τ(PMuh − ûh), δ(PMuh − ûh)〉∂Th + 〈(σ̂h − σh)n, δ(uh − ûh)〉∂Th .

by equation (15e) with µ := δûh and since, by equation (15f), δûh = 0 on ΓD.
Finally, by definition of PM , we get

δHHDG
h =(ρvh, δvh)Th + (σh,∇δuh)Th − 〈σ̂hn, δuh〉∂Th − (f , δuh)Th

+ 〈(σ̂h − σh)n+ τ(PMuh − ûh), δ(PMuh − ûh)〉∂Th .
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Note that, until now, we have not used the particular form of the numerical
traces. Next, we insert the definition of the HDG numerical trace for the flux,
(13), to get

δHHDG
h =(ρvh, δvh)Th + (σh,∇δuh)Th − 〈σ̂hn, δuh〉∂Th − (f , δuh)Th .

Thus, using the definition of the discrete Poisson bracket, we get that

(ρ u̇h,w)Th = Ċuh
(w) = {Cuh

(w), HHDG
h }h = (

δHHDG
h

δvh
,w)Th = (ρvh,w)Th ,

(ρ v̇h,w)Th = Ċvh(w) = {Cvh(w), HHDG
h }h = (

δHHDG
h

δuh
,w)Th = (σh,∇w)Th

− 〈σ̂hn,w〉∂Th
− (f ,w)Th ,

for all w ∈ Wh. Therefore, semidiscrete HDG methods defines a Hamiltonian
dynamical system. This completes the proof. �

4.1.3. The semidiscrete DG method

Theorem 3 (Hamiltonian structure of the semidiscrete DG methods).
The DG method defined in (15) with numerical traces given by (14) defines a265

Hamiltonian dynamical system.

Proof. The variation of the functional HDG
h is

δHDG
h =(ρvh, δvh)Th + (Cεh, δεh)Th − (f , δuh)Th − 〈σN , δûh〉FN

h

− C11〈Juh ⊗ nK, Jδuh ⊗ nK〉F0
h∪F

D
h
− C22〈JσhnK, JδσhnK〉F0

h∪F
N
h

Proceeding as in the previous proof, we get

δHDG
h =(ρvh, δvh)Th + (σh,∇δuh)Th − 〈σ̂hn, δuh〉∂Th − (f , δuh)Th + Θh,

where

Θh :=Φh − C11〈Juh ⊗ nK, Jδuh ⊗ nK〉F0
h∪F

D
h
− C22〈JσhnK, JδσhnK〉F0

h∪F
N
h
,

Φh :=〈δ(uh − ûh), (σ̂h − σh)n〉∂Th .

We claim that, if we insert the definition of the numerical traces, (14), we get
that Θh = 0. In this case, we then obtain

δHDG
h = (ρvh, δvh)Th + (σh,∇δuh)Th − 〈σ̂hn, δuh〉∂Th − (f , δuh)Th ,

and we proceed exactly as in the proof of the semidiscrete HDG method to
conclude that the semidiscrete DG method defines a Hamiltonian system.
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It remains to prove the claim. By Lemma Appendix A.1 with w := δ(uh −
ûh) and χ := (σ̂h − σh), we have that

Φh =〈{{δ(uh − ûh)}}, J(σ̂h − σh)nK〉F0
h

+ 〈Jδ(uh − ûh)⊗ nK, {{(σ̂h − σh)}}〉F0
h

+ 〈δ(uh − ûh), (σ̂h − σh)n〉FD
h ∪F

N
h
.

=− 〈δ({{uh}} − ûh), JσhnK〉F0
h

+ 〈δ(JuhK⊗ n, (σ̂h − {{σh)}}〉F0
h

+ 〈δ(uh − ûh), (σ̂h − σh)n〉FD
h ∪F

N
h
,

since the numerical traces are single-valued. Inserting the definition of the
numerical traces (14), we get

Φh =〈δ(Juh ⊗ nK ·C12 + C22JσhnK), JσhnK〉F0
h

+ 〈δJuh ⊗ nK, C11Juh ⊗ nK− JσhnK⊗C12〉F0
h

+ 〈δJuh ⊗ nK, C11Juh ⊗ nK〉FD
h

+ 〈C22δJσhnK, JσhnK〉FN
h
,

and the result follows. This proves the claim and completes the proof. �

4.2. The canonical approach270

Here, we consider the semidiscrete schemes under consideration as defining a
finite dimensional system of ODEs and show that it has the form of a canonical
Hamiltonian dynamical system.

We begin by considering a basis ofWh, {φi}i∈J , such that (ρφi,φj)Th = δi,j
for i, j ∈ J = {1, · · · ,dimWh}. Then, we define the coefficients ui(t) and vi(t)
associated to the basis {φi}i∈J of the approximations to the displacement uh
and the velocity vh, respectively, that is,

uh(t,x) =
∑
i∈J

ui(t)φi(x), vh(t,x)=
∑
i∈J

vi(t)φi(x). (18)

The canonical coordinates are (qi, pi) := (ui, vi) for i ∈ J . They are nothing
but the degrees of freedom of the approximate solution (uh,vh), and coincide275

with the coordinates functionals of the modern approach because we have that
(qi, pi) = (Cuh

(φi), Cvh(φi)). This justifies calling the functionals Cuh
(φi) and

Cvh(φi) the coordinates functionals.

Theorem 4 (Canonical Hamiltonian structure of the semidiscrete methods).
The canonical Hamiltonian system:

ṗi = −∂
∂qi
H(p, q), q̇i =

∂

∂pi
H(p, q) i ∈ J ,
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holds for

H(p, q) := HM
h (uh,vh), (uh,vh) solution of the semidiscrete mixed scheme,

H(p, q) := HHDG
h (uh,vh), (uh,vh) solution of the semidiscrete DG scheme,

H(p, q) := HDG
h (uh,vh), (uh,vh) solution of the semidiscrete HDG scheme.

Proof. Since, for H(pi, qi) := Hh(uh,vh), we have

∂

∂qi
Hh(pi, qi) =

∂

∂qi
Hh(uh,vh) =

d

dη
H(uh + ηφi,vh)|η=0 = (φi,

δHh

δuh
)Th ,

∂

∂pi
Hh(pi, qi) =

∂

∂pi
Hh(uh,vh) =

d

dη
Hh(uh,vh + ηφi)|η=0 = (φi,

δHh

δvh
)Th ,

we get, for each of the three Hamiltonians Hh under consideration, by the
Theorems 1, 2 and 3, respectively, that

ṗi = Ċuh
(φi) = {Cuh

(φi), Hh}h = −(φi,
δHh

δvh
)Th = −∂

∂qi
H(p, q),

q̇i = Ċvh(φi) = {Cvh(φi), Hh}h = (φi,
δHh

δuh
)Th =

∂

∂pi
H(p, q).

This completes the proof. �

4.3. Conservation properties of the semidiscrete schemes280

In this section, we prove a discrete version of the conservation properties of
Proposition 2.1.

Proposition 4.1. Let (uh,vh) be any solution of the semidiscrete schemes un-
der consideration. Then the total linear momentum I(vh) =

∫
Ω
ρvh, the total

angular momentum J(vh) =
∫

Ω
x× ρvh, and the total energy

E(uh,vh) =



1
2 ((ρvh,vh)Th + (Aσh,σh)Th) , mixed method,
1
2 ((ρvh,vh)Th + ( C εh, εh )Th)

+ 1
2 〈τ(PMuh − ûh), PMuh − ûh〉∂Th , HDG method,

1
2 ((ρvh,vh)Th + ( C εh, εh )Th)

− 1
2C11〈Juh ⊗ nK, Juh ⊗ nK〉F0

h∪F
D
h

− 1
2C22〈JσhnK, JσhnK〉F0

h∪F
N
h

DG method,

are constant in time whenever ΓD = ∅, and f and σN are zero. For this
to happen for the total angular momentum, the space Wh must include the
functions x× a for every constant vector a ∈ R3.285

The proof is identical to the proof of the conservation laws for the exact
case, Proposition 2.1. It is based on the fact that, if J = J(uh(t),vh(t)) is a
functional defined on the orbits t 7→ (uh(t),vh(t)) of a Hamiltonian dynamical
system, then J̇ = {J,Hh}h, where Hh is the Hamiltonian. This holds for the
three semidiscrete schemes we are considering by Theorems 1, 2 and 3.290
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5. Symplectic Hamiltonian finite element methods: Fully discrete
schemes

In this section, we discuss the properties we want our symplectic time-
marching scheme to have, and argue that the Explicit Symplectic Partitioned
Runge-Kutta (ESPRK) methods fulfill them. We then give two examples of295

fully discrete schemes, one for the semidiscrete HDG method and the other for
the Local Discontinuous Galerkin method.

5.1. Properties of the symplectic methods

Let us briefly discuss the three properties we want the symplectic time
marching methods to have.300

The first concerns the invariants of the Hamiltonian dynamical system. We
know that, when ΓD = ∅, and f and σN are zero, the linear and angular mo-
menta remain constant. In other words, the linear and angular momenta are
linear invariants of the Hamiltonian system defined by the semidiscrete method.
Moreover, when the data uD, f and σN are independent of time, the Hamilto-305

nian is also constant. In other words, the Hamiltonian is a (separable) quadratic
invariant of the Hamiltonian system. This implies that, when picking a sym-
plectic time-marching scheme, we want to ensure that it maintains constant
linear invariants and quadratic invariants of the original Hamiltonian system.
The second property concerns the accuracy of the methods. Since we are us-310

ing high-order accurate finite elements to discretize in space, the time-marching
methods must match their high-order accuracy. The third property is about im-
plementation. Since explicit schemes are very easy to code, and quite efficient
for hyperbolic problems, we are interested in choosing explicit time-marching
schemes.315

The so-called explicit symplectic partitioned Runge-Kutta (ESPRK) meth-
ods we use in our numerical experiments, see Appendix C, satisfy all of the
above properties except the conservation of quadratic invariants. However, the
methods approximate the Hamiltonian without drift in time. We will observe in
our computational experiments in Section 6.2 that these oscillations are minute,320

in theory of order ∆tk+2. Hence, it pays to sacrifice exact conservation for effi-
ciency in the implementation.

5.2. Explicit Symplectic Partitioned Runge-Kutta methods (ESPRK)

Let us now define the ESPRK methods for the Hamiltonian system

ṗ = −∂H
∂q

(p, q, t), q̇ =
∂H
∂p

(p, q, t).

We consider ESPRK methods for the general case of Hamiltonians which
depend on time. In our setting, this corresponds to the case in which the data325

uD, f and σN depend on time.
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So, we define an step (pn, qn) → (pn+1, qn+1) of an s-stages partitioned
Runge-Kutta method with coefficients (aij , bi, ci) and (ãij , b̃i, c̃i), for i, j =
1, . . . , s by

pn+1 = pn +

s∑
i=1

biki, qn+1 = qn +

s∑
i=1

b̃ik̃i

ki = −∂H
∂q

(pn,i, qn,i, tn + ci∆t
n), k̃i =

∂H
∂p

(pn,i, qn,i, tn + c̃i∆t
n),

pn,i = pn + ∆tn
s∑
j=1

aijkj qn,i = qn + ∆tn
s∑
j=1

ãij k̃j

In order to define explicit schemes, we consider an explicit and diagonally im-
plicit Runge-Kutta methods of the form

aij =

{
0, if i < j
bj , if i ≥ j ãij =

{
0, if i ≤ j
b̃j , if i > j.

For the separable Hamiltonian of elastodynamics, the explicit symplectic parti-
tioned Runge-Kutta scheme reads as follow:

pn,i = pn +

i∑
j=1

bjkj , qn,i = qn +

i−1∑
j=1

b̃j k̃j

kj = −∂H
∂q

(qn,j , tn + cj∆t
n), k̃j =

∂H
∂p

(pn,j , tn + c̃j∆t
n),

for i = 1, . . . , s. The next step is obtained by setting pn+1 := pn,s and qn+1 :=
qn,s. See Appendix Appendix C for the Butcher tableau of the ESPRK methods
of order of accuracy from 3 to 6 we use in our numerical experiments.

5.3. Fully discrete HDG method330

We consider the HDG semidiscrete scheme (15) with numerical traces given
by the numerical traces (13) and spaces V h, Wh and Mh. We assume that
for a given time tn the values of the variables are known, we denote these by
(unh,v

n
h , ε

n
h,σ

n
h, û

n
h), and they correspond to the 0-stage of an ESPRK scheme.

Then, the i-stage of the method, for a time step ∆tn is defined by the equations335

(ρvn,ih ,w)K = (ρvn,i−1
h ,w)K + bi∆t

n
(
(σn,i−1

h ,∇w)K + 〈σ̂n,i−1
h n,w〉∂K

+ (f(tn + ci∆t
n),w)K

)
,

(un,ih ,w)K = (un,i−1
h ,w)K + b̃i∆t

n(vn,ih ,w)K ,

for all w ∈W (K), where the numerical trace of the stress is

σ̂n,i−1
h = σn,i−1

h − τ(PMu
n,i−1
h − ûn,i−1

h ) on ∂K,
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and i = 1, . . . , s. Observe that this procedure will only allow us to advance to
the (i)-stage the variables vn,ih and un,ih . From the equations above is clear that

we also need to obtain at least σn,ih and σ̂n,ih . In order to advance the other

variables we need to solve the following global system for (εn,ih ,σn,ih , ûn,ih ), which
are obtained from the steady-state part of the scheme (15), namely,

(εn,ih ,χ)Th − 〈û
n,i
h ,χn〉∂Th\ΓD

= −(un,ih ,∇ · χ)Th + 〈ûD(tn + ci∆t
n)),χn〉ΓD

,

(σn,ih ,χ)Th − (Cεn,ih ,χ)Th = 0,

〈σ̂n,ih ,µ〉∂Th\ΓD
= 〈σN (tn + ci∆t

n),µ〉Γ,

for all χ ∈ V h, and µ ∈Mh. The solution of this system exists and is unique,
and can be easily computed, as we argue in Appendix Appendix B.

5.4. Fully discrete local discontinuous Galerkin (LDG) method

We consider the DG semidiscrete scheme in (15) and DG fluxes defined
in (14). We set C22 = 0, that is, we consider a local discontinuous Galerkin
method. We assume that for a given time tn the values of the variables are
known, we denote these by (unh,v

n
h , ε

n
h,σ

n
h), and they correspond to the 0-stage

of the ESPRK algorithm. Then, the i-stage of the method, for a time step ∆tn

is defined by the local equations

(ρvn,ih ,w)K = (ρvn,i−1
h ,w)K + bi∆t

n
(
(σn,i−1

h ,∇w)K + 〈σ̂n,i−1
h n,w〉∂K ,

+ (f(tn + ci∆t
n),w)K

)
,

(un,ih ,w)K = (un,i−1
h ,w)K + b̃i∆t

n(vn,ih ,w)K ,

for i = 1, . . . , s and for all w ∈Wh and numerical trace

σ̂n.i−1
h =


{{σn,i−1

h }}+ C11Ju
n,i−1
h ⊗ nK− Jσn,i−1

h nK⊗C12, if F ∈ F0
h

σn,i−1
h + C11Ju

n,i−1
h ⊗ nK, if F ∈ FDh

σN (tn + ci−1∆tn), if F ∈ FNh .

As in the previous case, in order to advance to the next stage is necessary to
compute σn,ih (the numerical trace σ̂n,ih is obtained from un,ih and σn,ih ). To do
that, we solve the local system

(εn,ih ,χ)K = 〈ûn,ih ,χn〉∂K − (un,ih ,∇ · χ)K ,

(σn,ih ,χ)K = (Cεn,ih ,χ)K ,

for all χ ∈ V (K), where

ûn,ih =


{{un,ih }}+ Jun,ih ⊗ nKC12, if F ∈ F0

h,

uD(tn + ci∆t
n) if F ∈ FDh ,

un,ih if F ∈ FNh .

Therefore, we obtain a fully discrete DG scheme, which is explicit in time and
local in space.340
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6. Numerical experiments

In this section, we test the properties of the ESPRK(k+2)-HDGk+ numerical
scheme introduced in Section 5.3. We use an ESPRK method of order (k + 2)
when polynomials of degree k are used in the HDGk+ method. In this way, we
match the expected rate of convergence of the error of the displacement variable.345

We consider isotropic materials with stiffness tensor Cε = 2µε+λtr(ε) I, where
λ and µ are the Lamé constants. In Section 6.1, we provide numerical evidence
of the approximation properties of the numerical methods showing the optimal
convergence of order k + 2 for the L2-errors of the displacement and velocity
variables and of order k + 1 for the L2-errors of the stress and strain variables.350

In Section 6.2, we present numerical examples illustrating the energy-conserving
property of our method.

6.1. History of convergence tests

In the following numerical experiments, we provide evidence of the optimal
approximation properties of the numerical scheme ESPRK(k+ 2)-HDGk+. For
each of the approximations uh, vh, εh and σh, we compute the maximum
over the time steps tn of the L2-errors of the corresponding error, and then
estimate their orders of convergence (e.o.c.). For instance, for the displacement
approximation we compute

errorh = max
tn
‖u(tn)− unh‖L2(Ω)2 , e.o.ch =

log(errorh/errorh′)

log(h/h′)
,

where h′ correspond to the previous mesh size parameter used in the computa-
tions. The experiments are carried on the unit square domain Ω = (0, 1)2 using
uniform triangulations with mesh-size parameter h = 2−l. As exact solution we
take

u(x, y, t) =

(
−x2y(2y − 1)(x− 1)2(y − 1) sin(πt)
y2x(2x− 1)(y − 1)2(x− 1) sin(πt)

)
.

We approximate the linear elastodynamics Dirichlet problem, i.e. ΓD = ∂Ω and
ΓN = ∅, with homogeneous boundary condition uD = 0, and data f and initial355

conditions u0 and v0 so that the equation (1a) and initial (1c) are satisfied. We
compute up to final time T = 0.5.

We consider two tests on homogeneous media ρ = 1, compressible and nearly
incompressible materials.

a) Compressible case360

We use as material parameters Young’s modulus E = 2.5 and Poisson ratio
ν = .25, equivalently Lamé constants λ = 1, µ = 1. We summarize the results in
Table 1. We observe optimal convergence of order k + 2 for the approximation
error of the displacement and velocity variables and optimal convergence of
order k + 1 for the approximation error of the strain and stress variables.365
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Figure 1: Left: uniform crisscross triangulation (l = 3) used in our computations. Right:
approximate solution (uh)1 for k = 1 and l = 4. Numerical example in Section 6.1 a)
Compressible case.

Table 1: History of convergence of the numerical approximations of the linear elastodynamics
equations by the scheme ESPRK(k+ 2)-HDGk+. Computations were performed up to a final
time T = 0.5. Compressible case E = 2.5 and ν = .25.

uh vh σh εh
k l error e.o.c. error e.o.c. error e.o.c. error e.o.c.

1

0 3.4e-3 − 1.1e-2 − 2.0e-2 − 8.3e-3 −
1 5.5e-4 2.61 2.4e-3 2.19 7.1e-3 1.47 2.9e-3 1.51
2 6.6e-5 3.05 3.5e-4 2.78 2.1e-3 1.77 8.6e-4 1.76
3 8.3e-6 3.00 4.6e-5 2.93 5.4e-4 1.94 2.2e-4 1.95
4 1.0e-6 3.02 5.9e-6 2.98 1.4e-4 1.98 5.7e-5 1.98

2

0 1.1e-3 − 3.7e-3 − 6.6e-3 − 2.8e-3 −
1 7.6e-5 3.91 3.8e-4 3.28 1.6e-3 2.02 6.8e-4 2.04
2 4.8e-6 3.99 2.7e-5 3.83 2.3e-4 2.83 9.5e-5 2.84
3 2.9e-7 4.05 1.7e-6 4.00 2.9e-5 2.97 1.2e-5 2.98
4 1.8e-8 4.02 1.0e-7 4.00 3.7e-6 2.98 1.5e-6 2.99

3

0 3.4e-4 − 1.1e-3 − 2.8e-3 − 1.2e-3 −
1 1.2e-5 4.84 6.7e-5 4.11 2.6e-4 3.42 1.1e-4 3.43
2 3.6e-7 5.03 2.0e-6 5.03 1.7e-5 3.97 6.9e-6 3.98
3 1.1e-8 5.06 6.3e-8 5.02 1.0e-6 4.00 4.3e-7 4.00
4 3.4e-10 5.02 2.0e-9 5.01 6.5e-8 3.99 2.7e-8 3.99

4

0 1.1e-4 − 3.9e-4 − 8.2e-4 − 3.5e-4 −
1 1.0e-6 6.75 5.9e-6 6.04 2.2e-5 5.21 9.3e-6 5.22
2 1.6e-8 5.97 9.1e-8 6.02 6.9e-7 5.01 2.9e-7 5.02
3 2.4e-10 6.07 1.4e-9 6.00 2.1e-8 5.01 9.0e-9 5.01
4 3.7e-12 6.02 2.2e-11 6.00 6.7e-10 5.00 2.8e-10 5.00

b) Near incompressible case

We use as material parameters Young’s modulus E = 3002/1001 and Pois-
son ratio ν = 500/1001, equivalently Lamé constants λ = 1000, µ = 1. We
summarize the results in Table 2. We observe optimal convergence of order
k+2 for the approximation error of the displacement and velocity variables and370

optimal convergence of order k+1 for the approximation error of the strain and
stress variables.
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Table 2: History of convergence of the numerical approximations of the linear elastodynamics
equations by the scheme ESPRK(k+ 2)-HDGk+. Computations were performed up to a final
time T = 0.5. Near incompressible case E = 3002/1001 and ν = 500/1001.

uh vh σh εh
k l error e.o.c. error e.o.c. error e.o.c. error e.o.c.

1

0 5.4e-03 − 2.0e-02 − 1.4e-02 − 3.7e-02 −
1 1.1e-03 2.28 4.2e-03 2.27 3.7e-03 2.14 8.5e-03 1.92
2 1.6e-04 2.82 8.2e-04 2.37 1.8e-03 0.95 4.4e-03 1.06
3 2.0e-05 3.01 9.7e-05 3.07 4.8e-04 1.87 1.2e-03 1.88
4 2.4e-06 3.04 1.2e-05 2.97 1.2e-04 2.00 3.0e-04 2.01

2

0 3.1e-03 − 1.1e-02 − 4.7e-03 − 1.0e-02 −
1 1.6e-04 4.27 7.4e-04 3.91 1.3e-03 1.62 3.3e-03 1.89
2 1.2e-05 3.68 6.2e-05 3.57 2.1e-04 2.62 5.3e-04 2.61
3 7.4e-07 4.06 3.8e-06 4.03 2.6e-05 2.98 6.7e-05 2.98
4 4.5e-08 4.06 2.4e-07 3.97 3.3e-06 3.00 8.4e-06 3.00

3

0 6.6e-04 − 2.3e-03 − 2.5e-03 − 6.6e-03 −
1 3.4e-05 4.27 1.7e-04 3.74 2.4e-04 3.41 6.1e-04 3.36
2 9.9e-07 5.10 5.2e-06 5.00 1.5e-05 4.04 3.7e-05 4.03
3 3.0e-08 5.07 1.6e-07 5.01 9.3e-07 3.99 2.4e-06 3.99
4 9.0e-10 5.04 4.6e-09 5.14 5.8e-08 3.99 1.5e-07 3.99

4

0 3.2e-04 − 1.1e-03 − 7.6e-04 − 1.9e-03 −
1 3.2e-06 6.66 1.7e-05 5.99 2.1e-05 5.12 5.4e-05 5.14
2 4.5e-08 6.14 2.7e-07 5.97 6.6e-07 5.02 1.7e-06 5.02
3 7.3e-10 5.96 4.2e-09 6.00 2.1e-08 5.01 5.2e-08 5.01
4 1.1e-11 6.04 2.7e-11 7.24 6.5e-10 4.99 1.6e-09 4.99

6.2. Conservation properties tests

We present three examples showing the energy-conserving properties of the
numerical scheme ESPRK(k + 2)-HDGk+.375

a) Plane waves

We consider the exact solution u(x, y, t) = Ae exp(((x, y) · d − c t)), where
A is the amplitude, e displacement direction, d propagation direction, and c
propagation speed on the two-dimensional domain Ω = (0, 3) × (0, 1) with pe-
riodic boundary conditions. We solve two cases, first e = d = (0, 1) (P-wave)380

and second e = (1, 0) and d = (0, 1) (S-wave). Computations are performed
until final time T = 100. We take the following material parameters: A = .1,
ρ = 1.0, E = 3.0, ν = 0.3. We also use h = 6.25 × 10−2, ∆t = 7.775 × 10−3,
k = 1 and τ = 1/h. Mesh deformation plots were performed on a coarser mesh
(2h) to improve visualization.385

In Fig. 2, we plot the resulting deformations of the criss-cross triangulation
and the plot of the error of the energy Eh (or, equivalently, in the free body
case the Hamiltonian functional HHDG

h ), that is,

Eh(uh,vh) =
1

2
((ρvh,vh)Th + (C εh, εh)Th + 〈τ(PMuh − ûh), PMuh − ûh〉∂Th) .

(19)
We also plot the error of the energy resulting of neglecting the terms on the

skeleton, that is,

Ẽh(uh,vh) =
1

2
((ρvh,vh)Th + (C εh, εh)Th) . (20)
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We observe that the error of Eh remains practically constant in time, as
expected, by the construction of the method. We also observe that the error of
Ẽh oscillates but seems constant in average.
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Figure 2: Plot of approximate solution and energy errors of example a) Plane waves. First
row: Mesh deformation under plane waves. Left: P-wave (e = d = (0, 1)). Right: S-wave
(e = (0, 1) and d = (1, 0)). Second row: Plots of the errors |E − Eh| (blue straight line) and
|E − Ẽh| (red oscillatory line) of the discrete approximate energies defined in (19) and (20)
for the P-wave (left) and S-wave (right).

b) Traveling wave pulse

We consider the exact solution

u(x, y, t) =

(
φ(x− ct) + φ(y − ct)

0
,

)
, φ(s) = (2s− 2)10(2s)10.

on the domain Ω = (0, 1)2 with periodic boundary conditions and material390

parameters E = 2.5 and ν = 0.25. We compute until final time T = 30. We
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take h = 6.25× 10−2, ∆t = 4.511× 10−3, k = 2 and τ = 1/h.
In Fig. 3, we plot the first component of the displacement, (uh)1, and the

first component of the velocity, (vh)1. We also plot the error of the energy Eh
and Ẽh with respect to time. We observe no energy dissipation in time.395
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Figure 3: Plot of approximate solution and energy error of example b) Traveling wave pulse.
First row: from left to right, approximate solutions (uh)1 and (vh)1. Second row: the errors
|E − Eh| (blue straight line) and |E − Ẽh| (red oscillatory line) of the discrete approximate
energies defined in (19) and (20), respectively. The zoom of the blue line indicates that the
approximate energy Eh is not maintained constant by the ESPRK(3) method, as expected.
However, it clearly stays oscillating around a constant, as a consequence of the symplecticity of
the method ESPRK(3). Moreover, the oscillations of the blue line are of the size of 5×10−10.
So, for all practical purposes, the energy Eh remains essentially constant.

c) Plane stress cantilever beam
We consider the two dimensional domain Ω = (0, 1)× (0, 0.05). We consider

the linear elastodynamics problem with f = 0, boundary conditions

u = 0 at x = 0, σ · n = 0 at y = 0, y = 0.05, at x = 1,
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Figure 4: Plot of approximate solution and energy error of example c) Plane stress cantilever
beam at final time T = 10. First row: Plot of the approximations (uh)2 (left) and (σh)11
(right). Second row: Plot of the approximations (σh)12 (left), and (σh)22 (right). Third row:

Plot of the discrete approximate energies Eh (blue straight line) and Ẽh (red oscillatory line)
defined in (19) and (20), respectively.

and initial conditions

u(x, y, t = 0) = 0, v(x, y, t = 0) =

(
0
x

)
.

We compute until final time T = 10 and with material parameters Young’s
modulus E = 20, Poisson’s ratio ν = 1/3. We take h = 6.25 × 10−3, ∆t =
2.853× 10−4, k = 1 and τ = 1/h.

In Fig. 4, we plot the approximate solutions (uh)2, (σh)11, (σh)12, and400

(σh)22. Finally, in Fig. 4, we plot the evolution of the error in the energy of Eh
and of Ẽh in time. We observe no energy dissipation in time.
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7. Extensions

What we have presented here can be extended to many other finite element
methods including the continuous Galerkin method, mixed methods arising from405

the application of the Hu-Washizu variational principle, and to DG and HDG
methods presented in non-mixed form like in [22, 28]. It can also be extended
to other equations of mathematical physics displaying Hamiltonian structure.
The extension to nonlinear elastodynamics and Maxwell’s equations constitute
the subject of ongoing work.410
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Appendix A. An auxiliary result

Lemma Appendix A.1. Let w ∈ Rd and χ ∈ Rd×d. Then

〈w,χn〉∂Th = 〈{{w}} · JχnK + Jw ⊗ nK : {{χ}}, 1〉F0
h

+ 〈w,χn〉FD
h ∪F

N
h
.

Proof. We use the definition of the product 〈·, ·〉∂Th and decompose it into
a sum over the faces in Fh. For an interior face F ∈ F0

h, there exist K1,K2 ∈ Th
with F = ∂K1 ∩ ∂K2. With this notation, we have

〈w|K1
,χ|K1

n|K1
〉F + 〈w|K2

,χ|K2
n|K2

〉F

= 〈w|K1
+

1

2
(w|K2

−w|K2
) ,χ|K1

n|K1
〉F +〈w|K2

+
1

2
(w|K1

−w|K1
) ,χ|K2

n|K2
〉F

= 〈{{w}},χ|K1
n|K1

+ χ|K2
n|K2

〉F + 〈1
2

(w|K1
−w|K2

) ,χ|K1
n|K1

− χ|K2
n|K2

〉F

= 〈{{w}}, JχnK〉F + 〈w|K1
⊗ n|K1

+w|K2
⊗ n|K2

,
1

2
χ|K1

+
1

2
χ|K2

〉F

= 〈{{w}}, JχnK〉F + 〈Jw ⊗ nK, {{χ}}〉F ,

which gives the first term of the identity. The second term is straightforward
evaluation on boundary faces FDh and FNh . �420

Appendix B. Solving the global system for the fully discrete HDG
method

Here, we show that the global system of the fully discrete HDG method of
Subsection 5.2 has a unique solution and can be easily solved.
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To alleviate the notation, we drop the superscript n,i. We begin by noting
that the third equation is satisfied when σ̂hn = σN on ΓN and if, on F0

h we
have

ûh = ũh −
JσhnK
2{{τ}}

where

ũh :=
τ+

2{{τ}}
PMu

+
h +

τ−

2{{τ}}
PMu

−
h and {{τ}} =

1

2
(τ+ + τ−).

Then, if we set ũh := uD on ΓD, the remaining two equations of the global
system in question read

(εh,χ)Th + ζh(σh,χ) = −(uh,∇ · χ)Th + 〈ũh,χn〉F0
h∪ΓD

+ 〈σN
τ
,χn〉ΓN

,

(σh,χ)Th = (Cεh,χ)Th .

for all χ ∈ V h, where

ζh(σh,χ) := 〈JσhnK
2{{τ}}

, JχnK〉F0
h

+〈σhn
τ

,χn〉ΓN
.

We can now see that the global system is uniquely solvable since the bilinear425

form ζh only adds a non-negative, symmetric matrix to the mass matrix. The
global system can be computed at the very beginning of the simulation and can
be solved easily at each inner step of the time-marching method. For example,
for the HDGk+ used in our numerical experiments, τ is of order 1/h and a simple
block-Jacobi iteration converges with a number of iterations independent of the430

mesh.

Appendix C. The ESPRK methods we use

Partitioned RK methods satisfying the condition

biãij + b̃jaji − bib̃j = 0 for i, j = 1, . . . , s,

are symplectic when applied to separable Hamiltonians, see [1, Theorem 2.1].
The Butcher tableaux associated with the ESPRK schemes we use in our ex-
periments have the structure displayed in Table C.3. So, a simple computation435

shows that they satisfy the above condition; see also [1, (6.1)]. In other words,
they are symplectic when applied to the semidiscrete methods for the elastody-
namics equations.

The methods do preserve linear invariants, but not quadratic invariants like
our Hamiltonians. Instead, as they are symplectic, they approximate the Hamil-440

tonian of the corresponding semidiscrete method with no drift in time whenever
ud, f and σN are independent of time.

In Table Appendix C, we display the coefficients of the Explicit Symplectic
Partitioned Runge-Kutta schemes, of s-stages and p-order, ESPRK(s, p), used
in our computations. In the section of numerical experiments, we refer to them445

simply by ESPRK(p).
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b1 0 . . . 0 b1

b1 b2
. . .

... b1 + b2
...

...
. . . 0

...

b1 b2 . . . bs

s∑
i=1

bi

b1 b2 . . . bs

0 0 . . . 0 0

b̃1 0
. . .

... b̃1

b̃1 b̃2
. . . b̃1 + b̃2

...
...

. . . 0 0
...

b̃1 b̃2 . . . b̃s−1 0

s−1∑
i=1

b̃i

b̃1 b̃2 . . . b̃s−1 b̃s

Table C.3: Butcher tableaux of s-stages partitioned Runge-Kutta methods

i bi b̃i
1 7/24 2/3
2 3/4 −2/3
3 −1/24 1

i bi b̃i
1 7/48 1/3
2 3/8 −1/3
3 −1/48 1
4 −1/48 −1/3
5 3/8 1/3
6 7/48 0

i bi b̃i
1 0.1193900292875672758 0.339839625839110000
2 0.6989273703824752308 -0.088601336903027329
3 -0.1713123582716007754 0.5858564768259621188
4 0.4012695022513534480 -0.6030393565364911888
5 0.0107050818482359840 0.3235807965546976394
6 -0.0589796254980311632 0.4423637942197494587

i bi b̃i
1 0.0502627644003922 0.148816447901042
2 0.413514300428344 -0.132385865767784
3 0.0450798897943977 0.067307604692185
4 -0.188054853819569 0.432666402578175
5 0.541960678450780 -0.016404589403618
6 -0.725525558508690 -0.016404589403618
7 0.541960678450780 0.432666402578175
8 -0.188054853819569 0.067307604692185
9 0.0450798897943977 -0.132385865767784
10 0.413514300428344 0.148816447901042
11 0.0502627644003922 0
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