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We present a hybridized discontinuous Petrov-Galerkin (HDPG) method for the solu-
tion of compressible flows. The HPDG method combines the efficiency of the hybridizable
discontinuous Galerkin (HDG) method with the excellent stability of the discontinuous
Petrov-Galerkin (DPG) method. This aim is achieved by using the DGP method to dis-
cretize the governing equations at the element level and the HDG method to glue the local
solutions together. Moreover, we propose to enrich the test space with a constant function
in order to make the HDPG method conservative. In the presence of under-resolved fea-
tures such as shocks and boundary layers, the HDPG scheme is found to be more robust
and stable than the HDG method. We present several numerical examples to demonstrate
the proposed method.

I. Introduction

The development of robust, accurate, and efficient methods for the numerical solution of hyperbolic sys-
tems of conservation laws in complex geometries is a topic of considerable importance. Indeed, hyperbolic
systems of conservation laws govern a wide range of physical phenomena and arise in several areas of applied
mathematics and mechanics such as fluid dynamics, thermodynamics, population dynamics, magnetohydro-
dynamics, multiphase flow in nonlinear material, and traffic flow. The most fundamental phenomenon of
hyperbolic systems is the formation and propagation of discontinuities and shock waves even if initial and
boundary data are smooth. The presence of shock waves is a serious challenge for any numerical methods
to provide a physical and stable solution. The main difficulties in computing solutions with shocks are that
(1) when a shock is formed it poses a source of instability in the shock region, which then leads to numerical
instabilities if no treatment of shock waves is introduced; (2) it is hard to predict when and where new shocks
arise, and track them as they propagate; (3) solution must satisfy the Rankine-Hugoniot jump condition and
the entropy conditions; (4) solution should have sharp and clean shocks at the discontinuity interface; and (5)
numerical treatment of shock waves should not cause deterioration in resolution and reduction of accuracy
in domains where the solution is smooth. Although significant progress has been made over the years in
both the theoretical and numerical investigations, capturing shocks, especially when shocks propagate and
interact with one another, remains an active research area with many challenging problems to be addressed.

In recent years, considerable attention has been turned to discontinuous Galerkin (DG) methods1–4,8, 9, 11,14–17,30,32

for the numerical solution of hyperbolic systems of conservation laws. DG methods possess several attractive
properties for solving hyperbolic problems. In particular, they are flexible for complicated geometry, locally
conservative, high-order accurate, highly parallelizable, and have low dissipation and dispersion. However,
in spite of all these advantages, DG methods have not yet made a more significant impact for practical
applications. This is largely due to the main criticism that DG methods are computationally expensive.
This cost is primarily associated to the large number of degrees of freedom caused by nodal duplication at
the element boundary interfaces. More specifically, assuming about six linear tetrahedral elements per node,
the number of unknowns in a DG system would approximately be 24 times the number of unknowns in the
corresponding continuous Galerkin (CG) system for the same order of the approximating polynomial. The
storage and computation cost of implicit DG methods are thus several times that of CG methods. However,
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when used with explicit time-stepping schemes, DG methods9,15 provide block-diagonal mass matrices to
be inverted, which results in very low storage and efficient numerical schemes for many problems. One
major disadvantage with explicit DG methods is that the timestep size is restricted by the smallest element
in the mesh and the degree of polynomials used in representing the numerical solution. Even a few small
elements can render the timestep size so small that it actually leads to time-consuming computations for
many problems involving boundary layers and sharp features.

More recently, a new class of implicit DG methods — the so-called hybridizable discontinuous Galerkin
(HDG) method — was first introduced for elliptic problems.6 The HDG methods have already been ex-
tended to convection-diffusion systems,24,25 linear and nonlinear elastodynamics,21,34 incompressible and
compressible flows5,7, 19,22,23,26–28 involving shock waves18 and turbulence, and electromagnetics.20 The
main idea of HDG methods is a hybridization of DG methods, which aims to solve for the numerical trace of
the approximate solution instead of the approximate solution itself. Because the numerical trace is defined
over inter-element boundaries and is single-valued over the element faces, HDG methods have significantly
less degrees of freedom than standard DG methods. In fact, a variant of the HDG method — the so-called
embedded DG method13,29 — has the same global degrees of freedom as CG methods and has the stability
properties of a DG method. This large reduction in the number of degrees of freedom can lead to significant
savings for both computational time and memory storage. Another advantage of HDG methods is that their
postprocessed solution and approximate gradient converge with one order higher than those of other DG and
CG methods for diffusion-dominated problems. These advantages render HDG methods competitive with
CG methods even for diffusion problems and elasticity problems.

Very recently, the Discontinuous Petrov-Galerkin method (DPG) was introduced for convection prob-
lems11 and extended to linear convection-diffusion problems.12 The main idea of the DGP method is an
automatic construction of optimal test functions to maximize the stability constant. The performance of the
DPG method is shown to be superior to the standard DG method. In particular, the DPG method delivers
optimal convergence rate k + 1 for the Peterson example where it has been known that other DG methods
yield a convergence rate of only k + 1/2. The stability of the DPG scheme is excellent. However, the DPG
method is more expensive than other DG methods because it contains more globally coupled unknowns.
Another drawback of the DPG method is that the method is not conservative because the test space does
not contain a constant function.

In this paper, we introduce a hybridized discontinuous Petrov-Galerkin (HDPG) method that combines
the efficiency of the HDG method with the excellent stability of the DPG method. The main idea here is
to use the DPG method for the local problem and the HDG method for the global problem. The global
unknown and in fact the matrix structure of the HDPG method is thus the same as that of the HDG method.
Moreover, in order to render the HDPG method conservative, we propose to enrich the test space with a
constant function. We present numerical examples to demonstrate the performance of the HDPG method.
Numerical results show that the HDPG method is more robust and stable than the HDG method for a
number of test cases.

The paper is organized as follows. In Section 2, we introduce some notation used throughout the paper.
In Section 3, we review the HDG method for hyperbolic systems of conservation laws. We then describe the
HDPG method in Section 4 and present numerical results in Section 5. Finally, in Section 6, we provide
some concluding remarks.

II. Notation

Let Ω be a physical domain in R
d with Lipschitz boundary ∂Ω in R

d−1. We denote by Th a collection
of disjoint elements (triangles and tetrahedrons) that partition Ω. We also denote by ∂Th the set {∂K :
K ∈ Th}, that is, a collection of the boundaries of all elements in Th. We shall denote by n the outward
unit normal of ∂K. For an element K of the collection Th, F = ∂K ∩ ∂Ω is the boundary face if the d − 1
Lebesgue measure of F is nonzero. For two elements K+ and K− of the collection Th, F = ∂K+ ∩ ∂K− is
the interior face between K+ and K− if the d− 1 Lebesgue measure of F is nonzero. Let Eoh and E∂h denote
the set of interior and boundary faces, respectively. We denote by Eh the union of Eoh and E∂h . Note that by
definition ∂Th and Eh are different. More precisely, an interior face is counted twice in ∂Th but once in Eh
and a boundary face is counted once in both ∂Th and Eh.

Let Pk(D) denote the set of polynomials of degree at most k on a domain D. We introduce discontinuous
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finite element spaces

Wk
h = {w ∈ L2(Th) : w|K ∈ Pk(K), ∀K ∈ Th},

Vk
h = {w ∈ (L2(Th))m : w|K ∈ (Pk(K))m, ∀K ∈ Th},

Qk
h = {W ∈ (L2(Th))m×d : W |K ∈ (Pk(K))m×d, ∀K ∈ Th},

for w = (wi), 1 ≤ i ≤ m, and W = (Wij), 1 ≤ i ≤ m, 1 ≤ j ≤ d. Here L2(D) is the space of square integrable
functions on D. In addition, we introduce a traced finite element space

Mk
h = {μ ∈ (L2(Eh))m : μ|F ∈ (Pk(F ))m, ∀F ∈ Eh},

for μ = (μi), 1 ≤ i ≤ m. Note that Mk
h consists of functions which are continuous inside the faces F ∈ Eh

and discontinuous at their borders.
For functions w and v in L2(D), we denote (w, v)D =

´
D
wv if D is a domain in R

d and 〈w, v〉D =
´
D
wv

if D is a domain in R
d−1. Likewise, for functions w and v in (L2(D))m, we denote (w,v)D =

´
D
w · v if D

is a domain in R
d and 〈w,v〉D =

´
D
wv if D is a domain in R

d−1. For functions W and V in (L2(D))m×d,

we denote (W ,V )D =
´
D
tr(W TV ) if D is a domain in R

d and 〈W ,V 〉D =
´
D
tr(W TV ) if D is a domain

in R
d−1, where tr is the trace operator of a square matrix. We finally introduce the following volume inner

products

(w, v)Th =
∑

K∈Th
(w, v)K , (w,v)Th =

∑
K∈Th

(w,v)K , (W ,V )Th =
∑

K∈Th
(W ,V )K ,

and boundary inner products

〈w, v〉∂Th =
∑

K∈Th
〈w, v〉∂K , 〈w,v〉∂Th =

∑
K∈Th

〈w,v〉∂K , 〈W ,V 〉∂Th =
∑

K∈Th
〈W ,V 〉∂K .

All of the above notations and definitions are necessary for the description of the ideas in this paper.

III. The Hybridizable Discontinuous Galerkin Method

In this section, we review the hybridizable discontinuous Galerkin (HDG) Method for solving the hyper-
bolic system of conservation laws written as a first-order system of equations as

Q−∇u = 0, in Ω× (0, T ],
∂u

∂t
+∇ · F (u,Q) = f , in Ω× (0, T ],

(1)

where u = (ui), 1 ≤ i ≤ m, is a vector of m conserved quantities, F (u,Q) are fluxes of dimension m × d,
and f is a source term. In general, the fluxes can be the written as F (u,Q) = F inv(u) +F vis(u,Q), where
F inv(u) are the inviscid fluxes and F vis(u,Q) are the viscous fluxes. The above system is supplemented
with the following initial condition

u(x, t = 0) = u0(x), ∀x ∈ Ω, (2)

and the following general boundary condition

b(u,Q,n) = 0, on ∂Ω, (3)

where n is the normal unit vector to the boundary ∂Ω. The function b depends on (u,Q) as well as n
and is called the boundary flux operator. The form of the boundary flux operator depends on the types of
boundary conditions (Dirichlet and Neumann boundary conditions, inflow and outflow boundary conditions,
wall boundary conditions, etc.) applied on the boundary of the physical domain. We shall discuss these
boundary conditions later in the paper.
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A. Formulation

We first consider the governing equations (1) on any element K ∈ Th, multiply them with some test functions
(E,w) ∈ (Pk(K))m×d × (Pk(K))m, and integrate the resulting equations by part. This results in the so-
called local problem: (Qh,uh) ∈Qk

h × Vk
h satisfies

(Qh,E)K + (uh,∇ ·E)K − 〈ûh,E · n〉∂K = 0, ∀E ∈ (Pk(K))m×d,(∂uh

∂t
,w

)
K
− (F (uh,Qh),∇w)K + 〈q̂h,w〉∂K = (f ,w)K , ∀w ∈ (Pk(K))m,

(4)

where the numerical flux q̂h is an approximation to F (u,Q) · n over ∂K. Note that (4) is a Galerkin
projection of the governing equations at the element level onto (Pk(K))m×d × (Pk(K))m. Second, we take
the numerical flux to be

q̂h = F (ûh,Qh) · n+ S(uh − ûh), on ∂K, (5)

where ûh ∈Mk
h is an approximation to the trace of the solution u on ∂K, and S is a stabilization matrix

which has an important effect on both the stability and accuracy of the resulting scheme. Third, by enforcing
the continuity of the L2 projection of q̂h across interior faces and imposing the boundary conditions, we obtain
the so-called global weak formulation

〈q̂h,μ〉∂Th\∂Ω +
〈
b̂h,μ

〉
∂Ω

= 0, ∀μ ∈Mk
h, (6)

where b̂h is the boundary numerical flux whose definition depends on the boundary conditions and will be
given below.

We next insert (5) into (4) and sum the resulting equation over all elements to arrive at the semi-discrete
HDG formulation: (Qh,uh, ûh) ∈Qk

h × Vk
h ×Mk

h satisfies

(Qh,E)Th + (uh,∇ ·E)Th − 〈ûh,E · n〉∂Th = 0, (7a)(∂uh

∂t
,w

)
Th
− (F (uh,Qh),∇w)Th + 〈F (ûh,Qh) · n+ S(uh − ûh),w〉∂Th = (f ,w)Th , (7b)

〈F (ûh,Qh) · n+ S(uh − ûh),μ〉∂Th\∂Ω +
〈
b̂h,μ

〉
∂Ω

= 0, (7c)

for all (E,w,μ) ∈Qk
h × Vk

h ×Mk
h.

Finally, we consider to advance the semi-discrete system (7) in time using an implicit time integrator.
For simplicity of exposition, we consider the Backward Euler method for time integration. We denote by
(Qn

h,u
n
h, û

n
h) the numerical approximations to (Q(tn),u(tn), û(tn)) at time tn = nΔtn, where Δtn is a

timestep size at level n. Using the backward Euler method to discretize the time derivative in (7b), we
obtain that (Qn

h,u
n
h, û

n
h) ∈Qk

h × Vk
h ×Mk

h satisfies

(Qn
h,E)Th + (un

h,∇ ·E)Th − 〈ûn
h,E · n〉∂Th = 0, (8a)( un

h

Δtn
,w

)
Th
− (F (un

h,Q
n
h),∇w)Th + 〈F (ûn

h,Q
n
h) · n+ Sn(un

h − ûn
h),w〉∂Th =

(
fn +

un−1
h

Δtn
,w

)
Th
, (8b)

〈F (ûn
h,Q

n
h) · n+ Sn(un

h − ûn
h),μ〉∂Th\∂Ω +

〈
b̂nh,μ

〉
∂Ω

= 0, (8c)

for all (E,w,μ) ∈ Qk
h × Vk

h ×Mk
h and n ≥ 1, where (Q0

h,u
0
h, û

0
h) is the L2 projection of the initial data

(Q0,u0,u0) onto Qk
h × Vk

h ×Mk
h.

We note that the use of higher-order backward difference formula (BDF) schemes such as the second-
order accurate BDF2 scheme and the third-order accurate BDF3 scheme gives rise to a similar formulation
as (8). The HDG method can also work with other implicit time-stepping methods such as the diagonally
implicit Runge-Kutta (DIRK) methods and DG methods in time.

B. Boundary conditions

In this subsection, we show how the HDG method can handle various boundary conditions by appropriately
defining the boundary numerical flux b̂nh. We first consider the Dirichlet boundary condition in which the
function b is given by

b(t) = u(t)− gD(t), on ∂ΩD, ∀t ∈ (0, T ], (9)
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where ∂ΩD is a portion of the boundary ∂Ω and gD is the Dirichlet boundary data. The corresponding
boundary numerical flux is then defined as

b̂nh = ûn
h − gn

D, on ∂ΩD. (10)

Similarly, for the Neumann boundary condition in which b is given by

b(t) = F (u(t),Q(t)) · n− gN (t), on ∂ΩN , ∀t ∈ (0, T ], (11)

we define the associated boundary numerical flux as

b̂nh = q̂n
h − gn

N , on ∂ΩN . (12)

Here ∂ΩN is another portion of the boundary ∂Ω and gN is the Neumann boundary data. Other Neumann
and mixed boundary conditions can be imposed in a similar manner.

We now consider other boundary conditions for viscous compressible fluid flows such as the inflow and
outflow boundary conditions as well as wall boundary conditions. These conditions can be thought of as
a combination of Dirichlet and Neumann conditions applied to different components, or combinations of
components, of the solution vector. For instance, at the inlet section or outlet section of the flow, we need to
either set the state variable u to the freestream condition u∞ or set the viscous stresses to zero depending
on the eigenvalues of the system. To this end, we define the boundary flux vector b̂h as

b̂nh = F vis(ûn
h,Q

n
h) · n+A+(ûn

h)(u
n
h − ûn

h)−A−(ûn
h)(u

n
∞ − ûn

h), (13)

where F vis(ûn
h,Q

n
h) are the viscous fluxes, which are very small at the inflow and outflow boundaries, and

A± = (A±|A|)/2 and A = [∂F inv(u)/∂u] ·n denotes the Jacobian of the normal component of the inviscid
fluxes.33

Finally, at the solid surface, we need to impose zero velocity and either a fixed temperature T = Tw

(isothermal wall) or zero heat flux ∂T/∂n = 0 (adiabatic wall). In order to do that, we first set

b̂nh1 = ûn
h1 − un

h1, (14)

which means that we extrapolate the density. We then set

b̂nhi = ûn
hi, 2 ≤ i ≤ m− 1, (15)

which means that we impose ûn
hi = 0, 2 ≤ i ≤ m− 1, at the viscous solid wall. For the last component of b̂nh,

we need to distinguish between the isothermal wall and the adiabatic wall. For the isothermal wall, we set

b̂nhm = Tw − T̂h(û
n
h,Q

n
h), (16)

where T̂h(û
n
h,Q

n
h) is the approximate trace of the temperature and it is determined from ûn

h and Qn
h. For

the adiabatic wall, we set
b̂nhm = F vis

m (ûn
h,Q

n
h) · n, (17)

which means that we impose zero heat flux at the solid wall.

C. Stabilization matrix

There are several possible choices for the stabilization matrix including the Roe scheme33 and Lax-Friedrich
scheme.9 For the Roe scheme, we choose

S = L|Λ|R, (18)

where L, R, and Λ are the matrices of the left and right eigenvectors, and eigenvalues of the Jacobian matrix
[∂F inv(ûn

h)/∂û
n
h] · n, respectively. The second choice is the local Lax-Friedrich scheme

S = τ �maxI, (19)

where τ �max is the local maximum speed of the system, and I is the identity matrix. The third choice is the
global Lax-Friedrich scheme

S = τgmaxI, (20)

where τgmax is the global maximum speed of the system. In general, the choice of the stabilization matrix
becomes less critical for high k since numerical dissipation in the order of O(hk+1) vanishes rapidly with
increasing k.
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D. Implementation

By applying the Newton-Raphson method to linearize the nonlinear system (8), we obtain the following
linear system at every Newton iteration[

An Bn

Cn Dn

](
δsn

δûn

)
=

(
fn

gn

)
, (21)

where δsn and δûn are the vectors of degrees of freedom of (δQn
h, δu

n
h) and δûn

h, respectively, which are
in that order the Newton increments of the current iterate (Qn

h,u
n
h) and ûn

h. It is important to note that
the matrix An has a block-diagonal structure due to the discontinuous nature of the approximation spaces.
Therefore, it can be inverted at the element level to yield a block-diagonal matrix (An)−1. We can thus
eliminate δsn to obtain a reduced system in terms of δûn as

Kn δûn = rn, (22)

where
Kn = −Cn(An)−1Bn +Dn, rn = gn −Cn(An)−1fn. (23)

This is the global system to be solved at every Newton iteration. Since δûn
h is single-valued over faces of

the elements, the final matrix system of the HDG method is smaller than that of many other DG methods.
Moreover, the matrix Kn is compact in the sense that only the degrees of freedom between neighboring faces
that share the same element are connected. To form Kn we do not need to explicitly compute the matrices
An,Bn,Cn, and Dn. Instead we compute the elemental matrices and elemental vectors, and perform the
standard finite element assembly to form the system (22).

For large problems, iterative solution methods are unavoidable. One of the key indicators of the cost
in an iterative method is the cost of the matrix vector multiplication which is proportional to the number
of non-zeros in the problem matrix. For HDG one not only obtains a smaller matrix with fewer globally
coupled degrees of freedom, but for a given size matrix the number of nonzeros is smaller. This is because in
standard DG methods the number of nonzero elements scales like O(kd), whereas in the HDG method the
number of nonzeros scales like O(kd−1). This has the potential for significantly smaller matrices and hence
more efficient solution techniques.

IV. The Hybridized Discontinuous Petrov-Galerkin Method

In this section, we introduce the hybridized discontinuous Petrov-Galerkin (HDPG) method that combines
the efficiency of the HDG method with the excellent stability of the DPG method.11,12 The essential
ingredients are a local Petrov-Galerkin projection of the underlying PDEs at the element level onto spaces of
polynomials of degree k to parametrize the numerical solution in terms of the numerical trace; an enrichment
of the test space with constant shape function to ensure conservativity; a judicious choice of the numerical
flux to provide stability and consistency; and a global jump condition that enforces the continuity of the
numerical flux to arrive at a global weak formulation in terms of the numerical trace. In particular, we focus
our attention on devising the HDPG method for solving the steady-state version of the hyperbolic system
(1):

Q−∇u = 0, in Ω,

∇ · F (u,Q) = f , in Ω.
(24)

We then extend the method to the time-dependent case (1) near the end of the section.

A. Formulation

1. The global weak formulation

In the HDPG method we seek an approximation ûh ∈Mk
h such that〈

q̂h(ûh),μ
〉
∂Th\∂Ω +

〈
b̂h(ûh),μ

〉
∂Ω

= 0, ∀μ ∈Mk
h, (25)

where, in the spirit of the HDG method, the interior numerical flux is

q̂h(ûh) = F (ûh,Qh(ûh)) · n+ S(uh(ûh)− ûh), (26)
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and the boundary numerical flux b̂h depends on the particular boundary conditions. Both the boundary
numerical flux b̂h and the stabilization matrix S are chosen the same as those for the HDG method.

We see that the global weak formulation (25) is the same for both the HDG method and the HDPG
method. However, the local problem that defines (uh,Qh) as a function of ûh will be different for each
method. The difference lies in a projection method applied to the governing equations at the element level.
In particular, the HDG method uses the Galerkin projection as describe earlier, whereas the HDGP method
employs the Petrov-Galerkin projection as discussed below.

2. The local Petrov-Galerkin projection

We begin by recalling that the trial space for the solution of the local problem is U(K) ≡ (Pk(K))m×d ×
(Pk(K))m and that the restriction of (Qh,uh) on K resides in U(K). To define the Petrov-Galerkin pro-
jection we introduce a test space S(K) ≡ (Pk+Δk(K))m×d × (Pk+Δk(K))m for any given positive integer
Δk ≥ 1. It is clear from their definition that the trial space is a subset of the test space.

To define the local problem we consider the governing equations (24) on any element K ∈ Th, multiply
them with some test function (E,w) ∈ S(K), and integrate the resulting equations by parts. We thus obtain
that (Qh,uh) ∈ U(K) satisfies

(Qh,E)K + (uh,∇ ·E)K − 〈ûh,E · n〉∂K = 0,

− (F (uh,Qh),∇w)K + 〈F (ûh,Qh) · n+ S(uh − ûh),w〉∂K − (f ,w)K = 0.
(27)

To simplify the notation, we introduce Uh ≡ (Qh,uh) and V = (E,w) and rewrite the above equation in a
more compact form as

rK
(
Uh,V ; ûh

)
= 0, (28)

where rK is given by

rK
(
Uh,V ; ûh

)
= (Qh,E)K + (uh,∇ ·E)K − 〈ûh,E · n〉∂K

− (F (uh,Qh),∇w)K + 〈F (ûh,Qh) · n+ S(uh − ûh),w〉∂K − (f ,w)K . (29)

In this setting, Uh is the solution of the local problem (28), V is some appropriate test function, and ûh

is the Dirichlet data to the local problem (28). As a result, the local problem (28) defines (Qh,uh) as a
function of ûh. It remains to determine the test functions.

In the spirit of the DPG method, we choose the test functions V ∈ S(K) that are solutions of

(V ,Z)K = r′K(W ,Z,Uh; ûh), ∀W ∈ U(K), ∀Z ∈ S(K), (30)

where r′K(·, ·,Uh; ûh) is the Fréchet derivative of rK(·, ·; ûh) with respect to the first argumentUh. In essence,
the equation (31) defines a mapping from the trial space U(K) to the test space S(K). More specifically, let
φi, 1 ≤ i ≤ n, be basis functions of U(K). Then the corresponding test functions ϕi, 1 ≤ i ≤ n, are given by

(ϕi,Z)K = r′K(φi,Z,Uh; ûh), ∀Z ∈ S(K). (31)

In general, the space spanned by the test functions ϕi, 1 ≤ i ≤ n, does not contain the constant function.
This implies that the Petrov-Galerkin method is not conservative.

To implement the Petrov-Galerkin method, we express Uh and ûh as

Uh =

n∑
i=1

Ui φi, ûh =

N∑
j=1

ûj ξj , (32)

where U = (U1, . . . ,Un)
T is the coefficient vector for Uh and û = (û1, . . . , ûN )T is the coefficient vector for

ûh. Here ξj ∈ (Pk({F : F ∈ ∂K}))m, 1 ≤ j ≤ N, where N = (d + 1) dim (Pk(F ))m, are basis functions
defined on the faces of the boundary ∂K of an element K ∈ Th. Substituting (32) into (28) and (31) we
obtain the following nonlinear system of equations as

J(U; û)TX−1r(U; û) = 0, (33)
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where, for any W = (W1, . . . ,Wn)
T ,

ri(W; û) = rK

(∑n
�=1 W� φ�,ψi;

∑N
j=1 ûj ξj

)
, 1 ≤ i ≤ m,

Jij(W; û) = r′K

(
φj ,ψi,

∑n
�=1 W� φ�;

∑N
p=1 ûp ξp

)
, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

Xij = (ψj ,ψi)K , 1 ≤ i, j ≤ m.

(34)

Here ψi, 1 ≤ i ≤ m, are basis functions of S(K). In the Petrov-Galerkin method, we need to solve (33) for
U and compute Uh by (32) for any given ûh.

It follows from (33) that U is the minimizer of

U(û) := arg min
W∈Rn

r(W; û)TX−1r(W; û). (35)

This minimization statement shows the connection between the Petrov-Galerkin method and the weighted
least-squares method. Moreover, we can easily show that

Uh(ûh) := arg inf
W∈U(K)

sup
Z∈S(K)

rK(W ,Z; ûh)

‖Z‖K
, (36)

where ‖Z‖K = (Z,Z)
1/2
K . This inf-sup statement shows the connection between the Petrov-Galerkin method

and the minimal residual method. Indeed, in our particular context, the three methods are equivalent.
As mentioned earlier, the PG method is not conservative. In order to make the method conservative, we

propose to solve the following constrained optimization problem

Uh(ûh) := arg inf
W∈U(K)

sup
Z∈S(K)

rK(W ,Z; ûh)

‖Z‖K
s.t. rK

(
W ,C; ûh

)
= 0

(37)

where C is a non-zero constant function. This completes the definition of the local problem for the HDPG
method.

B. Implementation

1. The global matrix system

We now describe the steps taken to implement the HDPG method. We first apply the Newton-Raphson
method to linearize the global weak formulation (25): Given the current iterate û∗h, we find the Newton

increment δûh ∈Mk
h as a solution of

a(δûh,μ; û
∗
h) = �(μ; û∗h), ∀μ ∈Mk

h, (38)

where

a(η,μ; û∗h) =

〈(
∂q̂h
∂Qh

∂Qh

∂ûh
(û∗h) +

∂q̂h
∂uh

∂uh

∂ûh
(û∗h) +

∂q̂h
∂ûh

(û∗h)

)
η,μ

〉
∂Th\∂Ω

+

〈(
∂b̂h
∂Qh

∂Qh

∂ûh
(û∗h) +

∂b̂h
∂uh

∂uh

∂ûh
(û∗h) +

∂b̂h
∂ûh

(û∗h)

)
η,μ

〉
∂Ω

, (39)

�(μ; û∗h) = −
〈
q̂h(û

∗
h),μ

〉
∂Th\∂Ω −

〈
b̂h(û

∗
h),μ

〉
∂Ω

, (40)

for all μ,η ∈Mk
h. Note here that we have used the chain rule to calculate the derivative of q̂h and b̂h with

respect to ûh.
The weak formulation (38) gives rise to a matrix system of the form

A δû = f , (41)

8 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

IT
 L

IB
R

A
R

IE
S 

on
 A

ug
us

t 1
6,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
1-

19
7 



where δû represents the vector of degrees of freedom of δûh. The matrix A and vector f can be formed by
the usual finite element assembly procedure once the elemental matrices and vectors are computed as follows

AK
ij =

〈(
∂q̂h
∂Qh

∂Qh

∂ûh
(û∗h) +

∂q̂h
∂uh

∂uh

∂ûh
(û∗h) +

∂q̂h
∂ûh

(û∗h)

)
ξj , ξi

〉
∂Th\∂Ω

+

〈(
∂b̂h
∂Qh

∂Qh

∂ûh
(û∗h) +

∂b̂h
∂uh

∂uh

∂ûh
(û∗h) +

∂b̂h
∂ûh

(û∗h)

)
ξj , ξi

〉
∂Ω

, (42)

fKi = −
〈
q̂h(û

∗
h),μ

〉
∂Th\∂Ω −

〈
b̂h(û

∗
h), ξi

〉
∂Ω

, (43)

for 1 ≤ i, j ≤ N . In order to compute the elemental matrices and vectors we need to obtain (Qh(û
∗
h),uh(û

∗
h))

and their sensitivities (∂Qh

∂ûh
(û∗h),

∂uh

∂ûh
(û∗h)) by solving the local problem as we discuss below.

2. Solution of the local problem

We recall that the vector of degrees of freedom of (Qh(û
∗
h),uh(û

∗
h)) satisfies

U(û∗) := arg min
W∈Rn

r(W; û∗)TX−1r(W; û∗)

s.t. cT r(W; û∗) = 0,
(44)

where c represents the vector of degrees of freedom for the constant basis function. We now introduce a
Lagrange multiplier λ to relax the constraint and define the Lagrangian as

L(U, λ) :=
1

2
r(U; û∗)TX−1r(U; û∗) + λcT r(U; û∗). (45)

By setting the derivative of the Lagrangian to zero, we obtain the following nonlinear system of equations

J(U; û∗)TX−1r(U; û∗) + λJ(U; û∗)T c = 0,

cT r(U; û∗) = 0.
(46)

This system has the structure of a nonlinear saddle point problem.
We now use the Newton-Raphson method to solve the above system: Given the current iterate (U, λ̄),

we find the increment (δU, δλ) as a solution of(
J(U; û∗)TX−1J(U; û∗) +H(U, λ̄; û∗)

)
δU+ J(U; û∗)T cδλ = −J(U; û∗)T (X−1r(U; û∗) + λ̄c)

cTJ(U; û∗)δU = −cT r(U; û∗)
(47)

where H(U, λ̄; û∗) is a matrix whose column vectors are given by

Hi(U, λ̄; û∗) =
∂J(U; û∗)

∂Ui
(X−1r(U; û∗) + λ̄c), 1 ≤ i ≤ n. (48)

The computation of this matrix requires the first derivatives of the Jacobian matrix J with respect to U,
which in turn requires the second derivatives of the residual vector r. We then update the solution as

(U, λ̄) = (U, λ̄) + α(δU, δλ), (49)

where α is a Newton step size to ensure that the cost function is reduced at every Newton iteration. H is
a necessary term in order to have quadratic convergence, however, in practice, the initial condition may lie
outside the region of attraction and the full Newton iteration may diverge. To avoid this, during the first
iterations, H is set to zero and only used once the length of (δU, δλ) is under a certain threshold. We repeat
the process until convergence and then set (U, λ) := (U, λ̄).

Finally, in order to compute the sensitivities, we differentiate (46) with respect to û∗ to obtain(
J(U; û∗)TX−1J(U; û∗) +H(U, λ; û∗)

) ∂U
∂û∗

+ J(U; û∗)T c
∂λ

∂û∗
= −J(U; û∗)TX−1 ∂r(U; û∗)

∂û∗
−G(U; û∗)

cTJ(U; û∗)
∂U

∂û∗
= −cT ∂r(U; û∗)

∂û∗
(50)
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where G(U; û∗) is a matrix whose column vectors are given by

Gj(U; û∗) =
∂J(U; û∗)

∂ûj
X−1r(U; û∗), 1 ≤ j ≤ N. (51)

We note that the left-hand side of the system (50) is the same as that of (47) at convergence.

C. Extension to time-dependent problems

We extend the HDPG method described above to the time-dependent hyperbolic problem (1). We shall
consider the backward Euler method for time integration as higher-order BDF schemes admit a similar
implementation. As before, we denote by (Qn

h,u
n
h, û

n
h) the numerical approximations to (Q(tn),u(tn), û(tn))

at time tn = nΔtn, where Δtn is a timestep size at level n. We seek an approximation ûn
h ∈Mk

h such that〈
q̂n
h(û

n
h),μ

〉
∂Th\∂Ω +

〈
b̂nh(û

n
h),μ

〉
∂Ω

= 0, ∀μ ∈Mk
h, (52)

where the interior numerical flux is

q̂n
h(û

n
h) = F (ûn

h,Qh(û
n
h)) · n+ Sn(un

h(û
n
h)− ûn

h), (53)

and the boundary numerical flux b̂nh depends on the particular boundary conditions. Both the boundary

numerical flux b̂nh and the stabilization matrix Sn are chosen the same as those for the HDG method.
We follow the previous method of lines to define a local problem for any element K ∈ Th. In particular,

using the backward Euler method to discretize the time derivative we find (Qn
h,u

n
h) ∈ U(K) such that

(Qn
h,E)K + (un

h,∇ ·E)K − 〈ûn
h,E · n〉∂K = 0,(un

h − un−1
h

Δtn
,w

)
Th
− (F (un

h,Q
n
h),∇w)K + 〈F (ûn

h,Q
n
h) · n+ Sn(un

h − ûn
h),w〉∂K − (fn,w)K = 0.

(54)
We now define Un

h ≡ (Qn
h,u

n
h) and introduce the associated residual

rnK
(
Un

h ,V ; ûn
h

)
= (Qn

h,E)K + (un
h,∇ ·E)K − 〈ûn

h,E · n〉∂K

+
(un

h − un−1
h

Δtn
,w

)
Th
− (F (un

h,Q
n
h),∇w)K

+ 〈F (ûn
h,Q

n
h) · n+ Sn(un

h − ûn
h),w〉∂K − (fn,w)K , (55)

for any given Z = (E,w) ∈ S(K). The local problem involves solving

Un
h (û

n
h) := arg inf

W∈U(K)
sup

Z∈S(K)

rnK(W ,Z; ûn
h)

‖Z‖K
s.t. rnK

(
W ,C; ûn

h

)
= 0

(56)

where C is a non-zero constant function.
It is obvious that the implementation can be carried out in the same way as the preceding one. We omit

the detailed steps to save space. Below, we present numerical results to demonstrate the performance of the
HDPG method.

V. Results in 1D

In this section, we present some 1D results obtained with the HDPG method applied to simple linear
and non-linear hyperbolic conservation laws. The purpose is to illustrate the benefits that HDPG may yield
in simple problems where discontinuous solutions are present.
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A. Linear Convection

First of all, we apply the HDPG methodology to a linear convection problem with a sharp initial condition.
We consider the equation:

∂u

∂t
+

∂u

∂x
= 0 (57)

where u is the magnitude advected in time along the x axis with a unit velocity. In this case, we are interested
in discontinuous initial conditions (u(x, 0) = 1 for x ∈ (0.2, 0.4), u(x, 0) = 0 elsewhere) and how the solution
evolves in time. The boundary conditions are set to homogeneous Dirichlet at x = 0. Figure 1, shows the
results for the convection of a piecewise constant function with polynomials of order k = 5 and 50 elements
in the domain using HDG and HDPG (with Δk = 5). As we would would expect, oscillations appear near
the discontinuities due to the lack of a dissipation mechanism. However, we note that the HDPG is far less
oscillatory than the HDG solution for the same problem parameters.
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(b) HDPG with �k = 5.

Figure 1: Convection of a hat function using HDG for polynomials of degree k = 5 and using a BDF scheme
for time stepping with �t = 0.001.

For this case, the test space is enriched with elements up to k +Δk = 10. As described in the previous
section, this determines the space in which the maximization of stability takes place. Numerical experience
indicates that beyond a certain Δk, the solutions do not improve further. Furthermore, the bigger the test
space, the more expensive the computation becomes. Therefore, Δk is typically chosen so that no further
stability is achieved.

B. Burgers equation

Here, we use the HDPG method to solve a non-linear problem that develops discontinuities in finite time
even if the initial condition is continuous. We consider Burgers equation in 1D:

∂u

∂t
+

∂(u2/2)

∂x
− ε

∂2u

∂x2
= 0 (58)

1. Inviscid steady shock

We compare the HDG and HDPG methods for the inviscid equation (ε = 0) with an initial smooth solution
that evolves in time (BDF3 with Δt = 0.01) until a steady shock is formed. In this case, the boundary
conditions are fixed (u(0, t) = 1, u(1, t) = −1) and the initial condition reads u(x, 0) = 1 − 2x. The results
for a discretization of 25 elements with order k = 3 are shown in figure 2. The last snapshot in each plot
shows the solution at the stage beyond which the solution becomes stationary.

As we can notice, HDPG is capable of capturing the shock in one element plus a slight contribution of the
neighbors (see 2b) without generating spurious oscillation. Meanwhile, HDG does produce a strong wiggling
of the solution in the elements close to the shock.
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(b) HDPG with �k = 4

Figure 2: Results for an inviscid steady shock with k = 3 and 25 elements.

2. Inviscid sawtooth shock profile

In this case, we consider also the inviscid equation with boundary conditions u(0, t) = u(1, t) = 0 and
the initial condition u(x, 0) = sin(2πx). The time stepping is the BDF3 method with the same time step
(�t = 0.01). We use 25 elements with k = 3. The results are shown in figure (3) for different times. It
is observed that the HDG solution generates oscillations in the elements close to the shock but the HDPG
solution is capable of capturing the discontinuity without any oscillations.
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(b) HDPG with �k = 4

Figure 3: Results for an inviscid shock with k = 3 and 25 elements.

3. Viscous moving shock profile

Here, we consider the viscous Burgers equation in the case where the viscosity is insufficient to resolve the
discontinuities and compare the behavior of the HDG and HDPG methods. The initial conditions in this
case are: u(x, 0)  H(x − 0.2) − H(x − 0.5) where the Heaviside step function H has been smoothed in
order to avoid oscillatory behavior in the initial step. This initial condition generates a shock that travels to
the right of the domain followed by an expansion wave. The amount of viscosity added corresponds to an
element Peclet number of 10 (Pe|element =

h
k
u
ε = 10). For the time stepping, a BDF3 formula with Δt = 0.01

is used.
Figure 4 shows the results for both HDG and HDPG in this case. Again, the HDG scheme results in

an oscillatory solution whereas the HDPG solution is non-oscillatory and has the correct propagation speed,
as we would expect from a conservative scheme. We point out that for this moving shock problem, the
HDPG solution without viscosity (ε = 0) exhibits oscillations although smaller that those obtained with
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HDG. However, a smaller amount of viscosity (about five to ten times smaller that that required for the
HDG method) is required for HDPG to eliminate oscillations.
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(b) HDPG with Δk = 4

Figure 4: Evolution of a smoothed hat function for the Burgers equation with k = 3 and 25 elements.
Time stepping is carried out through a BDF3 formula with Δt = 0.01. The viscosity is selected so that
(Pe|element =

h
k
u
ε = 10)

VI. Results in 2D

In this section, we present two dimensional examples, first for a 2D scalar Burgers equation and then for
the compressible Navier-Stokes equations.

A. Burgers equation in 2D

We consider the problem

∇ ·
[{

u2/2

u

}
− ε∇u

]
= 0 in Ω (59)

with the boundary conditions:

u(0, y) = 1, u(x, 0) = 1− 2x, u(1, y) = −1. (60)
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We compare the solutions obtained using the HDG and HDPG methods. The exact solution consists of
a compression wave that, given those boundary conditions, becomes a shock for y = 0.5 and continues as
a shock until y = 1. We consider the purely inviscid case (ε = 0, Pe = ∞) and the case with very small
viscosity corresponding to an element Peclet number of 100 (Pe|element = 100). The results for the inviscid
case for k = 1 are plotted in figure 5. We see that although overshoots are obtained for the HDG and HDPG
solutions, they are over 100% in the HDG case and only about 20% in the HDG case. We then consider the
viscous case with higher order polynomials k = 3 and (Pe|element = 100). Again, comparing the HDG and
HDPG solutions, we see that in the HDPG case the overshoot near the shock is several times smaller and
the solution and the small oscillation is much more localized.

(a) HDG (b) HDPG with Δk = 2

Figure 5: Results for k = 1 and Pe|element =∞ for the case of an structured mesh

(a) HDG (b) HDPG with Δk = 4

Figure 6: Results for k = 3 and Pe|element = 100 for the case of an structured mesh

We also show in figure 7 the solution obtained with HDPG with k = 5 and Pe|element = 100. In this
same setting, HDG does not converge.
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Figure 7: Result for k = 5 using HDPG with Δk = 6 and Pe|element = 100.

B. Navier-Sokes equations in 2D

We consider the Navier-Stokes equations with constant values for the viscosity and thermal conductivity.

The viscosity μ is given as a function of the element Peclet number, defined as Pe|element =
h
k
|v|
μ , where h

is a representative element size (kept constant over the domain) and |v| is the magnitude of the velocity.
The thermal conductivity is chosen so that the Prandtl number is equal to 0.75. Since our objective here
is to assess the merits of the HDPG method to capture shocks we impose slip-wall boundary conditions
and employ values of the viscosity which are insufficient to fully resolve the viscous shocks. We note that
this would not be a valid strategy to compute Euler solutions since too much dissipation is being applied
in points where it is not required such as smooth regions of the flow, and in general the solution will not
be as accurate. A better shock capturing strategy would apply viscosity selectively in regions where it is
required.2,18,31 This is subject of current research.

1. Wedge in supersonic flow

The first example we present is the flow past a 20◦ wedge immerse in a supersonic stream at M∞ = 2. In
this setting, an attached oblique shock forms that deflects the free stream flow to make it parallel to the
wedge. Before and after the shock the flow is supersonic and uniform. Because of symmetry, only half of the
domain is considered. Even though the HDPG is capable of producing a solution in the inviscid limit, this
solution presents oscillations in the shock region that propagate downstream of the shock. In order to avoid
this, a small amount of viscosity is introduced so that Pe|element = 10. The results are plotted in figure 8.
We see that except for the singularity at the wedge tip, the solution is captured cleanly using fourth order
k = 4 polynomial elements. Note that at the wall, a zero shear stress condition has been imposed which
means that the viscous stresses are only significant at the shock.
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(a) Pressure (b) Mach number

Figure 8: Supersonic flow at M∞ = 2 past a 20◦ wedge using HDPG with k = 4 and Δk = 2 and viscosity
equivalent to Pe|element = 10.

2. Gaussian bump in a channel

The second case is a transonic flow over a Gaussian bump. The inflow Mach number is M∞ = 0.8 and the
height of the bump represents 5% of the total height of the channel. The curvature of the bump is enough to
generate a supersonic region on top of it that recovers to subsonic through a normal shock. As in the previous
case, the viscosity is set so that Pe|element = 10 and a slip-wall zero shear stress condition is imposed at the
top and bottom walls of the channel. The results are plotted in figure 9 and further confirm the sub-cell
shock capturing possibilities of HDPG with an order of magnitude less viscosity than other shock capturing
DG methods.

(a) Pressure (b) Mach number

Figure 9: Transonic flow in a channel with a Gaussian bump in the lower surface using HDPG with k = 3
and Δk = 2. At the inlet M∞ = 0.8. The viscosity is set so that Pe|element = 10. The channel’s length is
roughly three times the length shown.

3. Trefftz airfoil

Finally, we present the solution for a Trefftz airfoil at M∞ = 0.8 and zero angle of attack. As in the previous
example, the flow presents a supersonic region in the upper surface that recovers to subsonic through a normal
shock. Again, the viscosity is set so that Pe|element = 10. The result for the pressure is plotted in figure 10.
Notice how the HDPG method captures the shock within one element, even in a highly under-resolved mesh
as the one used.
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Figure 10: Pressure past a Trefftz airfoil in transonic regime at M∞ = 0.8 and zero angle of attack using
HDPG with k = 3 and Δk = 2 and Pe|element = 10

VII. Conclusions and future work

We have presented a new hybridized discontinuous Galerkin method in which a minimization problem
is solved locally for each problem. The proposed algorithm inherits the low number of globally coupled
unknowns of the HDG methods but it is much more stable. In the presence of discontinuities, the required
viscosity for HDPG method to capture shocks is an order of magnitude smaller than that required by HDG
or other DG methods.

Future research will include the combination of the HDPG method with a discontinuity sensor to restrict
the application of artificial viscosity to the elements affected by the shock. We will also consider more
advanced and efficient techniques to solve the local minimization statement for the local problem.
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