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Abstract The design of materials is currently a fertile re-
search domain. However, most of the material designs de-
scribed in the literature arise from physical intuition, and
often assume infinite periodicity. There is a need for a de-
sign methodology capable of computing patterns and de-
signs involving two different materials where the underly-
ing design variables correspond to a finite set of pixels in a
2-dimensional mesh, and where the goal is a design with
prescribed material properties. This naturally leads to the
consideration of binary optimization models in contrast to
classical (continuous) gradient-based methods, which gener-
ically provide continuous solutions that then need to be
“rounded” to binary values. While the potential drawback
of binary optimization is that its computational complexity
is usually NP-hard, and hence theoretically unattractive, we
show herein that binary optimization combined with a re-
duced basis approach can relatively efficiently produce good
solutions to material design problems of interest.

1 Introduction

Wave phenomena in acoustics, elastodynamics, and electro-
magnetics have been widely studied in the last two decades.
These phenomena have found numerous applications in
many domains of engineering and, therefore accurate, effi-
cient, and reliable numerical simulation is extremely impor-
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tant. For the problems in our scope of concern, a finite ele-
ment method is required since it provides geometric flexibil-
ity and well-known error bounds. In particular, the hybridiz-
able discontinuous Galerkin (HDG) method [1] for acoustics
and elastodynamics as well as in [2] for Maxwell’s equa-
tions and thus electromagnetics, has been proven to be a ro-
bust, accurate, and efficient simulation tool for these sort of
problems. Indeed, these methods were devised to guarantee
that only the degrees of freedom of the approximation of the
scalar variable on the interelement boundaries are globally
coupled; see [7]. In addition to that, this method will provide
particular properties that will become essential later on for
the work presented in this paper.

The family of problems related to wave phenomena has
lately increased due to the growing interest in metamaterial
design. Metamaterials are materials that have very particu-
lar properties due only to their structure, not their composi-
tion. There is often a microscopic pattern of existing materi-
als that, when extended periodically, will provide a particu-
larly effective macroscopic property that is otherwise unob-
tainable. Potential applications of metamaterials in acous-
tics involve sound bullets and acoustic filters [6], negative
Poisson’s ratio materials in elastodynamics [8], and regard-
ing electromagnetism, cloaking devices [3], and photonic
bandgap phenomena [4] among others. Some of the exam-
ples above will be further analyzed in this paper as well as a
similar extension to the heat equation.

The design of metamaterials is difficult because model-
ing and computing effective design patterns is fraught with
computational challenges. Especially when trying to de-
sign manufacturable and realizable materials, physical and
mathematical intuition are insufficient by themselves. One
is therefore led to consider optimization-based approaches
to design. However, the optimization problems that arise
in metamaterial design are often of discrete nature, leading

@ Springer


mailto:jsaa@mit.edu

1024

J. Saa-Seoane et al.

to binary or mixed-integer optimization models. Indeed, in
considering design variables that correspond to a finite set of
pixels, the optimization problem is to choose between two
given materials for each pixel, hence the typical application
problem results in the need to solve a binary optimization
model. In this paper, we present a binary optimization model
approach, which combines local search approximation with
a reduced basis approximation that produces good local so-
lutions with good relative efficiency. Our approach utilizes
a reduced basis projected problem [5] and the use of binary
generalized gradients to ensure feasibility of all solutions.

Some successful approaches to material design through
optimization can be found in the literature. Adjoint methods
solve efficiently shape optimization problems, but usually
lead to continuous optimal solutions if the design variables
are the material properties. Some remarkable applications
have also been solved using topology optimization [13, 14],
which does not ensure discrete solutions, and level set meth-
ods [15] that are highly nonlinear. The approach here intro-
duced proposes an alternative method for the binary design
of materials without using information from any continuous
gradient. In fact, such information might lead to highly sub-
optimal patterns since solutions are in general very sensitive
and continuous optima lay faraway from binary optima.

This paper is organized as follows. Section 2 explains the
suitability of the HDG method used as well as it derives the
particular formulation for the Helmholtz equation case. Sec-
tion 3 derives the reduced basis algorithm used for the binary
optimization local search method that is used for the design
optimization. Results for the Poisson’s equation as well as
for the one-dimensional bandgap problem are further ana-
lyzed in Sect. 4.

2 HDG method for Helmholtz equation

In this section, we want to describe a Hybridizable Dis-
continuous Galerkin (HDG) method for a model Helmholtz
equation. The extension of these results to the linear second-
order wave equation is trivial and can be found in [1, 2].
The HDG method first introduced in [7] possesses a number
of attractive properties for wave propagation problems. In
particular, the HDG method results in a smaller global sys-
tem of equations, especially for high orders of accuracy. As
a result, the method provides more accurate solutions than
other finite element methods for the same mesh discretiza-
tion. The HDG method is very low dispersive and diffusive.
These reasons make the HDG method suitable for the simu-
lation of wave phenomena.

2.1 HDG derivation

In this section, we show how the hybridizable discontinu-
ous Galerkin method applies to a model Helmholtz equation.
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The extension from these derivations to a different domain
or to Poisson’s equation will be later discussed. To that end,
let us first consider the Helmholtz problem as follows:

—V.-eVu—k*u=f in2cR?

1
on 082, M

eVu-n+iku=g

where u is a scalar variable, ¢ is the square of the inverse
propagation speed, k is the wavenumber, f is a given source
term, and g determines the absorbing boundary condition.
Moreover, §2 is a Lipschitz polyhedral domain in R=!
Note that the boundary condition considered in the descrip-
tion is first-order absorbing, and it is taken solely for the
purposes of illustration. Such boundary condition could be
easily replaced by higher-order local or exact global condi-
tions as well as by suitable perfectly matched layers.

The HDG method firstly writes the partial differential
equation (PDE) as a first-order system of partial differential
equations, and thus after introducing the gradient as q = Vu
for convenience, the following system can be written:

q—Vu=0 in £2
—V.eq—ku=f inf )
eq-n+iku=g on 952,

Later on and for convenience, the term k%u will be pushed
into the right-hand side modifying f and becoming a func-
tion of u. The second equation will therefore become —V -
eq= fy, where f, = f — k’u.

Let 75, form a triangulation of the domain £2 into ele-
ments K and 07, = {0K, K € 73} be the set of faces F of
each element K of the triangulation, also known as F,. Then
the method seeks a scalar approximation uy to u, a vector
approximation ¢, to q and a scalar approximation iy, to the
traces i1, minimizing the representation error in -or distance
to- some approximation spaces defined as:

Wy ={w e L*(Ty), wlx € W(K), VK € T}
Vi ={ve[L2T)]’ . vk € V(K),VK € T;) 3)
My, = {u € LX(Fp). ulr € M(F),VF € F;}

where W(K), V(K), and M(F) are suitably chosen fi-
nite dimensional spaces. Furthermore, let us define the con-
tractions involved within this HDG method. For functions
V,W € [L2(D)]d, we denote (v, w)p = fDV -'w; for func-
tions v, w € L*(D) we write (v, w)p = fD vw if D is a do-
main in RY and (v, w)p = [}, vw if D is a domain in R?~1.
We finally introduce

W, w)yg, = Y wk

KD 4)
(. maz, = Y (. m)ok

KeT,
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for v, w defined in 7, and w, n defined on 37}, respectively.
The HDG approximations uy, € Wy, q; € V,, and uy, € My,
are now determined by requiring that the following finite
discrete system of equations holds V(s,r, u) € Wy, x Vj x
M.

(qhs r)?;, + (uhv V. r)ﬂ - <ﬁhvr' n)aﬂ :0

(eqn. Vw) 7, — (€q;, - m, w)yr, — k2 (up, w7, = (f. w)g;,

—(6q), - m, W) a7 \00, + (6Q) - M+ ikin, 1)a, = (8. )se
(5)

Note that the HDG method uses the extra stabilization con-
dition for the flux traces through the definition of the numer-
ical fluxes as

&q, = eqp + T(up — up)n ©)

on 37;,. Here, 1 is the so-called stabilization function. The
actual definition of the numerical traces q, is the key fea-
ture of the HDG method. The last equation in (5), which is
defined over the degrees of freedom on the edges, can be
solved for uy;, in a global sense, and,after that, the rest of
the equations will locally recover u;, and qy,. Such local sys-
tems of equations can be totally parallelized and thus solved
very efficiently for the degrees of freedom inside each ele-
ment. Moreover, it has been shown in [9] that this Helmholtz
problem actually achieves an optimal superconvergence or-
der for both u;, and qy, after a postprocessing of the solution,
therefore, relatively coarse meshes can be used even for high
material contrasts.

2.2 Implementation

Let us first of all define as U the variables related to the dis-
placement u, of the degrees of freedom inside each element,
Q the variables related to their fluxes q;, and A the variables
related to the traces uy, for every degree of freedom along the
edges of the triangulation. Now if Eq. (6) is plugged into the
system of Egs. (5), we eliminate the qj, variables, and thus
the following system of equations is obtained:

(qn, v)7, + (up, V -1)7;, — (p, r-m)yg, =0
—(V - qp, w)T, — T —an), w)y —k*un, w7,
=(f, w7,
~{eqn -0 — T = W), 1y 0,
+{ean -n+tup — (v =ik 1y = (8. 1oe
@)

Now this system of equations gives rise to a matrix equa-
tion that can be written as follows:

A -B —Clo0 0
Be) D' E Ul=|F ®)
Ce) E M ||a G

where the submatrices A, B, C, D, E, and M correspond to
the discretization of the dot products above. One very inter-
esting property of the HDG method shows up at this point:
the matrices A, B, C, and D are block diagonal, i.e., they are
very sparse and every single element only contributes with
nonzero entries to the degrees of freedom of that element.
This fact will actually allow us to write equation (8) as a
system of equations for A and then back solve for the inner
element degrees of freedom, through the Schur complement.
Moreover, there is another key property at this point: & can
be pulled out from the terms where it shows up. We will
therefore be able to write the system (8) as follows:

Nei
(Ko + Zquq>u:f ©9)

q=1

for N,; number of elements. After writing Q from the first
row in Eq. (8) as Q = A~!(B'U + C' A) and considering
u=1[U A] and f=[F G]' equation (9) holds for the fol-
lowing values of the matrices K,, Vg = 0..N,;.

D E
KO:[E M:|’

BAT'B BA~!C! (10)
KqZ[CA_IIBf CA—lcf]’ Vg =1.-Ne

Moreover, note how the terms D and BA~!B’ are block di-
agonal (since both A and B are), and thus the system in (9)
can be efficiently solved as any HDG method, i.e. solve only
for the unknowns on the edges.

2.3 First-order absorbing boundary conditions

The first-order absorbing boundary conditions have been in-
troduced in [1] for the time dependent wave equation as
u Ly 0 (11)
- u-n=
at

Here, we are dealing with the Helmholtz equation which
is the steady version of the second-order time dependent
wave equation derived through separation of variables. If we
thus assume u(x, 1) = u(x)e'®" and plug it in Eq. (11), we
obtain the following expression:

Vu(x) -n=—iwu(x) (12)

Furthermore, we are actually interested in applying the
absorbing boundary conditions to the scattered field instead
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of the total field. We can thus write u® = u — u, where u*
represents the scattered field, u the total solution and u® the
original solution, i.e., initial condition in the time dependent
problem. If we finally write (12) in terms of the scattered
field, we obtain the following expression:

= Vu-n:—ia)u—i—VuO-n—}—iwuo

13)

Vu® -n=—iowu’

yet to be applied to each of the boundaries in the actual do-
main 2. Moreover, if there are extra boundary conditions,
which are Neumann we can just use V - u = h and proceed
identically for any h; if there are any Dirichlet boundary
conditions we may just change the approximation spaces in-
troduced above to fit the values on such boundaries.

3 Binary optimization

For a given wave phenomenon problem, let us consider &
to be the property defining each material. Since the prob-
lem will be governed by a partial differential equation of
the form F (u(e), &) =0, the discretized PDE (with N,; dis-
cretized elements) can be expressed as a system of the form
A(e)u ="{ in the linear case. Moreover, using the HDG dis-
cretization introduced in Sect. 2.1, the system matrix can
be written as A(e) = Ko + Zgil e1K, as in Eq. (9). Let
J (u(e), &) be the objective function measuring the deviation
to a desired and known solution—often just J(u(e), &) =
[[lu(e) —ug ||% and denoted by J (u(e)), then the metamaterial
design optimization problem can be written in the following
general form:

1211}1 J(u(e), &)

Nel
s.t. (Ko—l—ZaqKq)u:f (14)

q=1

N,
€ € {emin, €max} ¢

Problem (14) arises in many areas of applied engineering
such as inverse problems, shape optimization, topology op-
timization, optimal design, and optimal control. However,
the PDE constraints and the nature of the design variables
often pose several significant challenges for contemporary
optimization methods. First, the problem is in general non-
linear and nonconvex due to an implicit dependence of the
objective function on the design variables through the un-
derlying PDEs. Second, the problem is large-scale since the
discretization of the PDEs leads to a very large system of
equations. And third, if some (or all) design variables can
only take on integer or discrete values then problem (14)
becomes a mixed-integer nonlinear optimization problem.
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Unfortunately, while discrete variables are common in prac-
tice, their presence causes the optimization problem to be
NP-hard in general. It is therefore necessary to develop a
suitable approximation of the problem in order to achieve
computational tractability in practice.

In developing an approximation to the problem (14), we
want to be able to efficiently compute the true objective
function value. That is, for a given value of the design vari-
ables &, we want to compute u(e) inexpensively and then
compute J(u). To that end, we will solve the PDE through
a reduced basis approach. Section 3.1 derives the particular
optimization problem after the reduced basis procedure is
applied.

Also in the context of developing an approximation to
the problem (14), in order to solve the optimization prob-
lem stated in (14) assuming we can now efficiently com-
pute the objective function value, we still need to devise
an optimization method that ensures the binary constraints
€ € {eminemax )V are satisfied. To that end, we introduce the
binary gradients in Sect. 3.2.

3.1 Reduced basis

The reduced basis method (RB) method can be used to
provide an accurate, reliable, and efficient solution of
parametrized PDEs; see [10, 11] and further references
therein. Material design or optimal control problems involve
large numbers of parameters, and thus computing sensitiv-
ities or just solutions for the entire family of parameters is
seldom achievable.

Let n < N, be the number of regions where a material
parameter needs to be chosen and k < n be a certain pos-
itive integer corresponding to the reduced basis size. For
a given feasible pattern € € {€min, €max}”, let U = u(e),
and define k — 1 neighbors by just perturbing a small
number of pixels from either emin t0 emax Or vice versa,
and then computing their corresponding solutions u; =
u(ej) for j =2,...,k. We now define the reduced basis
as @ = span[uy, Wy, ..., ux] € RN¢*k and we can then de-
fine an approximate version of any given u(e) as u(e) =
Zl;zl o (e)u* = Pa(e). Note that now the discretized sys-
tem can be approximately solved as @ A(e)Pa(e) = D f.
Finally, if we define A9 = ® A9® e R&* for 1 <q <n
and also f= &' f € R*, we will be able to solve the govern-
ing system as

(Z A‘I(e))a(s) =f (15)

q=1

which is a £ x k system in contrast to the original N, x N;
system. We then recover u(e) = da(e). Note, furthermore,
that A9 (e) can be derived from A as in (9) and, therefore,
still retains the property of being able to work with & as
needed.
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3.2 Binary gradient

Since we want to maintain binary solutions throughout the
optimization process, we will only allow directional changes
that leave a current pixel as is, or that flips emyjn t0 Emax OF
vice versa. This can be done by defining the sensitivities of
our objective function according to unitary changes instead
of differential changes. To accomplish this, we introduce the
following binary generalized gradient:

AJ(u(e)) _ J(x™) — J(u(e))

Aeg €max — €min

Gn(e) = (16)
form=1,..., N, where x™ just changes the m'"* compo-
nent of & from eyin t0 £max Or vice versa. We then choose the
descent direction that provides the smallest value of G, (&)
and advance in that descent direction iteratively, as in any
steepest descent algorithm for continuous optimization.

3.3 Optimization algorithm

Table 1 summarizes the optimization algorithm based on
the ideas described above. Let [ < k be the size of the ini-
tial basis computed around an initial guess €(0) and let the
subindex of e denote the vector position in the basis @.
Note that this algorithm is actually a local search ap-
proach to the binary optimization problem (14). The com-
plexity of binary optimization problems is NP-hard, which
implies that whenever the variable set is large, the problem
is generically intractable. In our case, the parameter space
is very large, typically on the order of ©(10>¢) where d is
the spatial dimension considered. Local search algorithms
are a good approach to solve these problems. However, they
are only able to guarantee local minima and the quality
of the computed local minima really depends on the qual-
ity of the neighborhoods considered (often only very large
neighborhoods work well). Metamaterial design optimiza-
tion is yet harder, since unless the local search neighbor-
hoods are very small, the computational burden of the local

Table 1 Binary Optimization algorithm

Start with an initial guess &(0),

Obtain the objective function value J (u(e(0))),
Compute the solutions uy - - -u; for €1 - - - &; exactly,
Form @ (£(0)) =[u(e1) - --u(e))],

Compute binary sensitivities G, using (15) and (16),

A L AW N =

If Gy > 0, Vm, end. Else, pick m = arg min,, G, and set
€(0) < x",
7 Compute /y random neighbors and update

@ (e(0)) < [P (e(0)) u(er) - --uleyy)l,
8 If size{® (¢(0))} = p > k, remove the p — k elements m with
smallest values of a,, (¢(0)) in (15),

9 Go to 5,

search methodology itself is excessive. By joining together
the HDG properties and the reduced basis theory, we seek
a balance wherein the approximate local search algorithm
will find local optima of good quality with relatively good
computation time. Several starting guesses, as well as fur-
ther clever enhancements—Iike letting the solution worsen
slightly to avoid getting stuck at a bad local optima—might
be required for some applications.

4 Results

We have successfully applied the methodology described
herein to one-dimensional photonic bandgap problems. In
particular, we have succeeded in designing a binary mate-
rial that is able to totally reflect a given frequency consid-
ering the finiteness of the domain. This phenomena is well
known if the pattern is considered periodic and, therefore,
infinite (and hence is not realizable) but is not so well known
for finite structures. Section 4.1 below analyzes this prob-
lem, comparing the binary solution computed herein with
the continuous optimum. In Sect. 4.2, we apply the same
optimization procedure to a two-dimensional problem gov-
erned by the heat transfer equation.

4.1 The 1-dimensional bandgap problem

Photonic crystals are periodic structures created from the ar-
rangement of low and high index materials. They are de-
signed to affect the motion of light by prohibiting the prop-
agation of electromagnetic waves in all directions within
certain frequency ranges. They have been of crucial use
for the design of important novel devices and applications
such as frequency filters, waveguides, switches, and opti-
cal buffers; see, for instance, [4]. However, the results re-
ported in a large fraction of the literature so far have been
obtained without imposing integer constraints on the design
variables.

Luckily, in the photonic bandgap problem, optimal so-
lutions assuming infinite periodicity turn out to be binary,
as observed by Lord Rayleigh as early as 1888, [12]. Nev-
ertheless, if we are interested in extending the conceptual
ideas introduced by the photonic bandgap to other wave
phenomena, we need to mitigate the nonbinary nature of
the continuously relaxed optimal solution. Consequently,
if we want to obtain satisfactory solutions—most notably
fabricability—we must effectively constrain solutions to be
binary.

Figure 1 shows the 1d photonic bandgap application. The
governing equation for the frequency domain problem is
exactly the Helmholtz equation analyzed in the first sec-
tion where € is the permittivity of the material. The inci-
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Fig.1 One-dimensional photonic bandgap with yellow incident wave,
black reflected wave and green transmitted wave. Top: continuous op-
timum; Middle: Discrete projection; Bottom: binary optimum

dent frequency corresponds to wa/2mc >~ 0.33 after it has
been normalized over the geometry. Here the photonic crys-
tal is made up of two different materials: air (¢ = 1, color
coded as dark red) and silicon (¢ = 13, color coded as
blue).

Figure 1 shows the optimized structures obtained with
(top) the standard adjoint method with relaxation of the in-
teger constraints; see [9] for the full derivations regarding
the adjoint method for this particular example, (middle) the
adjoint method with enforcement of the integer constraints
via projection into the closest binary value, and (bottom) our
proposed method. Our method produces exactly (up to ma-
chine precision error) an optimal binary solution within only
six iterations, whereas the standard adjoint method com-
putes an optimal solution which is not binary (and thus not
fabricable nor acceptable) and the projected adjoint method
produces a binary solution which is not optimal (and thus an
inferior design).

The discretization considered for this problem has 500
high order elements (order 3 providing 15 inner and bound-
ary degrees of freedom per element) of which the middle
100 constitute the 50 pixels we seek to design. All possi-
ble combinations would lead to 23 > 1.1 x 10'3 problems,
and thus would be intractable to solve. Convergence of the
discretization has been achieved despite the high material
and solution contrasts thanks to the high order used, just as
expected given the superconvergence provided by the HDG
method [9].

This computational result is especially encouraging since
the basis need not contain more than 10 solution vectors to
guarantee a very good approximation of the exact solutions
and, therefore, the systems of equations (15) used to com-
pute the binary gradient never exceeded a 10 x 10 system.
Furthermore, the binary gradient computation (16), which is
of order O(n) (recall n is the number of pixels or more gen-
erally the parameter space size) took less time than one sin-
gle HDG computation takes. It is also encouraging that the
binary gradient computations are extremely accurate, with
errors of O(107%).

@ Springer

4.2 Poisson’s equation

In a similar setting, but in a rwo-dimensional context, we
consider the heat transfer problem. For this problem, the
governing equation will be the Poisson equation instead of
Helmbholtz equation, however, we can just adapt our deriva-
tions in the first section by removing the term —k?u that was
actually included in the source term f;, for this purpose. The
problem we want to solve now will be governed by the fol-
lowing partial differential equation:

—V.eVu=f
u=0

in 2 =10, 1?

17
on 452 17)

where the source term has been chosen to be f =
272 sin(wx) sin(ry). We seek a rwo-dimensional pattern
maximizing the heat transferred from the Dirichlet bound-
aries of a square plate into the center point. Note that if we
do not include an extra volume constraint, the optimum will
be obtained when the material used everywhere corresponds
to the one holding a larger thermal conductivity. Therefore,
the overall setting of the optimization problem for this case
will be slightly modified by the volume constraint. If we
choose 0 < B < 1 as the volume fraction that we are allowed
to change, the problem can be written as:

Igll&l J(u(e), e)

Nel
s.t. (Ko + Z quq>u =f

g=1
1 Nel 8(1

(18)

— Emi
min SIB

Nel Emax — €min
g=1
n
€ € {€min, Emax}

A square domain with a 20 by 20 parametric grid has
been considered with iy = 1 and epax = 2. First, the prob-
lem has been solved considering the continuous relaxation
€ € [Emins Emax ]V through the Adjoint method. In a very
similar way to the bandgap problem and analogously de-
rived to that case as in [9], the adjoint method provides us
with the sensitivities or gradient, and thus the direction to
take at each iterate. We can then pick a small enough step
size, take the step, and iterate until we reach the final op-
timal and feasible solution determined by the volume con-
straint. Such a constraint can also be dualized into the objec-
tive function and one can instead solve the new optimization
problem with the modified objective:

Nel q _ 3
J(u(e), &) = ue@)|? +A(Z ——m ,BNel) (19)

g=1 Emax — Emin

and the original set of constraints. Both strategies lead to the
same solutions.
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Fig.2 Two-dimensional heat transfer problem. Left figures correspond
to B = 0.44 and right figures to B = 0.58. Top figures show the contin-
uous solutions obtained through the adjoint method, middle figures the
projected binary solutions, and botfom the binary solutions after using
our proposed method

Note that for the homogeneous case with ¢ =1 the an-
alytical solution u = sin(wx)sin(wry) to (17) provides a
squared volume of J(u(1)) = 0.5, whereas if we pick the
homogeneous material with € =2 the objective drops down
to the value J(u(2)) = 0.0625, which would be the optimal
solution had not we considered the volume constraints.

Results have been computed for § = 0.44 and B = 0.58
and are shown in Fig. 2. We can observe how the continu-
ous optimal solutions provide a nonbinary solution that after
projection into & = {1, 2}l and respecting the volume con-
straint, the resulting solution is suboptimal. In fact, for the
case f = (.44, the optimal objective value is J (u(&¢ont)) =
||u||% = 0.0973 in the continuous case, and once projected
it increases to J(u(&proj)) = 0.1020. We can do better, as
our binary optimum demonstrates, obtaining J(u(epin)) =
0.0991. Table 2 summarizes the different values obtained
for each case.

Note how the binary optimum is more than 2.5 times
closer to the continuous optima than the projected naive so-

Table 2 Results for the Heat transfer problem

:3 Jeont Jproj Jbin

0 % 0.5 0.5 0.5
44 % 0.0973 0.1020 0.0991
58 % 0.0825 0.0875 0.0834
100 % 0.0625 0.0625 0.0625

lution for 8 = 0.44 and more than 5.5 times closer for 8 =
0.58. With a given material allowance, we have thus been
able to provide a binary pattern, easily fabricable, which is
very close to the nonfabricable continuous optimum for the
same volume of material.

Moreover, regarding this last example, the computational
cost is O(k - m - s,,), where k is the number of iterations,
m = O(n) the size of the neighborhood and O(s,,) is the cost
of solving the numerical problem for a given combination of
the n pixels, in contrast to the NP hard cost O(exp(s;,)) that
would provide the full binary search. For the second exam-
ple, due to the symmetries, the number of pixels is n = 50
and there are k >~ 20 iterations, if we just change 1 pixel at
a time. Moreover, for every single system resolution, stated
above as O(sy,), a classic FE approach would take O(n?) and
we do that m = O(n) times, so O(n?), whereas the reduced
basis approach solves the exact system for a few neighbors
r <& n, so O(r - n?) and then uses that basis to infer an ap-
proximation of the FE solution through a small r x r system
O(m - r?). So, since r = O(1), the RB method computa-
tional cost can be casted as O (n?).

5 Conclusions

The adjoint method leads to continuous optimal solutions
that provide an objective function value J.op; that is less than
or equal to the value Jyin, where Jeone and Jpin denote the
optimal objective values for the continuous relaxation of the
problem and our binary optimization method, respectively.
The binary solution is feasible to the continuously relaxed
problem and therefore the inequality above follows. How-
ever, continuous solutions are not binary and thus difficult
to be fabricated. If we project the continuous solution we
may obtain inferior solutions. Both examples in this paper
show that the projected binary optimum is indeed inferior in
practice. Our proposed method is able to compute efficiently
and accurately good binary optima.

This paper presents a different approach to the design
of materials involving PDE-constrained optimization. The
HDG method allows us to obtain high order solutions of
the underlying PDE. The reduced basis method allows for a
rapid solution of neighbors and demonstrates the practicality
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of our concept of a binary generalized gradient. This exten-
sion of the gradient concept lets us move only within feasi-
ble binary solutions while improving the objective function
value. There is no guarantee that we will reach a global op-
timum, but that is something that can just not be expected in
discrete optimization if we seek efficient algorithms.
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