Aircraft Charging and its Influence on Triggered Lightning

Abstract

This paper reports on a laboratory experiment to study the effect of vehicle net charge on the inception of a positive leader from an aircraft exposed to high atmospheric electric fields. The experiment models the first stage of aircraft-triggered lightning in which a positive leader typically develops from the vehicle and is shortly afterwards followed by a negative leader. This mechanism of lightning initiation amounts to around 90 percent of strikes to aircraft. Aircraft can acquire net charge levels of the order of a millicoulomb from a number of sources including corona emission, charged particles in the engine exhaust, and charge transfer by collisions with particles in the atmosphere. In addition, aircraft could potentially be artificially charged through controlled charge emission from the surface. Experiments were performed on a model aircraft with a 1m wingspan, which was suspended between two parallel electrodes in a 1.45m gap with voltage difference of a few hundred kilovolts applied across it. In this configuration, it is found that the breakdown field can vary by as much as 30 percent for the range of charging levels tested. The experimental results show agreement with an electrostatic model of leader initiation from aircraft, and the model indicates that the effect can be substantially stronger if additional negative charge is added to the aircraft. The results from this work suggest that flying uncharged is not optimal in terms of lightning avoidance and open up the possibility of developing risk-reduction strategies based on net charge control.

Publication
Journal of Geophysical Research Atmospheres
Click the Cite button above to import publication metadata into your reference management software.
Ngoc Cuong Nguyen
Ngoc Cuong Nguyen
Principal Research Scientist

My research interests include computational mechanics, molecular mechanics, nanophotonics, scientific computing, and machine learning.