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A ‘best points’ interpolation method for efficient approximation
of parametrized functions
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SUMMARY

We present an interpolation method for efficient approximation of parametrized functions. The method
recognizes and exploits the low-dimensional manifold structure of the parametrized functions to provide
good approximation. Basic ingredients include a specific problem-dependent basis set defining a low-
dimensional representation of the parametrized functions, and a set of ‘best interpolation points’ capturing
the spatial-parameter variation of the parametrized functions. The best interpolation points are defined
as solution of a least-squares minimization problem which can be solved efficiently using standard
optimization algorithms. The approximation is then determined from the basis set and the best interpolation
points through an inexpensive and stable interpolation procedure. In addition, an a posteriori error estimator
is introduced to quantify the approximation error and requires little additional cost. Numerical results are
presented to demonstrate the accuracy and efficiency of the method. Copyright q 2007 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Interpolation theory constitutes an active research area of mathematics and is relevant in various
engineering and science applications such as numerical analysis and solution methods for partial
differential equations (PDEs), computer graphics, medical imaging, signal processing, data mining,
and artificial intelligence. The fundamental problem of interpolation theory is to approximate
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a given function by a simpler, easier-to-compute function residing in an approximation space
spanned by a set of basis functions. An assumption often made is that the values of the func-
tion are known a priori at some points; the approximate function is then constructed from this
information. Typically, classical interpolation methods (such as polynomial-based approaches)
construct the approximate function by fitting the points to a linear combination of polynomials.
Rather than the interpolation of general functions, we focus our investigation on the interpolation
of parametrized functions, which is of considerable interest in many applications and merits a
dedicated approach.

Specifically, in this paper, we are concerned with the interpolation of a parametrized function
u(x; �) defined on � for any given � ∈D. Here �∈ Rd is the physical domain with spatial
coordinate x , and D∈ RP is the parameter space in which our P-tuple parameter � resides. Note
that time-dependent functions can also be considered in this setting by including time in the
parameter �.

Our goal is the development of an interpolation method for efficient approximation of
parametrized functions. The foundation of our method is built upon two important realizations.
The first realization is that the manifold Mu ≡{u(x; �) | � ∈D} is typically low dimensional and
can thus be represented very well by a finite subset of basis functions. More precisely, rather than
general basis sets such as polynomials, we construct a specific problem-dependent basis set with
superior approximation properties. The second realization is that although u(x; �) is defined on
the entire physical domain �, its spatial-parameter variation may be captured by a limited number
of ‘selected’ points in �. We exploit this observation to develop interpolation points that are best
for the approximation of u(x; �) for � in D. A function approximating u(x; �) is then determined
from the basis set and the interpolation points through an inexpensive and stable interpolation
procedure. In addition, we provide an a posteriori error estimator to quantify the approximation
error. Although our error estimator lacks theoretical rigor, it is quite sharp in practice and requires
little additional cost.

As we emphasize on computational feasibility and effectiveness, we shall not pursue a com-
prehensive analysis in this paper. Nevertheless, we would like to point out the usefulness of our
method in practical applications. The method may allow for an accurate and efficient reconstruc-
tion of a physical field such as displacement, temperature, or fluid velocity from experimental
data collected at a few optimal sensor locations. In a numerical example presented in this paper,
we shall describe in detail how the method applies to such problems. Another application is the
construction of quadrature formulas for numerical integration of parametrized functions, which
may be useful for the numerical solution of differential equations. Also, face recognition is a very
important application in image analysis and computer vision, where the method may be gainfully
employed [1]. In addition, the method can be effectively used to develop efficient reduced-basis
approximation of nonaffine and non-linear parametrized PDEs [2].

In function interpolation by polynomials, aside from the smoothness of the functions to be inter-
polated, the interpolation points are critical to the convergence and accuracy of the approximation.
A standard quality measure of an interpolation point set is the Lebesgue constant [3–5]. In one
dimension, the Lebesgue-optimal point set and other optimal interpolation point sets in various
measures have been developed [6–8], and their properties are well understood. In higher dimension,
however, little is known concerning the Lebesgue-optimal interpolation point set. Therefore, many
authors [6, 9–14] have investigated (near) optimal point sets defined by the solution of certain
optimization problems. The interpolation point sets developed therein have been very useful to the
construction of quadrature formulas and high-order shape functions in finite element analysis and
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spectral methods. However, for the approximation of parametrized functions, these point sets are
suboptimal, since they do not incorporate knowledge of the parametrized functions. Furthermore,
their numerical computation is challenging especially when the size of the set is large. The main
reason may be due to the fact that the associated optimization problems are generally difficult to
solve.

Recently, Maday et al. [15–17] introduced the empirical interpolation method (EIM) that also
deals with the interpolation of parametrized functions. The method has been incorporated into the
reduced-basis techniques to provide efficient reduced-basis treatment of nonaffine and non-linear
parametrized PDEs [15, 16, 18]. The main ingredients of the EIM are maximally independent
basis functions and well-selected interpolation points (which we shall call the EIM points). A
coefficient-function expansion approximating u(x; �) is then obtained by an inexpensive and
stable interpolation procedure. Although the EIM is very simple in implementation, it yields good
performance in most cases.

In this paper, we shall compare our method with the EIM. The EIM is included in Appendix A.1
for reference. Our method differs from the EIM in the selection of the interpolation points. More
specifically, while the EIM points are constructed by induction on the basis set, our interpolation
points are determined from a least-squares minimization problem involving both the basis set and
a family of known functions that characterizes the manifold Mu . The EIM points are inexpensive
and hierarchical, but they are not selected optimally.

The paper is organized as follows. In Section 2, we develop our best points interpolation method.
In Section 3, we present a priori and a posteriori error analyses. In Section 4, we provide numerical
examples to illustrate several features of the method, with special emphasis on application of the
method to optimal sensor placement for reconstruction of a flow field. Finally, in Section 5, we
close the paper with concluding remarks.

2. BEST POINTS INTERPOLATION METHOD

2.1. Interpolation problem

2.1.1. Problem description. We assume that we are given an approximation space consisting of
N orthonormal basis functions, �N = span{�1, . . . , �N }, with (�i , � j ) = �i j , 1�i, j�N ; here �
is the Kronecker symbol and (· , ·) denotes an appropriate inner product with an induced norm
‖ · ‖= √

(· , ·). Since we wish to approximate u( · ; �) by a function uN (·; �) ∈ �N , it is crucial to
equip the basis functions {�n}Nn=1 with good approximation properties.

The interpolation problem we aim to address is to find a set of N interpolation points,
ZN ={z1 ∈ �, . . . , zN ∈ �}, that yields a good approximation‡ uN (·; �) ∈ �N to any u(·; �) ∈Mu .
Here, uN (x; �) is the ‘coefficient-function’ approximation determined by the following interpola-
tion formula:

uN (x; �) =
N∑

n=1
�Nn(�)�n(x) (1)

‡By ‘good approximation’, we mean that our approximation uN (·; �) is very close to the best approximation
u∗
N (·; �) ∈ �N for all � in D. The best approximation u∗

N (·; �) is introduced below.
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where the coefficients �N n(�) are the solution of

N∑
n=1

�n(zm)�Nn(�) = u(zm; �), m = 1, . . . , N (2)

We define the associated error as

εN (�) ≡‖u(·; �) − uN (·; �)‖ (3)

We observe from (1)–(2) that uN (·; �) and u(·; �) are equal at the interpolation points {zn}Nn=1.

2.1.2. Best approximation. We shall measure the quality of our coefficient-function approximation
uN (·; �) with respect to the best approximation u∗

N (·; �). The best approximation is defined as

u∗
N (·; �) = arg min

wN∈�N

‖u(·; �) − wN‖ (4)

It is easily derived from the orthonormality of the �n that

u∗
N (x; �) =

N∑
n=1

�Nn(�)�n(x) (5)

where the coefficients are given by

�N n(�) = (�n, u(·; �)), n = 1, . . . , N (6)

The associated error is defined as

ε∗
N (�) ≡‖u(·; �) − u∗

N (·; �)‖ (7)

We see that evaluation of the coefficients �Nn(�), 1�n�N , requires the full knowledge of u(x; �).
Hence, approximating u(x; �) by the best approximation u∗

N (x; �) can be quite expensive and not
a relevant approach in many practical contexts.

2.1.3. Remarks. In approximating the parametrized function u(x; �), the critical observation is
that the manifold Mu ≡{u(x; �) | �∈D} induced by the parametric dependence is typically low
dimensional. We explicitly exploit dimension reduction afforded by the low-dimensional manifold
to construct a specific problem-dependent basis set {�n}Nn=1 which is extremely effective for the
approximation of functions in Mu . More specifically, the set {�n}Nn=1 is constructed directly
upon a family of (linearly independent) functions UK ={�k(x), 1�k�K }, where �k = u(x; �k) for
�k ∈D. Typically, the sample set SK ={�1, . . . , �K } is chosen such that any u(·; �) ∈Mu can be
approximated very well by a linear combination of the �k : for any � ∈D, there exist coefficients
ck(�), 1�k�K , such that

∑K
k=1 ck(�)�k(x) is very close to u(x; �).

We will describe here two different approaches for constructing {�n}Nn=1 from {�k}Kk=1. One
approach is to use the greedy selection process outlined in Appendix A.1 to generate maximally
independent basis functions which are then orthonormalized by using the Gram–Schmidt orthonor-
malization. The other approach is to employ the Karhunen–Loève (KL) expansion [19] to generate
an orthonormal basis set which is known to be optimal for representation of the family {�k}Kk=1.
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The details of the KL expansion are given in Appendix A.2 for reference. The two approaches
result in two different basis sets. Due to its optimality property in the mean square error sense,
the KL basis is superior to the greedy basis in the mean (norm). However, the KL basis can be
more computationally expensive than the greedy basis because it necessitates K (K + 1)/2 inner
products and a singular value decomposition of a K × K full matrix.

Of course, the quality of our approximation depends critically not only on the basis functions
but also on the interpolation points. At the very least, the interpolation points {zn}Nn=1 must be
chosen such that the matrix AN ∈ RN×N with AN

mn = �n(zm), 1�m, n�N , is invertible. In this
case, the set of interpolation points ZN ={z1, . . . , zN } is said to be admissible. The invertibility
of AN guarantees uniqueness of our coefficient-function approximation uN (x; �). The existence
of admissible interpolation points follows directly from the linear independence of the basis set.
However, for numerical stability, the interpolation points should be chosen such that AN is well
conditioned. At this point, one can think of finding a set of interpolation points that maximizes the
determinant of AN . The resulting interpolation points are the so-called Fekete points. However,
the Fekete points do not necessarily give good approximation, since they do not exploit maximal
information of the manifold Mu .

2.2. Selection of interpolation points

In this section, we describe our approach for determining {zn}Nn=1 so as to provide a uniformly
good approximation uN (·; �) to u(·; �) for all � ∈D. Indeed, we shall propose not one but three
different sets of interpolation points. The first set of points is optimal in the sense that it minimizes
the sum of squared errors between the coefficient-function approximations and members of the
family UK . The second set is also optimal in a slightly different sense. The third set of points
is not optimal but hierarchical. The numerical difficulty in obtaining these sets of interpolation
points is decreased in that order. Although we discuss the first set, we do not consider it in our
numerical examples.

2.2.1. Optimal interpolation points. We first introduce a concept of optimality for the interpolation
points. The set of interpolation points is said to be optimal if it is the minimizer of the following
minimization problem:

min
z1∈�,...,zN∈�

∫
D

∥∥∥∥u(·; �) −
N∑

n=1
�Nn(z1, . . . , zN ; �)�n

∥∥∥∥
2

d�

N∑
n=1

�n(zm)�Nn = u(zm; �), 1�m�N , � ∈D

{zm}Nm=1 is admissible

(8)

The above objective means minimizing the squared error averaged over the parameter space D
and thus guarantees optimality in that sense. Unfortunately, solution of the above problem is not
possible because the integral taken over the parameter space makes it impossible to evaluate the
objective, let alone the computation of its gradients and Hessian. Rather than the integral, we
may replace the objective in (8) with a ‘min–max’ objective minz1∈�,...,zN∈� max�∈D ‖u(·; �) −∑N

n=1 �Nn(z1, . . . , zN ; �)�n‖. Nevertheless, the resulting problem is still intractable for the same
reason.
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To obtain a tractable problem, we replace the integral with the sum of squared errors over the
family UK to arrive at

min
z1∈�,...,zN∈�

K∑
k=1

∥∥∥∥�k −
N∑

n=1
�kNn(z1, . . . , zN )�n

∥∥∥∥
2

N∑
n=1

�n(zm)�kNn = �k(zm), 1�m�N , 1�k�K

{zm}Nm=1is admissible

(9)

Let us denote by Zop
N ={zop1 , . . . , zopN } the minimizer of problem (9). This set is optimal for the

approximation of the familyUK . Nevertheless, solution of the minimization problem (9) is difficult,
because the problem is non-linear and nonconvex with (possibly) multiple local minima, and the
Hessian is not easily computed. Below we introduce another set of points which can be computed
more easily than the optimal interpolation points.

2.2.2. Best interpolation points. To begin, we introduce a family of functions U∗
K = {�∗k

N (x),
1�k�K }, where �∗k

N is the best approximation to �k . It thus follows that

�∗k
N (x)=

N∑
n=1

�kNn�n(x) (10)

for k = 1, . . . , K , where

�kNn = (�n, �k), 1�n�N (11)

We next replace �k in the objective of problem (9) with �∗k
N to obtain

min
z1∈�,...,zN∈�

K∑
k=1

∥∥∥∥ N∑
n=1

�kNn�n −
N∑

n=1
�kNn(z1, . . . , zN )�n

∥∥∥∥
2

N∑
n=1

�n(zm)�kNn = �k(zm), 1�m�N , 1�k�K

{zm}Nm=1is admissible

(12)

By expanding the objective and invoking the orthonormality of {�n}Nn=1, we obtain

min
z1∈�,...,zN∈�

K∑
k=1

N∑
n=1

(�kNn − �kNn(z1, . . . , zN ))2

N∑
n=1

�n(zm)�kNn = �k(zm), 1�m�N , 1�k�K

{zm}Nm=1is admissible

(13)

Let us denote by Zbp
N ={zbp1 , . . . , zbpN } the minimizer of the above problem. We shall call these

points as the best interpolation points or ‘best points’ for short.
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Some remarks are useful. As regards the optimality property, problem (9) means minimizing
the sum of squared errors between the coefficient-function approximations and members of family
UK , whereas problem (13) means minimizing the sum of squared errors between the coefficient-
function approximations and members of the family U∗

K . In other words, while {zopn }Nn=1 is optimal

for the approximation of the family UK , {zbpn }Nn=1 is optimal for the approximation of the family

U∗
K . As regards the existence and uniqueness of {zbpn }Nn=1, since the basis functions �n are linearly

independent, there exists at least one admissible set of interpolation points. The existence of
{zbpn }Nn=1 thus follows. However, uniqueness is not guaranteed. In general, there can be several sets
of best points.

Most importantly, the non-linear least-squares minimization (13) is more efficient to solve than
its counterpart (9) in the sense that the Hessian for (13) is much easier to compute than that for (9).
As described in Section 2.3, the Levenberg–Marquardt (LM) algorithm is particularly well suited
to solving (13).

2.2.3. Hierarchical interpolation points. In addition, we propose a set of hierarchical interpolation
points (‘hierarchical’ points for short) Zhp

N = {zhp1 , . . . , zhpN } which is less expensive to construct

than Zbp
N . Furthermore, a nice property of this set is that Zhp

N−1 ⊂ Zhp
N . This hierarchical relation

makes the set itself convenient in the a posteriori error estimation and in applications.
We construct Zhp

N by solving a sequence of minimization problems. We first set Zhp
1 = {zhp1 },

where zhp1 is the minimizer of the following problem:

min
z∈�

K∑
k=1

(�kN1 − �k11(z))
2

�1(z)�
k
11 = �k(z), 1�k�K

{z} is admissible

(14)

Then, for L = 2, . . . , N , we find and append zhpL to Zhp
L−1 to form Zhp

L , where zhpL is the minimizer of

min
z∈�

K∑
k=1

L∑
�=1

(�kN� − �kL �(z))
2

L∑
l=1

�l(z
hp
m )�kLl = �k(z

hp
m ), 1�m�L − 1, 1�k�K

L∑
l=1

�l(z)�
k
Ll = �k(z), 1�k�K

z such that {zhp1 , . . . , zhpL−1, z} is admissible

(15)

In this way, each of the problems has only one variable z and can thus be easily solved for a global
solution.
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2.3. Solution procedure

We now find a solution of the least-squares minimization problem (13) using the LM algorithm.
For simplicity of exposition, we consider �⊂ R1. Higher-dimensional cases can be treated in a
similar manner.

We first write problem (13) in the form

min F(s)= 1

2

Q∑
q=1

f 2q (s)

s = (z1 ∈ �, . . . , zN ∈ �)T ⊂ RN

(16)

where fq(s), 1�q�Q = K N , are given by

fq(s)= �kNn − �kNn(s), 1�k�K , 1�n�N (17)

The gradient and Hessian of the objective function F(s) can thus be computed as

∇F(s) =
Q∑

q=1
fq(s)∇ fq(s) = J (s)T f (s) (18)

∇2F(s) = J (s)T J (s) +
Q∑

q=1
fq(s)∇2 fq(s) (19)

where for 1�q�Q, 1�n�N ,

Jqn(s) = � fq(s)

�zn
= ��kN n(s)

�zn
(20)

Hence, when the residuals fq(s) are small, we may approximately compute the Hessian in terms
of only the Jacobian matrix J (s) as

∇2F(s)= J (s)T J (s) (21)

In practice, the Hessian is often computed using this approximation to reduce the computational
cost. (Throughout the paper, we shall use (21) to obtain the Hessian.) However, whenever the
second partial derivatives ∇2 fq(s) are available with reasonable cost, the whole formula (19)
should be used to render more rapid convergence to a global solution, especially for large residual
problems.

To compute the Jacobian matrix J (s), we note from (2) that

��kN
�zn

= (AN )−1

(
�bkN
�zn

− �AN

�zn
�kN

)
(22)

where for k=1, . . . , K , �kN =(�kN1, . . . , �
k
NN )T∈RN , bkN =(uk(z1), . . . , uk(zN ))T∈RN , �bkN/�zn ∈

RN has only one nonzero element equal to �uk(zn)/�x at the index n, and �AN/�zn ∈ RN×N has
only one nonzero row equal to (��1(zn)/�x, . . . , ��N (zn)/�x) at the nth row. Note further that
{��n/�x}Nn=1 can be calculated from {��k/�x}Kk=1 via relationship (A6).
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Having determined the gradient and the Hessian, the LM algorithm [20] can now be applied to
solve (13) for the best points. The LM algorithm is very efficient, but quite sensitive to the initial
guess. Multi-start strategies can thus be effectively used to achieve a global minimizer. In our actual
implementation, we start the algorithm with two different initial solutions. The first initial solution
is the set of hierarchical points {zhpn }Nn=1. The second initial solution is the set Z ip

N ={zip1 , . . . , zipN }
calculated as follows: we set zip1 = arg ess supx∈� |�1(x)|; then for L = 2, . . . , N , we solve the

linear system
∑L−1

j=1 � j (z
ip
i )�L−1

j =�L(zipi ), 1�i�L − 1, and set rL(x)= �L(x) − ∑L−1
j=1 �L−1

j

� j (x), z
ip
L = arg ess supx∈� | rL(x)|. These are essentially the EIM points associated with the basis

set {�n}Nn=1.

In summary, the best points {zbpn }Nn=1 and the hierarchical points {zhpn }Nn=1 are constructed by
solving the associated error minimization problems. They enjoy optimality in various senses. Our
interpolation formula (1)–(2) can now be carried out with the set of interpolation points {zn}Nn=1
being one of the two sets. This essentially produces an approximation uN (x; �) to u(x; �) for any
given � ∈D. It remains, however, to understand how well uN (x; �) approximates u(x; �).

3. ERROR ANALYSIS

3.1. A priori framework

In interpolation theory, the Lebesgue constants [3–5] measure how good the approximation of
a function is in comparison with the best approximation. We might follow [15, 16] to define a
Lebesgue constant as

�N = sup
x∈�

N∑
n=1

|�n(x)| (23)

Here, the �n ∈ �N are cardinal functions satisfying �m(zn) = �mn, 1�m, n�N . It can then be
shown in [15, 16] that

‖u(·; �) − uN (·; �)‖L∞(�)�(1 + �N )‖u(·; �) − u∗
N (·; �)‖L∞(�) ∀� ∈D

However, �N is too conservative as a quality measure for the approximation uN (x; �) of u(x; �),
since in fact ‖v − vN‖L∞(�)�‖v − v∗

N‖L∞(�)(1 + �N ) is also true for any function v ∈ L∞(�).
As a result, the Lebesgue constant �N as defined above is quite large; furthermore, it is only
applicable to the L∞(�) norm.

Hence, we introduce a different quality measure of the approximation uN (x; �) with respect to
the best approximation u∗

N (x; �) as

�N = max
�∈D

εN (�)

ε∗
N (�)

(24)

This implies

εN (�)��N ε∗
N (�) ∀� ∈D
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Typically, �N is obtained by solving the maximization problem (24). We observe that �N depends
on �N and ZN , but not on �. Note further that �N�1 and that a value of �N close to unity
indicates a very good approximation.

An estimate for the behavior of �N as a function of N is of course fundamental for the study
of the convergence properties of our method. This suggests an interesting theoretical investigation
for future work.

3.2. A posteriori estimators

In order to be certain that our approximation satisfies the accuracy level of interest, we must have
a posteriori error estimators. Indeed, the reliability of our approximation rests crucially on the
a posteriori error estimators, without which the unquantified uncertainty may lead to erroneous
predictions.

We first recall the following result from [16, Lemma 2.4].
Lemma 3.1
The set of all cardinal functions {�n}Nn=1 is a basis for �N . Furthermore, the two bases �n, 1�n�N ,
and �n, 1�n�N , are related by

�i (x)=
N∑
j=1

AN
ji� j (x), 1�i�N (25)

which immediately implies that uN (x; �) as defined by (1)–(2) satisfies

uN (x; �) =
N∑
j=1

u(z j ; �)� j (x) (26)

Expression (26) clearly shows that when expressing uN (x; �) in terms of the cardinal basis
set {�n}Nn=1, we do not need to solve a linear system for the coefficients as it is required for the
case of using the basis set {�n}Nn=1. We thus suggest using the interpolation formula (26) rather
than (1)–(2) for the coefficient-function approximation uN (x; �). Note, however, that the cardinal
set {�n}Nn=1 depends on both {zn}Nn=1 and {�n}Nn=1 and is thus not a hierarchical basis. Furthermore,
since {�n}Nn=1 is obtained by inverting AN , it is important that the matrix AN is well conditioned.

We now augment our current basis set {�n}Nn=1 with I basis functions {�N+1, . . . , �N+I } to
form an approximation space �N+I spanned by the extended basis set {�n}N+I

n=1 . Associated with
this extended basis set are the extended set of interpolation points ZN ,I ={{zn}Nn=1 ∪ {zN ,i }Ii=1}
such that ZN ⊂ ZN ,I and set of cardinal basis functions {�n}N+I

n=1 . We define an estimate for our
approximation error εN (�) as

ε̂N ,I (�) =
√

I∑
i=1

I∑
i ′=1

eui (�)eui ′(�)�i i ′ (27)

where

eui (�) = u(zN ,i ; �) − uN (zN ,i ; �), �i i ′ = (�N+i , �N+i ′), 1�i, i ′�I (28)

We can then prove the following proposition.
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Proposition 1
If u(·; �) ∈ �N+I and ZN ⊂ ZN ,I , then ‖u(·; �) − uN (·; �)‖= ε̂N ,I (�).

Proof
By our first assumption u(·; �) ∈ �N+I , there exists 	(�) ∈ RN+I such that u(x; �) − uN (x; �)

=∑N+I
m=1 	m(�)�m(x). We now consider x = zn, 1�n�N , and x = zN ,i , 1�i�I , to obtain

N+I∑
m=1

	m(�)�m(zn) = u(zn; �) − uN (zn; �), 1�n�N

N+I∑
m=1

	m(�)�m(zN ,i ) = u(zN ,i ; �) − uN (zN ,i ; �), 1�i�I

It thus follows from our second assumption ZN ⊂ ZN ,I that 	n(�) = 0, 1�n�N , and 	N+i (�) =
u(zN ,i ; �) − uN (zN ,i ; �), 1�i�I , since u(zn; �) − uN (zn; �) = 0, 1�n�N , and �m(xm′) = �mm′,
1�m,m′�N + I, for xn = zn, 1�n�N , and xN+i = zN ,i , 1�i�I . Hence, we obtain u(x; �) −
uN (x; �) =∑I

i=1 (u(zN ,i ; �)−uN (zN ,i ; �))�N+i (x). The desired result immediately follows from
definition of ε̂N ,I (�). �

Of course, in general u(·; �) /∈ �N+I , and hence our error estimator ε̂N ,I (�) is unfortunately
not a rigorous upper bound. However, if εN (�) → 0 very fast, we expect that the effectivity


N ,I (�) = ε̂N ,I (�)

εN (�)
(29)

will be close to unity; furthermore, the estimator is very inexpensive with a computational cost of
only O(I 2) when the quantities �i i ′ are precomputed and stored.

Finally, we note that the hierarchical relation ZN ⊂ ZN+I does hold for Zhp
N , but not for Zbp

N .

Hence, we can set Zhp
N ,I = Zhp

N+I . However, to form Zbp
N ,I , we subsequently set Z

bp
N ,i = Zbp

N ,i−1 ∪ zbpN ,i

(with Zbp
N ,0 = Zbp

N ) for i = 1, . . . , I , where zbpN ,i is the solution of

min
z∈�

K∑
k=1

N+i∑
n=1

(�kNn − �kNn(z))
2

N+i∑
n=1

�n(z
bp
j )�kNn = uk(z

bp
j ), 1� j�N , 1�k�K

N+i∑
n=1

�n(z
bp
N , j )�

k
Nn = uk(z

bp
N , j ), 1� j�i − 1, 1�k�K

N+i∑
n=1

�n(z)�
k
Nn = uk(z), 1�k�K

z such that {zbp1 , . . . , zbpN , zbpN ,1, . . . , z
bp
N ,i−1, z} is admissible

(30)

Note that the above problem has only one variable z.
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4. NUMERICAL EXAMPLES

In this section we apply our method to three numerical examples. The examples serve to illustrate
several features of the method. In the first two examples, we present the results obtained with the
best points and with the hierarchical points, compare the coefficient-function approximation with
the best approximation and with that provided by the EIM, and show the convergence rate of the
approximation error and the sharpness of the error estimator. In the last example, we demonstrate
the application of our method to optimal sensor placement for reconstruction of a flow field. In
all examples, we shall consider a very fine discretization of the spatial domain � and the usual
Euclidean inner product for simplicity. Furthermore, the KL procedure is employed to construct
the basis set {�n}Nn=1.

4.1. Example 1

Our first example is the exponentially decaying sinusoidal function of the form

G(x; �) = (1 − x) cos(3��(x + 1))e−(1+x)� (31)

defined on the interval �=[−1, 1]. Here � varies in the parameter domain D≡[1, �]. As �
increases, we observe oscillation with higher frequency at a faster decaying rate as shown in
Figure 1. Below we present numerical results for this example.

We first introduce a regular grid SK of size K = 51 on the parameter space and the associ-
ated family UK ={�k(x)≡G(x; �k) | �k ∈ SK , 1�k�K }. Upon the family UK , we construct the
approximation space �N = span{�1, . . . , �N } following the KL procedure outlined in Appendix

A.2. We present in Table I the coordinate values of the best points Zbp
N , the hierarchical points

Zhp
N , and the EIM points Zmp

N obtained using the EIM described in Appendix A.1. We observe
that the interpolation points are mainly distributed on the left of the physical domain.

0
x

0.5 1
– 1.5

– 1.5

– 0.5

0

– 1

– 1

0.5

1

1.5

2

µ = 1.0
µ = 1.47µ = π

Figure 1. Behavior of G(x; �) for different parameter values.
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Table I. Coordinate values of the best points, hierarchical
points, and EIM points for N = 12.

n Z
bp
N Z

hp
N Z

mp
N

1 −0.9562 −0.9659 −1.0000
2 −0.8862 −0.8832 −0.9098
3 −0.7080 −0.6527 −0.6680
4 −0.6140 −0.5665 −0.5462
5 −0.5036 −0.4776 −0.4776
6 −0.4242 −0.3839 −0.1679
7 −0.3139 −0.2917 −0.2555
8 −0.1127 −0.0511 +0.1679
9 +0.0073 +0.0365 −0.7321

10 +0.0985 +0.0985 +0.2993
11 +0.3473 +0.3473 +0.0875
12 +0.4450 +0.3860 +0.5912

Table II. Comparison of the BPIM, HPIM, and EIM: εN ,max,rel and �N as a function of N .

BPIM HPIM EIM

N εN ,max,rel �N εN ,max,rel �N εN ,max,rel �N

3 5.87E−01 1.01 6.02E−01 1.04 7.17E−01 1.63
6 2.07E−01 1.05 2.32E−01 1.19 4.95E−01 2.51
9 7.02E−02 1.11 9.10E−02 1.21 1.02E−01 1.72

12 1.39E−02 1.16 2.75E−02 1.50 4.32E−02 1.99
15 1.46E−03 1.20 3.65E−03 1.99 2.73E−03 1.64
18 7.46E−05 1.15 2.89E−04 2.84 2.13E−04 3.76

We now define εN ,max,rel = max�∈�Test εN (�)/‖G(·; �)‖ and �N = Q−1
Test

∑
�∈�Test

εN (�)/

ε∗
N (�); here �Test is a parameter test sample of size QTest = 101. The maximum relative error

εN ,max,rel will show the convergence rate of the coefficient-function approximation. The average
error ratio �N will measure the approximation quality relative to the best approximation—a value
close to unity indicates a very good approximation. In Table II, we tabulate εN ,max,rel and �N as
a function of N using the best points (BPIM) and the hierarchical points (HPIM), and the EIM.
As expected, the BPIM yields the best performance as it gives smallest values of εN ,max,rel and
�N . Furthermore, while �N for the HPIM and EIM tends to grow with N , �N for the BPIM is
very close to unity for all N . We also observe that �N for the HPIM grows at a faster rate for
large N . This may be attributed to the fact that the set of hierarchical points is suboptimal and loses
its optimality as N increases.

In addition, we tabulate in Table III εN ,max,rel, �N , �N , and 
N ,I , 1�I�3, as a function of N

for the best points; here 
N ,I = Q−1
Test

∑
�∈�Test


N ,I (�) and �N is the condition number of AN .
We observe from these results that the maximum relative error decreases very rapidly with N ; that
the constant �N is less than two and grows very slowly—and hence εN (�) will be only slightly
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Table III. Numerical results for the approximation of G(x; �) using the BPIM: εN ,max,rel, �N ,
�N , and 
N ,I , 1�I�3 as a function of N .

N εN ,max,rel �N �N 
N ,1 
N ,2 
N ,3

3 5.87E−01 1.06 1.70 0.65 0.86 0.95
6 2.07E−01 1.30 2.59 0.68 0.92 0.98
9 7.02E−02 1.38 2.25 0.70 0.94 0.99

12 1.39E−02 1.63 3.36 0.70 0.95 0.99
15 1.46E−03 1.75 4.93 0.73 0.97 1.00
18 7.46E−05 1.72 4.29 0.81 0.98 1.00

Table IV. Numerical results for the approximation of G(x; �) using the
Legendre polynomials and the extended Chebyshev points: εN ,max,rel

and �N as a function of N .

N εN ,max,rel �N

5 1.44E−00 1.37
10 9.59E−01 1.44
15 6.70E−01 1.35
20 4.11E−01 1.30
25 1.63E−01 1.25
30 3.72E−02 1.19
35 2.37E−03 1.13
40 4.06E−05 1.09

larger than the best approximation error ε∗
N (�); that AN is very well conditioned; and that the

error estimator effectivity is quite close to unity and sharper as I increases.
Finally, we consider the interpolation of G(x; �) using the Legendre polynomials and the

extended Chebyshev points

zcpn = cos((2n − 1)�/(2N ))

cos(�/(2N ))
, n = 1, . . . , N

We present in Table IV εN ,max,rel and�N as a function of N . We see that although the approximation
is very close to the best approximation, the error converges much slower than those obtained with
the BPIM, HPIM, and EIM. Hence, at least in this particular example, polynomial interpolation is
not an effective approach.

4.2. Example 2

We consider a sinusoidal �-dependent function H(x; �) = sin(�1x1) cos(�2x2) defined on the phys-
ical domain� =[0, 1]×[0, 1]. Here, the parameter � = (�1, �2) varies inD=[�/3, 2�] × [�/3, 2�].
The KL basis set {�n}Nn=1 is then constructed from the family UK = {�k(x) ≡ H(x; �k) | �k ∈ SK ,

1�k�K }, where SK is a regular grid of size K = 441 on the parameter space D. Below we present
numerical results obtained for this example.
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Table V. Comparison of BP I, BP II, and BP III: εN ,max,rel and �N as a function of N .

BP I BP II BP III

N εN ,max,rel �N εN ,max,rel �N εN ,max,rel �N

5 8.92E−01 1.10 8.92E−01 1.10 7.81E−01 1.02
10 1.30E−01 1.10 1.32E−01 1.10 1.20E−01 1.04
15 7.45E−03 1.16 6.66E−03 1.20 7.38E−03 1.09
20 9.81E−04 1.15 9.77E−04 1.15 9.34E−04 1.21
25 1.31E−04 1.19 1.34E−04 1.26 1.21E−04 1.16

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

x1

x
2

Figure 2. Distribution of the best points on the physical domain for N = 25.

We first investigate the sensitivity of the solutions of (13) with respect to initial guesses. Here,
we consider three different initial guesses: Z ip

N , Z
hp
N , and a random set of points. For numerical

stability, the random set is chosen so as to make AN quite well conditioned. We denote by BP I,
BP II, and BP III the three solutions corresponding to the three initial guesses. For this purpose, we
introduce a parameter test sample �Test of size QTest = 961. We present in Table V εN ,max,rel and
�N as a function of N for BP I, BP II, and BP III; here εN ,max,rel = max�∈�Test εN (�)/‖H(·; �)‖,
�N (�) = εN (�)/ε∗

N (�), and �N = Q−1
Test

∑
�∈�Test

�N (�). We observe that BP I, BP II, and BP III
perform almost equally well since they yield similar convergence rates and average error ratios.
We may thus conclude that in the particular example the results are not much affected by the
choice of initial guesses.

We now let the set of best points be the set among BP I, BP II, and BP III that gives the smallest
objective value. Figure 2 shows distribution of the best points for 25 basis functions. We see that
the best points are largely located around the upper right region of the physical domain. We further
tabulate in Table VI εN ,max,rel and �N as a function of N for the BPIM, HPIM, and EIM. We see
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Table VI. Comparison of the BPIM, HPIM, and EIM: εN ,max,rel and �N as a function of N .

BPIM HPIM EIM

N εN ,max,rel �N εN ,max,rel �N εN ,max,rel �N

5 7.81E−01 1.02 8.86E−01 1.11 2.21E−00 4.70
10 1.20E−01 1.04 1.29E−01 1.27 5.01E−01 7.42
15 7.38E−03 1.09 9.81E−03 1.77 2.97E−02 5.24
20 9.81E−04 1.15 2.90E−03 3.23 3.30E−03 7.40
25 1.21E−04 1.16 5.20E−04 4.63 4.38E−04 8.51

Table VII. Numerical results for the approximation of H(x; �) using the BPIM:
ε∗
N ,max,rel, εN ,max,rel, �N , �N , and 
N ,I , 1�I�3, as a function of N .

N ε∗
N ,max,rel εN ,max,rel �N �N 
N ,1 
N ,2 
N ,3

5 7.76E−01 7.81E−01 1.33 1.67 0.63 0.90 0.97
10 1.19E−01 1.20E−01 1.77 2.28 0.76 0.91 0.95
15 5.95E−03 7.38E−03 1.63 2.69 0.58 0.82 0.94
20 8.46E−04 9.81E−04 1.83 3.90 0.63 0.87 0.94
25 1.11E−04 1.21E−04 1.56 120 0.59 0.79 0.93

again that the BPIM yields the best performance and that while �N for the HPIM and EIM tends
to grow with N , �N for the BPIM is very close to unity for all N .

Finally, we present in Table VII ε∗
N ,max,rel, εN ,max,rel, �N , �N , and 
N ,I , 1�I�3, as a function

of N for the BPIM; here ε∗
N ,max,rel = max�∈�Test ε

∗
N (�)/‖H(·; �)‖, 
N ,I = Q−1

Test

∑
�∈�Test


N ,I (�),

and �N is the condition number of AN . We see that εN ,max,rel converges very rapidly with N ;
that the constant �N provides a sharp measure of the interpolation-induced error and is small
(reasonably close to unity) for all N ; that AN is very well conditioned; and that the error estimator
effectivity is quite close to unity and sharper as I increases.

4.3. Example 3: a sensor placement problem

With this example, we aim to demonstrate the application of the present method to optimal sensor
placement for field reconstruction of parametrized systems. In particular, we consider the problem
of placing a number of sensors in the spatial domain to obtain experimental measurements of
a parametrized time-dependent physical field (e.g. temperature, flow, pressure, and energy) and
of reconstructing the entire field variable from the obtained experimental data. This problem has
been studied by many authors [21–26] in the context of distributed process systems in which the
physical field evolves with time t .

The particular example considered is a channel flow past a unit circular cylinder for a Reynolds
number variation in the rangeDRe ≡ [100, 200]. This example has also been investigated in [21, 26]
for a particular Reynolds number of 100. Here, we consider the flow field to vary with the Reynolds
number Re and evolve with time t . Direct numerical simulation (DNS) of the Navier–Stokes
equations using a discontinuous Galerkin method [27] is performed to compute the flow field.
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An unstructured two-dimensional grid with 30 070 nodes and 3007 cubic elements is used in
the computation. The grid is extended from 10 cylinder diameters to 15 cylinder diameters in
the horizontal direction, and ±10 cylinder diameters in flow normal direction. The timestep �t
between two consecutive snapshots is five times the simulation timestep of 0.05 s, i.e. �t = 0.25.
We shall consider the horizontal velocity component U (x;Re, t j ) and use the ‘synthetic’ data
provided by the DNS solver.

The goal is to determine the optimal locations of sensors, thereby allowing accurate recon-
struction of the velocity U (x;Re, t j ) for any given Re in the range DRe and time-discrete
level t j = j�t, 1� j�J = 40. To achieve this goal, we first employ the DNS solver to obtain
VK ={Uk, 1�k�K } which consists of K = 240 solutions obtained for Reynolds numbers of
100, 120, 140, 160, 180, and 200. Note that J = 40 solutions are obtained in time for each Reynolds
number. We next create a set of mean-deviated solutions as UK = {�k =Uk −U , 1�k�K }, where
U = (1/K )

∑K
k=1Uk is the mean solution. Based upon UK , we construct the KL basis set {�n}Nn=1,

the interpolation point set {zn}Nn=1, and the cardinal basis set {�n}Nn=1. Now for a given new ve-
locity U , we compute its best approximation as

U∗
N =U +

N∑
n=1

(�n,U −U )�n

and its coefficient-function approximation as

UN =U +
N∑

n=1
(U (zn) −U (zn))�n

We see that U∗
N requires the velocity U everywhere in the spatial domain, whereas UN can be

constructed from known (‘experimental’) values only at the interpolation points, U (zn), 1�n�N .
Hence, reconstruction of the velocity field from experimental measurements with the best
approximation approach is not practical. Below we present numerical results obtained with
our interpolation approach.

Figure 3 shows the first two KL basis functions. We further show in Figure 4 the distribution
of the hierarchical points and best points on the domain for N = 30. In both cases, the points are

(b)(a)

Figure 3. Contour plot of the first two KL basis functions: (a) �1 and (b) �2.
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(b)(a)

Figure 4. Distribution of the sensors on the physical domain for N = 30: (a) the
hierarchical points and (b) the best points.

Table VIII. Numerical results for the reconstruction of U (·;Re, t j ) using the HPIM:
ε∗
N ,max,rel, εN ,max,rel, �N , 
N ,1, 
N ,3, and 
N ,5 as a function of N .

N ε∗
N ,max,rel εN ,max,rel �N 
N ,1 
N ,3 
N ,5

5 4.16E−02 5.47E−02 1.13 0.54 0.86 0.94
10 1.36E−02 1.67E−02 1.34 0.47 0.75 0.84
15 5.92E−03 7.04E−03 1.33 0.32 0.77 0.87
20 2.76E−03 4.05E−03 1.45 0.30 0.64 0.78
25 1.69E−03 3.58E−03 1.74 0.36 0.59 0.77
30 1.22E−03 2.90E−03 1.92 0.33 0.66 0.83

mostly distributed in the wake region right behind the cylinder. This is because in that region the
velocity U varies most significantly as observed in Figure 3. It is also interesting to note that there
is one best point on the lower boundary.

We now introduce a parameter test sample �Test of size QTest = 400 including 10 Reynolds
numbers {100, 110, 120, 130, 140, 160, 170, 180, 190, 200} in combination with 40 time-discrete
levels. We next tabulate, as a function of N , ε∗

N ,max,rel, εN ,max,rel, �N , and 
N ,I , I = 1, 3, 5,
in Table VIII for the HPIM and in Table IX for the BPIM; here ε∗

N ,max,rel = max(Re,t j ) ∈�Test

ε∗
N (Re, t j )/‖U (·;Re, t j )‖, εN ,max,rel = max(Re,t j ) ∈�Test

εN (Re, t j )/‖U (·;Re, t j )‖, �N = Q−1
Test∑

(Re,t j ) ∈�Test
εN (Re, t j )/ε∗

N (Re, t j ), and 
N ,I = Q−1
Test

∑
(Re,t j ) ∈�Test


N ,I (Re, t
j ). In both cases,

the average error ratio �N is less than 2 and the error estimator effectivity is closer to unity and
sharper as I increases. The a posteriori error estimator is crucial for this problem: first, it allows us
to use a ‘minimal’ number of sensors while satisfying the desired accuracy; second, it eliminates
some uncertainty in the obtained results.

For this problem, the HPIM results are just slightly less accurate than the BPIM results for a fixed
dimension N . However, in application, the HPIM can be much more economical than the BPIM.
More specifically, we let Nmax be the basis dimension for which the condition ε̂Nmax,I (Re, t

j )��tol is
satisfied for all possible parameter values; here �tol is the desired tolerance. For a given parameter
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Table IX. Numerical results for the reconstruction of U (·;Re, t j ) using the
BPIM: ε∗

N ,max,rel, εN ,max,rel, �N , 
N ,1, 
N ,3, and 
N ,5 as a function of N .

N ε∗
N ,max,rel εN ,max,rel �N 
N ,1 
N ,3 
N ,5

5 4.16E−02 4.65E−02 1.09 0.51 0.85 0.94
10 1.36E−02 1.54E−02 1.23 0.39 0.66 0.78
15 5.92E−03 8.26E−03 1.22 0.37 0.75 0.87
20 2.76E−03 3.81E−03 1.33 0.36 0.67 0.81
25 1.69E−03 3.33E−03 1.54 0.38 0.57 0.72
30 1.22E−03 2.03E−03 1.85 0.30 0.56 0.69

(b)(a)

Figure 5. Reconstruction of the velocity U (x;Re, t j ) using the BPIM: (a) the exact velocity for
Re= 130 and t j = 40�t and (b) the reconstructed velocity UN ( ·;Re, t j ) for N = 20.

value (Re, t j ), we would like to choose N in the range [1, Nmax] as the smallest dimension
satisfying ε̂N ,I (Re, t j )��tol. We thus need to construct Zbpt

N ,I for all N (�Nmax) or, in general,
a total number of (Nmax + I )(Nmax + I + 1)/2 BPIM sensors, since the best points are not
hierarchical. However, we would need only Nmax + I sensors with the HPIM. The HPIM can thus
save substantial cost and time for the experimental setup, as the total number of sensors required
is (Nmax + I + 1)/2 times smaller than that of the BPIM.

Finally, we look at the reconstruction of U (·;Re, t j ) for Re= 130 and t j = 40�t shown in
Figure 5(a); note that this solution is not included inUK . We present in Figure 5(b) its reconstructed
field obtained with the BPIM for N = 20. In addition, we show the reconstruction in Figure 6(a)
for N = 10 and in Figure 6(b) for N = 20 obtained using the HPIM. We see that only 10 HPIM
sensors are enough to capture almost all the important features of the actual field, and that, with
20 HPIM sensors, the reconstructed field is almost indistinguishable from the actual field. Similar
results are in fact observed for all (Re, t j ) in �Test.

In summary, we obtain encouraging results with few sensors placed on the domain. However,
we have not addressed sensitivity of the reconstruction with respect to noise in data and have
not incorporated uncertainty information into the reconstruction process. These extensions will
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(b)(a)

Figure 6. Reconstruction of U ( ·;Re, t j ) for Re= 130 and t j = 40�t using the
HPIM: (a) N = 10 and (b) N = 20.

be discussed in detail in a future paper devoted to not only field reconstruction but also the
measurement of engineering outputs.

5. CONCLUSIONS

We have presented an interpolation method for the efficient and accurate approximation of
parametrized functions via an appropriate basis set and an associated (almost) optimal inter-
polation point set. In particular, rather than general basis sets such as polynomials, we construct
a specific problem-dependent basis set with superior approximation properties of parametrized
functions. At the heart of our method is the formulation of a least-squares error minimization
which can be solved efficiently by standard optimization algorithms to yield the best interpolation
points. We have compared our method with the EIM and investigated its performance relative to
the best approximation. The BPIM outperforms the EIM and yields approximations which are very
close to the best approximations. In addition, we have quantified the approximation error with a
posteriori error estimators. Our error estimates are inexpensive and quite sharp. The numerical
results presented in the paper demonstrate our claims.

APPENDIX A

A.1. The empirical interpolation method

We describe the empirical interpolation procedure developed in [15, 16] for the approximation of
the parameter-dependent function u(x; �). The EIM consists of a ‘greedy’ selection process for
generating a basis set with good approximation properties and a simple algorithm for selecting the
interpolation points.

The greedy selection process is used to select maximally independent basis set {
n}Nn=1 from
the given family {u( · ; �k)}Kk=1. We first choose our first basis function to be 
1 = u j1 with
j1 = arg maxk∈{1,...,K } ‖u(·; �k)‖L∞(�), and define Wu

1 = span{
1}. For L = 2, . . . , N , we
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determine jL = arg maxk∈{1,...,K } ε∗
L−1(�k), and define 
L(x)= u(x; � jL ) andW

u
L = span{
n, 1�n�

L}; here for k = 1, . . . , K , u∗
L−1(·; �k) ≡ arg minw ∈Wu

L−1
‖u(·; �k) − w‖L∞(�) and ε∗

L−1(�k) ≡
‖u(·; �k)−u∗

L−1(·; �k)‖L∞(�). In essence, Wu
N comprises basis functions from the family UK . For

u(x; �) of finite dimension, the optimization for u∗
L−1(x; �k) and hence ε∗

L−1(�k) is a standard

linear program. In actual practice, rather than the L∞(�)-norm, the L2(�)-norm surrogate is used
in the best approximation, and the construction of {
n}Nn=1 is considerably less expensive.

Next a set of interpolation points, Zmp
N = {zmp

1 , . . . , zmp
N }, is constructed as follows. We first

set zmp
1 = arg ess supx∈� |
1(x)|, q1(x)= 
1(x)/
1(z

mp
1 ), B1

11 = 1. Then for L = 2, . . . , N , we

solve the linear system
∑L−1

j=1 �L−1
j q j (z

mp
i ) = 
L(zmp

i ), 1�i�L − 1, and set rL(x)= 
L(x) −∑L−1
j = 1 �L−1

j q j (x), zmp
L = arg ess supx ∈� |rL(x)|, qL(x)= rL(x)/rL(zmp

L ), and BL
i j = q j (z

mp
i ),

1�i, j�L . Clearly, the EIM point set Zmp
N is hierarchical, and inexpensive to construct.

Then, for any given �∈D, u(x; �) may be approximated by a coefficient-function expan-
sion uN (x; �) =∑N

n=1 �N n(�)qn(x), where
∑N

j=1 B
N
i j �N j (�) = u(zmp

i ; �), 1�i�N , and BN
i j =

q j (z
mp
i ).

A.2. Karhunen–Loève procedure

We describe the KL expansion to generate {�n}Nn=1 from the given family {�k}Kk=1. First, a two-point
spatial correlation function is defined as

K(x, x ′) = 1

K

K∑
k=1

�k(x)�k(x
′) (A1)

which accepts the following spectral decomposition:

K(x, x ′) =
K∑

k=1
�k�k(x)�k(x

′) (A2)

Here the set of basis functions �k, 1�k�K , are ordered such that the associated eigenvalues

�k = 1

K

K∑
l=1

(�k, �l)
2 (A3)

satisfy �k��k+1.
Next, for a given N�K , the KL procedure consists in finding �n, 1�n�N , so as to maximize

the captured energy

max EN =
N∑

n=1

(
1

K

K∑
k=1

(�n, �k)
2
)

=
N∑

n=1
�n (A4)

subject to the constraints (�n,�n′) = �nn′, 1�n, n′�N . The first few basis functions thus represent
the main energy-containing structures in the snapshots, with their relative importance quantified
by �n . It can be shown that the problem (A4) amounts to solving the eigenfunction equation the
problem (A4) amounts to solving the eigenfunction equation

(K(x, x ′),�(x ′))= ��(x) (A5)

for the first N eigenfunctions.
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The method of snapshots [19] expresses a typical empirical eigenfunction �(x) as a linear
combination of the �k :

�(x)=
K∑

k=1
ak�k(x) (A6)

Inserting this representation and (A1) into (A5), we immediately obtain

Ca = �a (A7)

where C ∈ RK×K is given by Ci j = (1/K )(�i , � j ), 1�i, j�K . Eigenproblem (A7) can then be
solved for the first N eigenvectors from which the KL basis functions �n, 1�n�N , are constructed
by (A6).

The optimality of the KL basis can be shown by considering an approximate representation
�̂k(x)= ∑N

n=1 �kN n�n(x) of �k(x) for an arbitrary set of orthonormal basis functions, {�n}Nn=1,
and demonstrating that the KL basis is a minimizer of the error minimization problem

min
K∑

k=1

∥∥∥∥�k −
N∑

n=1
�kN n�n

∥∥∥∥
2

(A8)

Indeed, this minimization problem is equivalent to the maximization problem (A4), which in turn
asserts the optimality of {�n}Nn=1. Furthermore, the average least-squares error can be calculated
as

1

K

K∑
k=1

∥∥∥∥�k −
N∑

n=1
(�n, �k)�n

∥∥∥∥
2

=
K∑

j=N+1
� j (A9)

Expression (A9) gives us an idea for choosing N as the smallest integer such that
∑N

n=1 �n/
∑K

k=1
�k�0.99.
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