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In this paper, we present hybridizable discontinuous Galerkin methods for the numerical
solution of steady and time-dependent nonlinear convection–diffusion equations. The
methods are devised by expressing the approximate scalar variable and corresponding flux
in terms of an approximate trace of the scalar variable and then explicitly enforcing the
jump condition of the numerical fluxes across the element boundary. Applying the
Newton–Raphson procedure and the hybridization technique, we obtain a global equation
system solely in terms of the approximate trace of the scalar variable at every Newton iter-
ation. The high number of globally coupled degrees of freedom in the discontinuous Galer-
kin approximation is therefore significantly reduced. We then extend the method to time-
dependent problems by approximating the time derivative by means of backward differ-
ence formulae. When the time-marching method is ðpþ 1Þth order accurate and when
polynomials of degree p P 0 are used to represent the scalar variable, each component
of the flux and the approximate trace, we observe that the approximations for the scalar
variable and the flux converge with the optimal order of pþ 1 in the L2-norm. Finally,
we apply element-by-element postprocessing schemes to obtain new approximations of
the flux and the scalar variable. The new approximate flux, which has a continuous inter-
element normal component, is shown to converge with order pþ 1 in the L2-norm. The
new approximate scalar variable is shown to converge with order pþ 2 in the L2-norm.
The postprocessing is performed at the element level and is thus much less expensive than
the solution procedure. For the time-dependent case, the postprocessing does not need to
be applied at each time step but only at the times for which an enhanced solution is
required. Extensive numerical results are provided to demonstrate the performance of
the present method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

This paper is a continuation of our previous work [13] on hybridizable discontinuous Galerkin (HDG) methods for steady-
state and time-dependent convection–diffusion equations. The HDG method presented in [13] is in turn an extension to con-
vection–diffusion problems of the class of HDG methods first introduced in [8] for symmetric second-order elliptic problems.
This method was then analyzed in [5,9] for second-order elliptic problems and further developed in [6] for convection–dif-
fusion–reaction problems. However, none of the earlier work considers time-dependent and nonlinear problems. Indeed,
extension to the time-dependent case was first considered in [13]; therein, however, only linear convection–diffusion
. All rights reserved.
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problems are addressed. As a stepping stone towards the more challenging convection-dominated and purely convective
cases, we focus here on the extension of HDG methods presented in [13] to steady-state and time-dependent nonlinear con-
vection–diffusion equations with smooth solution.

Other DG methods have been developed and used to solve nonlinear convection–diffusion equations. Examples include
the Baumann–Oden method [4], the Bassi–Rebay schemes [2], the local discontinuous Galerkin (LDG) methods [11], and the
compact discontinuous Galerkin (CDG) method [14,15]. The unified analysis of several discontinuous Galerkin (DG) methods
for elliptic problems is presented in [1]. None of the DG methods considered in the unified framework [1] belongs to the class
of HDG methods; for all of them, the convergence rate of the approximate flux variable is only suboptimal. In [5,9] it was
proven that the approximate flux provided by the HDG method convergences with optimal order for diffusion problems.
The optimal convergence of the approximate flux variable was then exploited to construct a new approximation of the scalar
variable which was found to converge at a faster rate than the original approximate scalar variable. In [13], extensive numer-
ical evidence was presented indicating that all these convergence properties remain unchanged for linear convection–diffu-
sion problems and even in the time-dependent case.

As it is typical of HDG methods, to carry out the discretization in space, we proceed in two main steps. First, we express
the approximate scalar variable and corresponding flux within each element in terms of an approximate trace of the scalar
variable and enforce the continuity of the normal component of the numerical fluxes across the element boundary. Then, by
application of the hybridization technique, we obtain a global equation system solely in terms of the degrees of freedom of
the approximate trace. The HDG methods have some favorable features. First, the final matrix system to be inverted has a
significantly smaller number of globally coupled degrees of freedom relative to more standard discontinuous Galerkin meth-
ods analyzed in [1]. Moreover, the methods possess a compact discretization which eliminates the non-compact nature of
the LDG methods in multi-dimensions [14]. Another advantage is that for linear elliptic problems [5,9] and linear convec-
tion–diffusion problems [6,13] the approximate scalar variable and the approximate flux converge optimally at a rate of
pþ 1 in L2-norm when polynomials of order p are used to represent the approximate variables. In addition, they provide
optimally convergent approximations even for the case p ¼ 0.

In this paper, we first present the HDG methods and describe their implementation for steady nonlinear convection–
diffusion equations. We propose a general formula for defining the numerical fluxes which are crucial to maintaining the
stability and accuracy of the numerical solution. We then make the extension to time-dependent nonlinear convection–
diffusion equations by employing backward difference formulae for the discretization of the time derivative. The resulting
method is implicit, stable and high-order accurate and involves significantly less degrees of freedom than standard im-
plicit DG methods [15]. We present numerical results for two particular choices of numerical fluxes indicating that the
HDG methods developed here exhibit the above-mentioned convergence properties (observed for the linear convec-
tion–diffusion problems) for both steady-state and time-dependent nonlinear convection–diffusion equations. Even
though here we only consider backward difference formulae for the time discretization, the HDG methods described
can also work with other implicit time-stepping methods such as the fully implicit Runge–Kutta methods and DG meth-
ods in time.

Finally, we use a simple element-by-element postprocessing scheme to obtain new approximations of the flux and the
scalar variable. The new approximate flux, which has a continuous interelement normal component, is shown to converge
with order pþ 1 in the L2-norm. The new approximate scalar variable is shown to converge with order pþ 2 in the L2-norm.
Since the postprocessing involves solving a linear elliptic partial differential equation (a Poisson problem) at the element
level, the new approximations are much less expensive to compute than the original approximate solution. The proposed
postprocessing scheme is closely related to the one introduced in [16,17]; it is an extension of the one used in [13], which
in turn is an extension of the postprocessing schemes developed in [5,9]; see also the references therein. Let us stress the fact
that, unlike the cases considered in [5,9] our local postprocessing scheme does not involve the original partial differential
equation. It is thus particularly well-suited for both time-dependent and nonlinear problems. Moreover, it does not have
to be applied at each timestep, but only at desired times during the simulation.

The paper is organized as follows. We describe the HDG-space discretization methods for the steady-state case in Section
2 and then extend the methods to the time-dependent case in Section 3. In Section 4, we present the local postprocessing
procedures to compute a higher-order accurate solution. In Section 5, we provide extensive numerical results to assess
the convergence and accuracy of the method. Finally, we end with some concluding remarks in Section 6.

2. The hybridizable discontinuous Galerkin methods

2.1. Problem statement and notation

In this section, we present HDG methods for steady-state nonlinear convection–diffusion equations of the form
�r � ðjruÞ þ r � FðuÞ ¼ f ; in X;

u ¼ gD; on @X:
ð1Þ
As it is typical of DG discretizations, we introduce a diffusive flux q ¼ �jru and rewrite the above equation as a first-
order system of equations
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qþ jru ¼ 0; in X;

r � ðqþ FðuÞÞ ¼ f ; in X;

u ¼ gD; on @X:

ð2Þ
Here X 2 Rd is the physical domain with Lipschitz boundary @X; f 2 L2ðXÞ is a prescribed source term, j 2 L1ðXÞ is a po-
sitive diffusion coefficient, and F 2 ðL1ðXÞÞd are vector-valued nonlinear functions of the scalar variable u.

We first need to introduce some notation. We denote by T h a collection of disjoint regular elements K that partition X and
set @T h :¼ f@K : K 2 T hg. For an element K of the collection T h; e ¼ @K \ @X is the boundary face if the ðd� 1Þ-Lebesgue mea-
sure of e is nonzero. For two elements Kþ and K� of the collection T h; e ¼ @Kþ \ @K� is the interior face between Kþ and K� if
the ðd� 1Þ-Lebesgue measure of e is nonzero. Let Eo

h and E@h denote the set of interior and boundary faces, respectively. We
denote by Eh the union of Eo

h and E@h.
Let nþ and n� be the outward unit normals of @Kþ and @K�, respectively, and let ðv�;w�Þ be the traces of ðv ;wÞ on e from

the interior of K�. Then, we define the average ff�gg and the jump s � t as follows. For e 2 Eo
h, we set
ffqgg ¼ ðqþ þ q�Þ=2 ffugg ¼ ðuþ þ u�Þ=2;
sq � nt ¼ qþ � nþ þ q� � n� sunt ¼ uþnþ þ u�n�:
For e 2 E@h , the set of boundary edges on which q and u are singled value, we set
ffqgg ¼ q ffugg ¼ u;

sq � nt ¼ q � n sunt ¼ un;
Note that the jump in u is a vector, but the jump in q is a scalar which only involves the normal component of q. Further-
more, the jump will be zero for a continuous function.

Now, let PpðDÞ denote the set of polynomials of degree at most p on a domain D and let L2ðDÞ be the space of square inte-
grable functions on D. For any element K of the collection T h we denote WpðKÞ � PpðKÞ and VpðKÞ � ðPpðKÞÞd. We introduce
discontinuous finite element spaces
Vp
h ¼ fv 2 L2ðXÞ : fv jK 2 VpðKÞ 8K 2 T hg;

Wp
h ¼ fw 2 L2ðXÞ : wjK 2WpðKÞ 8K 2 T hg;

Mp
h ¼ fl 2 L2ðEhÞ : lje 2 PpðeÞ; 8e 2 Ehg;
We also set Mp
hðgDÞ ¼ fl 2 Mp

h : l ¼ PgDonCDg, where P denotes the L2-projection into the space flj@X 8l 2 Mp
hg. Note

that Mp
h consists of functions which are continuous inside the faces (or edges) e 2 Eh and discontinuous at their borders.

For functions u and v in L2ðDÞ, we denote ðu;vÞD ¼
R

D uv if D is a domain in Rd and hu;viD ¼
R

D uv if D is a domain in Rd�1.
We finally introduce
ðw; vÞT h
¼
X
K2T h

ðw;vÞK ; f;qh i@T h
¼
X
K2T h

f;qh i@K ; l;gh iEh
¼
X
e2Eh

l;gh ie;
for functions w;v defined on X, functions f;q defined on @T h, and functions l;g defined on Eh. Similar notation can be used
to define volume and boundary inner products for any pair of vector-valued functions.

2.2. The HDG formulation

Multiplying the first two equations of (2) by test functions and integrating by parts, we arrive at the following formulation
for determining an approximate solution ðqh;uhÞ 2 Vp

h �Wp
h such that for all K 2 T h,
ðj�1qh;vÞK � uh;r � vð ÞK þ ûh;v � nh i@K ¼ 0;� qh þ FðuhÞ;rwð ÞK þ ðq̂h þ bF hÞ � n;w
D E

@K
¼ ðf ;wÞK ; ð3Þ
for all ðv ;wÞ 2 VpðKÞ �WpðKÞ. Here the numerical traces q̂h; bF h, and ûh are approximations to �jru; FðuÞ, and u over Eh,
respectively. By adding the contributions of (3) over all the elements and enforcing the continuity of the normal component
of the total numerical flux, we obtain the following problem (see [13]): find an approximation
ðqh;uh; ûhÞ 2 Vp

h �Wp
h �Mp

hðgDÞ such that
j�1qh;v
� �

T h
� uh;r � vð ÞT h

þ ûh;v � nh i@T h
¼ 0;

� qh þ FðuhÞ;rwð ÞT h
þ q̂h þ bF h

� �
� n;w

D E
@T h

¼ ðf ;wÞT h
;

ðq̂h þ bF hÞ � n;l
D E

@T h

¼ 0;

ð4Þ
for all ðv ;w;lÞ 2 Vp
h �Wp

h �Mp
hð0Þ, where
q̂h þ bF h ¼ qh þ FðûhÞ þ sðuh; ûhÞðuh � ûhÞn; on Eh: ð5Þ
This completes the definition of the HDG method.
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Note that the Dirichlet boundary condition has been enforced by requiring that ûh ¼ PgD on Eh \ @X. Note also that the
choice of the numerical flux q̂h þ bF h is an extension of the expression for the numerical flux used for the linear case in
[13]. The main difference is that, due to the nonlinearity of the convection, the stabilization function sð�; �Þ : @T h ! IR can
now be a nonlinear function of uh and ûh. This implies that the last Eq. (4) cannot force the normal component of the total
flux q̂h þ bF h to be single valued on all interior faces e 2 Eo

h; it only forces the L2 � projection of the normal component of the
total flux into Mhð0Þ to be single valued. This is enough to guarantee the local conservativity of the method, as we can see
from the second term of the left-hand side of the second Eq. (4).

2.3. A condition on the stabilization function s

We are going to choose s so that the energy associated with the approximate solution is positive; this is an extension to
our setting of the approach used for the linear case [13]. Thus, we begin by obtaining what could be called an energy identity.
In the purely convective case, this identity gives rise to what is called an entropy inequality for the quadratic entropy u2=2.

To do that, we need to introduce the entropy flux associated to the entropy, namely,
Fðu; cÞ :¼ uFðuÞ � cFðcÞ �
Z u

c
FðsÞds;
where c is an arbitrary real number. Recall that this entropy flux is defined by requiring that @
@uFðu; cÞ ¼ uF 0ðuÞ, and

Fðu;uÞ ¼ 0. Finally, to shorten the energy identity, we write
bF h;c :¼ Fðûh; cÞ þ sðuh; ûhÞðuh � ûhÞûh:
Proposition 1 (Energy identity). For any real number c, we have
ðj�1qh;qhÞT h
þ h; ðuh � ûhÞ2
D E

@T h

¼ ðf ;uhÞX � qh � n; ûhh i@X � bF h;c � n;1
D E

@X
;

where h :¼ sðuh; ûhÞ � sFðuh; ûhÞ and
sFðuh; ûhÞ :¼ 1

ðuh � ûhÞ2
Z uh

ûh

FðsÞ � FðûhÞð Þ � nds:
Proof. Taking v :¼ qh, w :¼ uh and ljEo
h

:¼ �ûh in the Eq. (4) and adding them up, we get
j�1qh; qh

� �
T h
þWh ¼ ðf ;uhÞX;
where
Wh :¼ � uh;qh � nh i@T h
þ ûh;qh � nh i@T h

� FðuhÞ;ruhð ÞT h
þ q̂h þ bF h

� �
� n; uh

D E
@T h

� q̂h þ bF h

� �
� n; ûh

D E
@T hn@X

:

Then, rearranging terms, we get
Wh ¼ � FðuhÞ;ruhð ÞT h
þ q̂h þ bF h � qh

� �
� n;uh � ûh

D E
@T h

þ q̂h þ bF h

� �
� n; ûh

D E
@X
;

and, by the definition of the numerical flux ðbqh þ bF hÞ, (5),
Wh ¼ �ðFðuhÞ;ruhÞT h
þ FðûhÞ � n;uh � ûhh i@T h

þ sðuh; ûhÞðuh � ûhÞ;uh � ûhh i@T h
þ qh � n; ûhh i@X

þ ûhFðûhÞ � nþ sðuh; ûhÞðûh � uhÞûh;1h i@X:
Let GðsÞ be such that dGðsÞ=ds ¼ FðsÞ. Since
� FðuhÞ;ruhð ÞT h
¼ � r � GðuhÞ;1ð ÞT h

;¼ � GðuhÞ � n;1h i@T h
þ GðcÞ � n;1h i@T h

;¼ �
Z uh

c
FðsÞ � nds;1

� �
@T h

;

¼ �
Z uh

ûh

FðsÞ � nds;1

* +
@T h

�
Z ûh

c
FðsÞ � nds;1

* +
@X

;

we obtain,
Wh ¼ �
Z uh

ûh

FðsÞ � FðûhÞð Þ � nds;1

* +
@T h

�
Z ûh

c
FðsÞ � nds;1

* +
@X

þ sðuh; ûhÞðuh � ûhÞ; uh � ûhh i@T h
þ qh � n; ûhh i@X

þ ûhFðûhÞ � nþ sðuh; ûhÞðûh � uhÞûh;1h i@X:
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Now, by definition of h,
Wh ¼ h; ðuh � ûhÞ2
D E

@T h

�
Z ûh

c
FðsÞ � nds;1

* +
@X

þ qh � n; ûhh i@X þ ûhFðûhÞ � nþ sðuh; ûhÞðûh � uhÞûh;1h i@X;
and by definition of bF h;c ,
Wh ¼ h; ðuh � ûhÞ2
D E

@T h

þ qh � n; ûhh i@X þ bF h;c þ cFðcÞ
� �

� n;1
D E

@X

¼ h; ðuh � ûhÞ2
D E

@T h

þ qh � n; ûhh i@X þ bF h;c � n;1
D E

@X
;

since c is a constant. This completes the proof. h.

Note that the energy identity of Proposition 1 shows that the energy associated to the discontinuities uh � ûh on @T h is
strictly positive provided
sðuh; ûhÞ > sFðûh;uhÞ: ð6Þ
Note also that since
sFðuh; ûhÞ ¼
1

ðuh � ûhÞ2
Z uh

ûh

F 0ðsÞ � nðuh � sÞds 6
1
2

sup
s2Jðuh ;ûhÞ

jF 0ðsÞj;
where Jðuh; ûhÞ ¼ ½minfuh; ûhg;maxfuh; ûhg�, the function sðuh; ûhÞ satisfies the positivity condition (6) if
sðuh; ûhÞP
1
2

sup
s2Jðuh ;ûhÞ

jF 0ðsÞj: ð7Þ
We next give other choices of s which satisfies the positivity condition (6).

2.4. Examples of stabilization functions s

The examples we consider here are extensions of the expression proposed in [13] for the linear case. To obtain them, we
begin by separating the influence of the diffusion and the convection. Thus we write
sðuh; ûhÞ ¼ sdiff þ sconvðuh; ûhÞ;
and set
q̂h :¼ qh þ sdiff ðuh � ûhÞn; bF h :¼ FðûhÞ þ sconvðuh; ûhÞn:
We can consider that sdiff is the stabilization function associated to the diffusion and sconv ðuh; ûhÞ the stabilization function
associated to the convection. Now the positivity condition (6) would be satisfied if sdiff > 0 and if sconvðuh; ûhÞP sFðuh; ûhÞ.
Next, we give examples of such choices.

For the stabilization function associated to the diffusion, we simply take
sdiff ¼ j=‘;
where ‘ is a length associated to the problem. To define the stabilization function associated to the convection, we introduce
the numerical fluxes bF � nð�; �Þ, associated with the so-called monotone schemes; see [12], for example.

We require that bF � nð�; �Þ satisfy the following properties:
bF � nða; aÞ ¼ FðaÞ � n; ð8aÞbF � nða; bÞ is non-decreasing in a; ð8bÞbF � nða; bÞ is non-decreasing in b: ð8cÞ
The main examples are the Godunov numerical flux,
bF � nGða; bÞ ¼
min
s2½a;b�

FðsÞ � n; if a 6 b;

max
s2½b;a�

FðsÞ � n; if a > b;

8<: ð9aÞ
the Engquist–Osher numerical flux,
bF � nEOða; bÞ ¼ 1
2
ðFðaÞ þ FðbÞÞ � n� 1

2

Z b

a
F 0ðsÞ � n
�� ��ds; ð9bÞ
and the Lax–Friedrichs flux:



8846 N.C. Nguyen et al. / Journal of Computational Physics 228 (2009) 8841–8855
dF � nLFða; bÞ ¼ 1
2
ðFðaÞ þ FðbÞÞ � n� C

2
ðb� aÞ; ð9cÞ
where C ¼ CLFðIÞ :¼ sups2IjF
0ðsÞj. Note that this numerical flux satisfies the conditions (8b) provided a and b lie in the

interval I.
So, given a numerical flux bF � nð�; �Þ, we can take, for example,
sconvðuh; ûhÞ ¼
1

ðuh � ûhÞ

Z uh

ûh

ðbF � nðs; ûhÞ � FðûhÞ � nÞ
ðuh � ûhÞ

ds: ð10aÞ
This choice gives rise to the convective numerical flux
bF h � n ¼
1

uh � ûh

Z uh

ûh

bF � nðs; ûhÞds; ð10bÞ
which satisfies the positivity condition (6). Indeed, we have
sconvðuh; ûhÞP
1

ðuh � ûhÞ2
Z uh

ûh

dF � nðs; sÞ � FðûhÞ � n
� �

ds
by the monotonicity property (8c), and so sconv ðuh; ûhÞP sFðuh; ûhÞ, by the consistency property (8a).

2.5. The general form of the numerical traces

Next we show that the HDG methods just introduced can be thought of a conservative and consistent DG method with
some appropriate choices of the numerical traces. Indeed, if the stabilization function s is constant on each interior face, by
the last equation in (4), we have that
sðbF h þ bqhÞ � nt ¼ 0 on Eo
h:
Inserting the expression of the numerical flux ðbF h þ q̂hÞ; (5), we obtain
sqh � ntþ sþuþh þ s�u�h � ðsþ þ s�Þûh ¼ 0 onEo
h;
since sFðûhÞ � nt ¼ 0. Finally, solving for ûh and inserting the result into the expression of the numerical flux ðbF h þ q̂hÞ,(5), we
obtain on Eo

h

ûh ¼
sþ

sþ þ s�
uþh þ

s�

sþ þ s�
u�h þ

1
sþ þ s�

	 

sqh � nt;

bF h þ bqh ¼ FðûhÞ þ
s�

sþ þ s�
qþh þ

sþ

sþ þ s�
q�h þ

sþs�

sþ þ s�

	 

suhnt: ð11Þ
On the set of boundary faces, E@h , the Dirichlet condition uh 2 MhðgDÞ and the expression of the numerical flux ðbF h þ bqhÞ,
(5), give
ûh ¼ PgD;
bF h þ bqh ¼ FðPgDÞ þ qh þ sðuh � PgDÞ: ð12Þ
Note that our numerical fluxes are closely related to the numerical fluxes of the LDG methods [11]; the main difference
lies in the fact that in the LDG methods ûh does not depend on qh.

Note also that if we take s ¼ sþ ¼ s� :¼ j=‘þ C=2, where C is associated to the modified Lax–Friedrichs flux, then the
numerical traces are
ûh ¼ ffuhgg þ
1

2s
sqh � nt; bF h þ bqh ¼ FðûhÞ þ ffqhgg þ

s
2

suhnt: ð13Þ
This is the centered scheme proposed and analyzed in [13] for linear convection–diffusion problems.

2.6. Implementation

To implement the method, we first insert (5) into (4) and obtain, after some simple manipulations, that
ðqh;uh; ûhÞ 2 Vp

h �Wp
h �Mp

hðgDÞ is the solution of the following system
j�1qh;v
� �

T h
� uh;r � vð ÞT h

þ ûh;v � nh i@T h
¼ 0;

r � qh;wð ÞT h
� FðuhÞ;rwð ÞT h

þ FðûhÞ � nþ sðuh; ûhÞðuh � ûhÞ;wh i@T h
¼ ðf ;wÞT h

;

ðqh þ FðûhÞÞ � nþ sðuh; ûhÞðuh � ûhÞ;lh i@T h
¼ 0;
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for all ðv ;w;lÞ 2 Vp
h �Wp

h �Mp
hð0Þ. Next, we apply the Newton–Raphson method to solve the above system.

Denoting the current iterate by ðqh;uh; buhÞ 2 Vp
h �Wp

h �Mp
hðgDÞ, we then find an increment ðdqh; duh; dûhÞ 2 Vp

h�
Wp

h �Mp
hð0Þ such that
aðdqh;vÞ � bðduh;vÞ þ cðdûh;vÞ ¼ rðvÞ;
bðw; dqhÞ þ dðduh;wÞ þ eðdûh;wÞ ¼ f ðwÞ;
cðl; dqhÞ þ gðl; duhÞ þ hðl; dûhÞ ¼ ‘ðlÞ;

ð14Þ
for all ðv ;w;lÞ 2 Vp
h �Wp

h �Mp
hð0Þ. Here, the forms are given by
aðr;vÞ ¼ ðj�1r;vÞT h
;

bðf;vÞ ¼ ðf;r � vÞT h
;

cðq;vÞ ¼ q;v � nh i@T h
;

dðf;wÞ ¼ �ðF 0ðuhÞf;rwÞT h
þ @1sðuh; buhÞðuh � buhÞ þ sðuh; buhÞ

� �
f;w

D E
@T h

;

eðq;wÞ ¼ F 0ðbuhÞ � nþ @2sðuh; buhÞðuh � buhÞ � sðuh; buhÞ
� �

q;w
D E

@T h

;

gðl; fÞ ¼ @1sðuh; buhÞðuh � buhÞ þ sðuh; buhÞ
� �

f;l
D E

@T h

;

hðl;qÞ ¼ hðF 0ðbuhÞ � nþ @2sðuh; buhÞðuh � buhÞ � sðuh; buhÞÞq;li@T h
;

f ðwÞ ¼ ðf ;wÞT h
� ðr � qh;wÞT h

þ ðFðuhÞ;rwÞT h
� hFðbuhÞ � nþ sðuh; buhÞðuh � buhÞ;wi@T h

;

rðvÞ ¼ �ðj�1qh;vÞT h
þ ðuh;r � vÞT h

� hbuh;v � ni@T h
;

‘ðlÞ ¼ �hðqh þ FðbuhÞÞ � nþ sðuh; buhÞðuh � buhÞ;li@T h
;

ð15Þ
for all ðr; f;qÞ and ðv;w;lÞ in Vp
h �Wp

h �Mp
h. Here @1sð�; �Þ (respectively, @2sð�; �Þ) denotes the first derivative of s with respect

to the first argument (respectively, second argument).
The discretization of the system of Eq. (14) gives rise to a matrix equation of the form
A �BT CT

B D E

C G H

264
375 dQ

dU

dK

264
375 ¼ R

F

L

264
375; ð16Þ
where dQ ; dU, and dK represent the vectors of degrees of freedom for dqh; duh, and dûh, respectively. The matrices in (16) cor-
respond to the forms in (14) in the order they appear in the equations. We can write the above system as
dQ
dU

� �
¼ A �BT

B D

" #�1
R

F

� �
� CT

E

" #
dK

 !
; ð17aÞ
and
CdQ þ GdU þ HdK ¼ L: ð17bÞ
We emphasize that the above inverse can be computed on each element independently of each other since the matrices A,
B and D are block-diagonal owing to the discontinuous nature of the approximation spaces Wp

h and Vp
h. Moreover, the inverse

matrix is block-diagonal since it results from applying the LDG method to solve the linearized PDE (2) with Dirichlet condi-
tions at each element [8].

Finally, we insert (17a) into (17b) to obtain a reduced globally coupled matrix equation only for dK as
KdK ¼ F; ð18aÞ
where K is a sparse matrix given by
K ¼ � C G½ � A �BT

B D

" #�1
CT

E

" #
þ H; ð18bÞ
and
F ¼ L� C G½ � A �BT

B D

" #�1
R

F

� �
: ð18cÞ
Once dK is available both dQ and dU can be obtained from (17a).
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3. Time-dependent nonlinear problems

3.1. HDG formulation

In this section, we extend the hybridizable DG methods for time-dependent nonlinear convection–diffusion problems
written as a system of first-order equations
qþ jru ¼ 0; in X;
@u
@t þr � ðFðuÞ þ qÞ ¼ f ; in X;

u ¼ gD; on CD:

ð19Þ
The HDG method of lines for the above problem seeks an approximation ðqh;uhÞ 2 Vp
h �Wp

h such that for all K 2 T h,
j�1qh;v
� �

K � uh;r � vð ÞK þ ûh;v � nh i@K ¼ 0;
@uh
@t ;w
� �

K � FðuhÞ þ qh;rwð ÞK þ ðbF h þ q̂hÞ � n;w
D E

@K
¼ ðf ;wÞK ;

ð20Þ
for all ðv;wÞ 2 ðPpðKÞÞd � PpðKÞ, where
bF h þ q̂h ¼ FðûhÞ þ qh þ sðuh; ûhÞðuh � ûhÞn on @T h:
Note that the formulation (20) is obtained by adding the unsteady term to the HDG formulation (3) of the steady-state
case.

The above HDG formulation (20) can then be discretized in time using an appropriate time-stepping scheme. Here, we
consider backward difference formulae (BDF) for the discretization of the time derivative. For instance, using the Back-
ward–Euler scheme at time-level tk with timestep Dtk we obtain the following system
j�1qk
h;v

� �
K � uk

h;r � v
� �

K þ ûk
h;v � n


 �
@K ¼ 0;

1
Dtk

uk
h;w

� �
K � Fðuk

hÞ þ qk
h;rw

� �
K þ ðbF k

h þ q̂k
hÞ � n;w

D E
@K
¼ ðf ;wÞK þ

1
Dtk

uk�1
h ;w

� �
K ;
for all ðv;wÞ 2 ðPpðKÞÞd � PpðKÞ. Here, we denote uk
h ¼ uhðtkÞ and qk

h ¼ qhðtkÞ.
The HDG method then seeks an approximation ðqk

h;u
k
h; û

k
hÞ 2 Vp

h �Wp
h �Mp

hðgDÞ such that
ðj�1qk
h;vÞT h

� ðuk
h;r � vÞT h

þ hûk
h;v � ni@T h

¼ 0;

1
Dtk
ðuk

h;wÞT h
� ðFðuk

hÞ þ qk
h;rwÞT h

þ hðbF k
h þ q̂k

hÞ � n;wi@T h
¼ ðf ;wÞT h

þ 1
Dtk

uk�1
h ;w

� �
T h
;

hðbF k
h þ q̂k

hÞ � n;li@T h
¼ 0; ð21Þ
for all ðv ;w;lÞ 2 Vp
h �Wp

h �Mp
hð0Þ. This is done by adding the contributions over all the elements and enforcing continuity of

the numerical fluxes. Here the numerical flux is given by
bF k
h þ bqk

h ¼ Fðûk
hÞ þ qk

h þ sðuk
h; û

k
hÞðuk

h � ûk
hÞn; on @T h:
We proceed to describe the implementation of the HDG method (21) as follows.

3.2. Implementation

Inserting the expression of the numerical flux into (21) and after few algebraic manipulations we obtain that
ðqk

h;u
k
h; û

k
hÞ 2 Vp

h �Wp
h �Mp

hðgDÞ is the solution of the following weak formulation
j�1qk
h;v

� �
T h
� uk

h;r � v
� �

T h
þ ûk

h;v � n

 �

@T h
¼ 0

1
Dtk

uk
h;w

� �
T h
þ r � qk

h;w
� �

T h
� Fðuk

hÞ;rw
� �

T h
þ Fðûk

hÞ � nþ sðuk
h; û

k
hÞðuk

h � ûk
hÞ;w


 �
@T h

¼ ðf ;wÞT h
þ 1

Dtk
uk�1

h ;w
� �

T h
hðqk

h þ Fðûk
hÞÞ � nþ sðuk

h; û
k
hÞðuk

h � ûk
hÞ;li@T h

¼ 0;
for all ðv ;w;lÞ 2 Vp
h �Wp

h �Mp
hð0Þ. This discrete system has a similar form as the system (14) for the steady-state case except

that there are two additional terms resulting from the discretization of the time derivative by means of the Backward–Euler
scheme. Therefore, we can apply exactly the same solution procedure described earlier for the steady-state case to the time-
dependent case at every time step.

Of course, a similar procedure can be applied to treat any higher-order backward difference formulae (BDF) method such
as the widely used second-order and third-order BDF schemes. The HDG methods can also work with other implicit time-
stepping methods such as the fully implicit Runge–Kutta methods and DG methods in time.
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3.3. Extension to Neumann boundary condition

Let us end this section by extending the methods to treat Neumann boundary conditions. For example, the case when on
part of the boundary @X, @XN , the Neumann boundary condition q � n ¼ qN is specified can be treated as follows. First, we
require that the approximate trace ûh belongs to
MhðgDÞ ¼ fl 2 Mh : l ¼ PgD on @XDg; ð22Þ
where @XD ¼ @X n @XN is the Dirichlet boundary. We then replace the last equation in (3.2) with
Fðûk
hÞ � nþ sðuk

h; û
k
hÞðuk

h � ûk
hÞ;l


 �
@T hn@XN

þ qk
h � n;l


 �
@T h
¼ gN ;lh i@XN

: ð23Þ
Hence, in order to deal with the Neumann condition q � n ¼ gN on @XN we need only to redefine the space MhðgÞ according
to (22) and modify the jump condition according to (23). The solution procedure proceeds in the same manner as described
earlier.

4. Local postprocessing

In this section, we propose element-by-element postprocessing procedures to obtain new approximations of the scalar
variable and the flux. For the scalar variable, our proposed approach exploits the optimal convergence of qh and the super-
convergence properties of uh of the HDG method. Although we choose to discuss the local postprocessing within the HDG
framework we wish to emphasize that this postprocessing method can be directly applied to other mixed methods such
as the hybridized RT method and the hybridized BDM method [7] provided that these methods have similar convergence
properties as the HDG method.

4.1. Postprocessing of the flux

We first show that we can postprocess the flux qh and its numerical trace bqh ¼ qh þ sðuh; ûhÞðuh � ûhÞwith an element-by-
element procedure to obtain an approximation of q, denoted q�h that belongs to Hðdiv;XÞ and also converges in an optimal
fashion. We follow the postprocessing introduced in [3,10] and later used in [5,9].

On each simplex K 2 T h, we define the new numerical flux q�h as the only element of ðPpðKÞÞd þ xPpðKÞ satisfying, for
p P 0,
hðq�h � bqhÞ � n;lie ¼ 0; 8l 2 PpðeÞ; 8e 2 @K; ðq�h � qh;vÞK ¼ 0; 8v 2 ðPp�1ðKÞÞd ifp P 1: ð24Þ
It is clear that the function q�h belongs to Hðdiv;XÞ, thanks to the single valuedness of the normal component of the
numerical trace bqh. It is shown in [5,9] that q�h converges with the same order as qh. It is, however, worth noting that q�h
is an Hðdiv;XÞ-conforming function, whereas qh is discontinuous over T h.

4.2. Postprocessing of the scalar variable

Next, we postprocess uh;qh, and bqh to obtain the new approximate scalar variable u�h of u which can converge at a faster
rate than the original approximation uh. Towards this end, we introduce Pp� ð@KÞ with p� ¼ pþ 1. We follow the proposal in
[13] to seek u�h 2 P

p� ðKÞ on the simplex K 2 T h such that
jru�h;rw
� �

K ¼ � q�h;rw
� �

K ; 8w 2 Pp� ðKÞ; ðu�h;1ÞK ¼ uh;1ð ÞK : ð25Þ
To compute u�h we need to solve the local Poisson problem (25) on each simplex K of the triangulation T h. Since the local
postprocessing can be done in parallel, the new scalar variable is significantly less expensive to compute than the original
approximate scalar variable.

We note that the local postprocessing (25) is the discretization of the following Poisson problem with Neumann condition
�r � ðjruÞ ¼ r � q�h; in K;�jru � n ¼ q�h � n; on @K; ðu;1ÞK ¼ uh;1ð ÞK ; ð26Þ
for each simplex K 2 T h, where q�h is the postprocessed flux and uh is the original approximate scalar variable.

4.3. Remarks

The postprocessing method used here is closely related to the one introduced in [16,17]. This procedure in turn is an
extension of the one introduced in [5] for a particular HDG method, and then studied in [9] for a wider class of HDG and
DG methods, when the symmetric second-order elliptic problem treated therein does not have a reaction term. We must
however emphasize the main differences between the local postprocessing method proposed here and the scheme suggested
in [5,9]. First, the latter relies on solving the original PDE at element level, whereas the former does not; it only exploits the
relation between the scalar variable and the flux. Therefore, the new local postprocessing method is particularly well-suited
for the time-dependent problems since it can compute the new approximations at any desired timestep without the need for
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computing them at the previous timesteps. Second, since our postprocessing approach only solves a simple Poisson problem
on each element, it is easily extended to systems of nonlinear convection–diffusion equations.

To be successful, our postprocessing procedures rely on the optimal convergence of qh and on the superconvergence of the
average of the approximate scalar variable uh. In fact, these properties for the HDG method been theoretically analyzed and
confirmed by numerical experiments for linear elliptic problems [5,9], linear convection–diffusion problems [6,13]: both q�h
and qh converge with order pþ 1, while ðuh;1ÞK superconverges with order pþ 2. Numerical experiments presented in Sec-
tion 4 show that the HDG method developed here for the nonlinear convection–diffusion equations inherits the above-men-
tioned convergence properties even for the time-dependent case. As a result, we expect that the new approximate scalar
variable u�h converges with order pþ 2 in L2-norm and pþ 1 in H1-norm even in the time-dependent case assuming that suf-
ficiently time accurate integration schemes are used.
5. Numerical results

In this section, we present numerical examples to demonstrate the convergence and accuracy of the proposed HDG meth-
ods. We shall compare the performance of two HDG schemes. The first, called the HDG-I scheme, takes sðuh; ûhÞ :¼ Cs and so
its numerical trace in Eq. (5) becomes
Table 1
Exampl

Degr

p

0

1

2

3

q̂h þ bF h ¼ qh þ FðûhÞ þ Csðuh � ûhÞn; on Eh; ð27aÞ
where Cs is a suitably chosen constant. The second, named the HDG-II scheme, takes sðuh; ûhÞ :¼ Cs þ ðFðuhÞ�
FðûhÞÞ � n=ðuh � ûhÞ so that the numerical trace in Eq. (5) becomes
q̂h þ bF h ¼ qh þ FðuhÞ þ Csðuh � ûhÞn; on Eh: ð27bÞ
The first example serves as validation for the steady problem; and the second example, as validation for the time-depen-
dent case. The examples are steady and unsteady viscous Burgers problems with small Reynolds number.

5.1. Steady viscous Burgers problem

Our first example is a steady viscous Burger problem of the form (1) in which X ¼ ð0;1Þ � ð0;1Þ, j ¼ 0:1,
FðuÞ ¼ ðu2=2;u2=2Þ, and gD ¼ 0 on @X. The source term f is chosen such that the exact solution is
u ¼ xy tanh
1� x
j

	 

tanh

1� y
j

	 

:

We consider triangular meshes obtained by splitting a regular n� n Cartesian grid into a total of 2n2 triangles, giving uni-
form element sizes of h ¼ 1=n. On these meshes, we consider solutions of polynomial degree p represented using a nodal
basis within each element, with the nodes uniformly distributed.
e 1: History of convergence for the HDG-I scheme.

ee Mesh ku� uhkL2ðXÞ kq� qhkL2ðXÞ kq� q�hkL2ðXÞ ku� u�hkL2ðXÞ

n Error Order Error Order Error Order Error Order

4 4.29e�2 – 5.58e�2 – 1.78e�1 – 1.70e�1 –
8 3.66e�2 0.23 5.03e�2 0.15 8.76e�2 1.02 5.60e�2 1.60
16 2.21e�2 0.73 3.72e�2 0.44 4.13e�2 1.08 2.16e�2 1.38
32 1.17e�2 0.92 2.05e�2 0.86 2.13e�2 0.95 1.10e�2 0.97
64 6.01e�3 0.96 1.08e�2 0.92 1.09e�2 0.97 5.78e�3 0.93

4 7.76e�2 – 6.90e�2 – 5.06e�2 – 2.51e�2 –
8 2.52e�2 1.62 2.55e�2 1.44 1.62e�2 1.64 5.50e�3 2.19
16 6.72e�3 1.91 1.05e�2 1.27 5.06e�3 1.68 8.14e�4 2.76
32 1.76e�3 1.93 2.87e�3 1.88 1.32e�3 1.94 1.08e�4 2.92
64 4.49e�4 1.97 7.37e�4 1.96 3.35e�4 1.98 1.38e�5 2.97

4 1.44e�2 – 2.39e�2 – 2.12e�2 – 7.35e�3 –
8 2.73e�3 2.40 7.84e�3 1.61 4.75e�3 2.16 9.18e�4 3.00
16 4.49e�4 2.61 1.08e�3 2.87 6.10e�4 2.96 5.48e�5 4.07
32 5.87e�5 2.94 1.36e�4 2.99 7.66e�5 2.99 3.34e�6 4.04
64 7.44e�6 2.98 1.73e�5 2.97 9.65e�6 2.99 2.08e�7 4.00

4 4.55e�3 – 1.23e�2 – 9.21e�3 – 2.86e�3 –
8 5.97e�4 2.93 1.23e�3 3.32 8.17e�4 3.49 1.11e�4 4.68
16 4.14e�5 3.85 9.04e�5 3.76 6.16e�5 3.73 4.21e�6 4.73
32 2.79e�6 3.89 7.03e�6 3.69 4.38e�6 3.81 1.52e�7 4.80
64 1.77e�7 3.98 4.49e�7 3.97 2.77e�7 3.98 4.76e�9 4.99
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In this example, we study the performance of the HDG-I scheme (with the numerical flux (27a)) and the HDG-II scheme
(with the numerical flux (27b)), and the effectiveness of our local postprocessing procedure. For both schemes, we take
Table 2
Exampl

Degr

p

0

1

2

3

Cs P j=‘þ CLFðIÞ=2;
where I is an interval including the ranges of uh and ûh; in this way, the condition (7) is satisfied and the positivity property
(6) follows. Since we are solving our system of equations in an iterative way, we can compute the constant Cs also in an iter-
ative manner. How to do this in an efficient way will be considered elsewhere. Here we simply take
Cs ¼ 1;
given that jF 0ðuðxÞÞj 6
ffiffiffi
2
p
8x 2 X; and j=‘þmaxx2XjF 0ðuðxÞÞj=2 ¼ 0:1=1þ

ffiffiffi
2
p

=2 	 0:8. This choice works well in the numer-
ical experiments as we discuss next.

We present the error and order of convergence in L2-norm in Table 1 for the HDG-I scheme and Table 2 for the HDG-II
scheme. We see that in all cases the approximate scalar variable uh and the approximate total flux qh converge optimally
with order pþ 1 for p ¼ 0;1;2, and 3. It is important to point out that some other DG methods such as the LDG method
may not produce optimal convergent approximations for the special case p ¼ 0, and that p ¼ 0 solution may be useful in cer-
tain cases, for example, when one want to construct a multi-grid solver. We also observe that the HDG-I and HDG-II yield
very similar results as far as the error and convergence rate are concerned.

As for results of the local postprocessing, the postprocessed flux q�h converges with the same order as qh; however, the
former has slightly smaller error than the latter. Most notably, the postprocessed scalar variable u�h converges with order
pþ 2 in L2-norm for p P 1, which is one order higher than the convergence rate of the original scalar variable uh. For the
special case p ¼ 0, however, u�h converges with order pþ 1 just like uh since the average of uh on each element converges
with order pþ 1 for p ¼ 0. These results are similar to those obtained for linear convection–diffusion problems [6,13]. Finally,
we plot in Figs. 1 and 2 uh and u�h on the meshes h ¼ 1=4 and h ¼ 1=8, respectively. In all these of figures, we see a clear
improvement of the approximations as we increase from k ¼ 1 to k ¼ 3. Furthermore, the local postprocessing improves
the approximate solution significantly for k ¼ 1 and k ¼ 2, as the postprocessed scalar variable u�h is clearly superior to
the original scalar variable uh.

5.2. Unsteady viscous Burgers problem

This example is the unsteady version of the first example with X ¼ ð0;1Þ � ð0;1Þ; FðuÞ ¼ ðu2=2;u2=2Þ; gD ¼ 0 on @X and
uð�;0Þ ¼ 0. The exact solution is given by
u ¼ ðet � 1Þxy tanh
1� x
j

	 

tanh

1� y
j

	 

:

The source term f is then determined from this exact solution with j ¼ 0:1. For the temporal discretization, we use the
third-order backward difference formula (BDF3) to discretize the time derivative with a constant timestep Dt. As in the stea-
dy-state case, we take the stabilization parameter Cs :¼ 1 on @T h. This works well for the numerical example we consider
e 1: History of convergence for the HDG-II scheme.

ee Mesh ku� uhkL2ðXÞ kq� qhkL2ðXÞ kq� q�hkL2ðXÞ ku� u�hkL2ðXÞ

n Error Order Error Order Error Order Error Order

4 4.66e�2 – 5.58e�2 – 1.59e�1 – 1.49e�1 –
8 4.24e�2 0.14 5.35e�2 0.06 8.36e�2 0.93 5.52e�2 1.43
16 2.59e�2 0.71 3.73e�2 0.52 3.87e�2 1.11 2.40e�2 1.20
32 1.39e�2 0.90 2.05e�2 0.86 1.97e�2 0.98 1.30e�2 0.89
64 7.19e�3 0.95 1.08e�2 0.92 9.99e�3 0.98 6.91e�3 0.91

4 7.75e�2 – 6.95e�2 – 5.11e�2 – 2.46e�2 –
8 2.54e�2 1.61 2.53e�2 1.46 1.65e�2 1.63 5.03e�3 2.29
16 6.73e�3 1.92 1.05e�2 1.26 5.00e�3 1.73 7.88e�4 2.68
32 1.76e�3 1.94 2.87e�3 1.88 1.29e�3 1.95 1.06e�4 2.90
64 4.47e�4 1.97 7.35e�4 1.96 3.25e�4 1.99 1.35e�5 2.96

4 1.51e�2 – 2.37e�2 – 2.20e�2 – 7.15e�3 –
8 2.90e�3 2.38 7.91e�3 1.58 4.88e�3 2.17 9.17e�4 2.96
16 4.56e�4 2.67 1.08e�3 2.87 6.13e�4 2.99 5.46e�5 4.07
32 5.87e�5 2.96 1.36e�4 2.99 7.47e�5 3.04 3.25e�6 4.07
64 7.39e�6 2.99 1.73e�5 2.97 9.29e�6 3.01 2.01e�7 4.01

4 4.76e�3 – 1.22e�2 – 9.46e�3 – 2.85e�3 –
8 6.07e�4 2.97 1.23e�3 3.31 8.28e�4 3.52 1.11e�4 4.68
16 4.21e�5 3.85 8.97e�5 3.78 6.11e�5 3.76 4.07e�6 4.76
32 2.80e�6 3.91 7.03e�6 3.67 4.30e�6 3.83 1.48e�7 4.78
64 1.76e�7 3.99 4.50e�7 3.97 2.69e�7 4.00 4.65e�9 5.00



Fig. 1. Example 1: Comparison of uh (left) and u�h (right) computed by the HDG-I scheme on the mesh h ¼ 1=4 for p ¼ 1 (top), p ¼ 2 (middle), and p ¼ 3
(bottom). See Table 1 for the corresponding L2ðXÞ errors.
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here, but a more complete analysis would require the extension of the energy equality (1) to the time dependent case in
order to find the new positivity condition (6) on the stabilization function sðuh; ûhÞ. This will we done elsewhere.

We first look at the convergence of the numerical solution with respect to time discretization. For this purpose, we use a
very fine triangulation of size h ¼ 1=64 and polynomials of order p ¼ 3 so that the overall error is governed by the temporal
error alone. We show in Table 3 the error and order of convergence as a function of Dt for the approximate scalar variable uh

at the final time T ¼ 1. The accuracy is third-order in time and it is optimal for the BDF3 scheme.
We now look at the spatial convergence of the HDG methods. For this purpose we consider a very small timestep

Dt ¼ 5� 10�3 so that the overall error is governed by the spatial error. We present the history of convergence in Tables 4
and 5 for the HDG-I and HDG-II, respectively. We see that both the approximate scalar variable uh and total flux qh converge
optimally with order pþ 1. The postprocessed total flux q�h converges with the optimal order pþ 1 just like qh; unlike qh,
however, q�h has the normal component continuous across the element interfaces. The postprocessed scalar variable u�h



Fig. 2. Example 1: Comparison of uh (left) and u�h (right) computed by the HDG-I scheme on the mesh h ¼ 1=8 for p ¼ 1 (top), p ¼ 2 (middle), and p ¼ 3
(bottom). See Table 1 for the corresponding L2ðXÞ errors.

Table 3
Example 2: History of convergence of the L2-error of uh at the final time computed by the HDG-I and HDG-II as a function of timestep Dt. The BDF3 scheme is
used for time integration.

Dt HDG-I HDG-II

Error Order Error Order

0.2 1.90e�4 – 1.90e�4 –
0.1 2.95e�5 2.68 2.95e�5 2.68
0.05 4.01e�6 2.88 4.01e�6 2.88
0.025 5.37e�7 2.90 5.30e�7 2.92
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Table 4
Example 2: History of convergence for the HDG-I scheme.

Degree Mesh ku� uhkL2ðXÞ kq� qhkL2ðXÞ kq� q�hkL2ðXÞ ku� u�hkL2ðXÞ

p n Error Order Error Order Error Order Error Order

0 4 4.98e�2 – 9.35e�2 – 2.96e�1 – 2.86e�1 –
8 4.16e�2 0.26 8.43e�2 0.15 1.49e�1 0.99 8.45e�2 1.76
16 2.45e�2 0.77 6.17e�2 0.45 7.39e�2 1.01 2.60e�2 1.70
32 1.29e�2 0.93 3.41e�2 0.86 3.85e�2 0.94 1.20e�2 1.12
64 6.60e�3 0.96 1.80e�2 0.92 1.98e�2 0.96 6.22e�3 0.95

1 4 1.38e�1 – 1.19e�1 – 8.97e�2 – 3.96e�2 –
8 4.39e�2 1.66 4.41e�2 1.43 2.81e�2 1.67 9.04e�3 2.13
16 1.16e�2 1.92 1.80e�2 1.29 8.65e�3 1.70 1.38e�3 2.71
32 3.03e�3 1.93 4.92e�3 1.87 2.27e�3 1.93 1.85e�4 2.90
64 7.71e�4 1.97 1.26e�3 1.96 5.74e�4 1.98 2.38e�5 2.96

2 4 2.52e�2 – 4.09e�2 – 3.65e�2 – 1.24e�2 –
8 4.60e�3 2.45 1.32e�2 1.63 8.01e�3 2.19 1.59e�3 2.97
16 7.64e�4 2.59 1.82e�3 2.86 1.03e�3 2.95 9.46e�5 4.07
32 1.00e�4 2.93 2.32e�4 2.97 1.31e�4 2.98 5.74e�6 4.04
64 1.28e�5 2.98 2.97e�5 2.97 1.65e�5 2.98 3.57e�7 4.01

Table 5
Example 2: History of convergence for the HDG-II scheme.

Degree Mesh ku� uhkL2ðXÞ kq� qhkL2ðXÞ kq� q�hkL2ðXÞ ku� u�hkL2ðXÞ

p n Error Order Error Order Error Order Error Order

0 4 6.65e�2 – 1.02e�2 – 2.61e�1 – 2.43e�1 –
8 5.22e�2 0.35 8.70e�2 0.23 1.40e�1 0.89 7.77e�2 1.65
16 3.16e�2 0.72 5.86e�2 0.57 6.70e�2 1.07 2.81e�2 1.47
32 1.70e�2 0.90 3.21e�2 0.87 3.40e�2 0.98 1.50e�2 0.90
64 8.79e�3 0.95 1.69e�2 0.93 1.73e�2 0.98 8.20e�3 0.87

1 4 1.38e�1 – 1.21e�1 – 9.47e�2 – 3.84e�2 –
8 4.46e�2 1.63 4.33e�2 1.48 3.05e�2 1.63 7.80e�3 2.30
16 1.16e�2 1.94 1.79e�2 1.28 8.81e�3 1.79 1.30e�3 2.58
32 3.03e�3 1.94 4.89e�3 1.87 2.24e�3 1.97 1.77e�4 2.88
64 7.69e�4 1.98 1.26e�3 1.96 5.62e�4 2.00 2.28e�5 2.96

2 4 2.70e�2 – 4.03e�2 – 3.90e�2 – 1.19e�2 –
8 5.09e�3 2.41 1.34e�2 1.59 8.50e�3 2.20 1.60e�3 2.89
16 7.86e�4 2.69 1.84e�3 2.87 1.05e�3 3.01 9.46e�5 4.08
32 1.01e�4 2.97 2.32e�4 2.98 1.27e�4 3.05 5.54e�6 4.09
64 1.26e�5 2.99 2.97e�5 2.97 1.57e�5 3.01 3.41e�7 4.02

8854 N.C. Nguyen et al. / Journal of Computational Physics 228 (2009) 8841–8855
superconverges with order pþ 2 for p P 1, which is one order higher than the original approximation uh. The presented re-
sults indicate that when polynomials of degree p P 1 are used in the HDG-spatial discretization, all the approximate vari-
ables converge with the optimal order. Moreover, the local postprocessing procedure is effective in improving the
convergence order of the scalar variable even for the time-dependent nonlinear case.
6. Conclusion

In this paper, we present implicit high-order hybridizable DG (HDG) methods for steady-state and time-dependent non-
linear convection–diffusion equations. The main motivation is the reduction in the number of the globally coupled degrees of
freedom of the DG approximations. The methods developed achieve this objective by expressing the approximate scalar var-
iable and flux in terms of the approximate trace of the scalar variable and enforcing flux continuity explicitly. This allows us
to eliminate both the approximate solution and flux to obtain a matrix equation involving only the numerical trace at every
Newton iteration. We propose two different flux formulas and extend the methods to time-dependent convection–diffusion
problems. Numerical results indicate that both the approximate scalar variable and flux converge with the optimal order
pþ 1. We note that for many other DG methods the approximate flux variable converges with the suboptimal order p.

Based on the optimal convergence of the HDG methods, we employ a local postprocessing procedure to obtain new
approximations of the scalar variable and flux. The postprocessed flux converges with the same order as the original flux;
however, the normal component of the postprocessed flux is continuous, while that of the original flux is discontinuous.
The postprocessed scalar variable converges with order pþ 2 for p P 1, which is one order higher than the original scalar



N.C. Nguyen et al. / Journal of Computational Physics 228 (2009) 8841–8855 8855
variable. Moreover, the postprocessing procedure is less expensive than the solution procedure, since it solves a simple Pois-
son problem at the element level. Thus we obtain pþ 2 convergent solution with using the polynomial degree p.

We end this paper by pointing out that the extension of this work to the purely convective case and then to nonlinear
hyperbolic systems of conservation constitutes the subject of ongoing research.
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