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Highlights
• We present a hybridizable discontinuous Galerkin method for thin and thick structures.
• A technique of elimination of unknowns significantly reduces the computational cost.
• We present a penalization that both alleviates locking and stabilizes the HDG method.
• Displacements converge optimally, and cheap postprocessing improves the accuracy.
• The method gives accurate results for various classical nonlinear shell problems.

Abstract

We present a 3D hybridizable discontinuous Galerkin (HDG) method for nonlinear elasticity which can be efficiently used
for thin structures with large deformation. The HDG method is developed for a three-field formulation of nonlinear elasticity
and is endowed with a number of attractive features that make it ideally suited for thin structures. Regarding robustness, the
method avoids a variety of locking phenomena such as membrane locking, shear locking, and volumetric locking. Regarding
accuracy, the method yields optimal convergence for the displacements, which can be further improved by an inexpensive
postprocessing. And finally, regarding efficiency, the only globally coupled unknowns are the degrees of freedom of the
numerical trace on the interior faces, resulting in substantial savings in computational time and memory storage. This last
feature is particularly advantageous for thin structures because the number of interior faces is typically small. In addition,
we discuss the implementation of the HDG method with arc-length algorithms for phenomena such as snap-through, where
the standard load incrementation algorithm becomes unstable. Numerical results are presented to verify the convergence and
demonstrate the performance of the HDG method through simple analytical and popular benchmark problems in the literature.
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1. Introduction

The discontinuous Galerkin (DG) method has been proven to be a valuable and versatile tool for numerical
analysis in continuum mechanics, see e.g. [1–3]. In solid mechanics, DG methods have been proposed for linear
elasticity (see [4] among many others), nonlinear hyperelasticity [5–7], as well as plasticity [8,9].

However, DG methods have been often criticized for having to employ significantly more degrees of freedom
than more standard continuous Galerkin (CG) methods. Hybridizable discontinuous Galerkin (HDG) methods have
subsequently been developed to address this drawback. The advantage of HDG methods is twofold. First, HDG
methods parametrize the finite element solution in terms of an approximation of the displacement on the element
boundaries, the so-called hybrid field. Therefore, the only globally coupled unknowns are those corresponding to the
hybrid field, which is unique for the two elements sharing a boundary. As a consequence, the global linear system to
be solved is smaller than that obtained with the original DG degrees of freedom (DoF). Second, when polynomials
of degree k are used to approximate both the displacement and its gradient, both approximations converge with
the optimal order k + 1. Then, provided k ≥ 1, an elementwise post-processing step can be performed to obtain a
superconvergent solution of order k +2 for the displacement. HDG approaches have been developed for both linear
elasticity [10–14] and nonlinear elasticity [11,15–18]. Although the superconvergence have been often observed
with these HDG approaches, it is not guaranteed in general for elasticity [13]. This paper proposes an extension of
the HDG volumetric methods for nonlinear elasticity to thin structures.

Traditionally, thin structures have been modeled using special elements, as it is well known that classical low
order finite elements fail to model such structures, due to several locking effects. Special plate and shell finite
elements has been developed over the past fifty years, either based on a plate/shell theories, or by simplifying
three-dimensional continuum theories (see reviews in [19–21], and in particular [22–24] for DG approaches).
Both approaches have been shown to model accurately finite deformations of thin structures. However, they suffer
from common disadvantages and difficulties. Among these difficulties are the coupling with solid finite elements
(rotational degrees of freedom have to be connected with the solid element displacements using special transition
elements), the application of particular boundary conditions, the complex updates of rotation vectors for large
deformations, and the difficult degeneration of full 3D constitutive laws. Finally, the objectivity of the strain
measures may be lost (see [25]). In order to overcome these drawbacks, alternative low-order solid-shell elements
have been then developed (see [26–30] among many others), able to model both thick and thin structures. These
elements are volumetric solid bricks modified with a variety of techniques in order to tame the locking pathologies.
Among these techniques, the reduced integration [31–33] and the B-bar [34,35] approaches address mainly the
volumetric locking. The enhanced strain technique prevents volumetric [36] and membrane lockings [37] – see
also [29,38–40]. And coming from plate [41] and shell elements [42], the assumed natural strain technique can
control the shear locking of solid shell elements [27,28,39,43].

The present approach is different and, in many respects, simpler. We directly discretize the thin structures
with high-order three dimensional elements and employ a nonlinear elasticity HDG volumetric formulation. This
approach is motivated by the following observations. As a high-order finite element approach, all the thickness-
related locking behaviors should vanish for high enough polynomial degrees [44–46]. Moreover, even for moderate
polynomial degrees, the discontinuous nature of the approximations mitigates the locking effects, as previously
observed for both beams [47] and shells [22]. In particular, as a discontinuous Galerkin approach, our method
is free from volumetric locking for nearly-incompressible materials [4]. Finally, in our method, the only globally
coupled unknowns are those representing the hybrid field which is defined on the interior faces only. This leads
to substantial savings in computational time and memory storage for thin structures because the number of interior
faces is small.

The article is organized as follows. In Section 2, we introduce the notations used throughout the paper. In
Section 3, we introduce the HDG method based on a new variational principle. In Section 4, we discuss the
implementation of the HDG method together with loading incrementation, Newton–Raphson, and Arc-Length
algorithms. In particular, we explain how to take advantage of the discontinuity of the hybrid field to significantly
reduce the size of the global linear system when thin structures are considered. In Section 5, we present numerical
results to assess the convergence of the HDG method and its accuracy on several classical non-linear shells
benchmark problems. Finally, in Section 6, we provide some concluding remarks.
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2. Governing equations and notations

2.1. Nonlinear elasticity equations

We consider a deformable elastic body, occupying the volume Ω ∈ Rd in the initial, undeformed configuration.
The initial configuration Ω is assumed to be an open and bounded polygonal domain with a Lipschitz continuous
boundary ∂Ω . This boundary is divided into a Dirichlet boundary ΓD and a Neumann boundary ΓD such that
∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. The material position vector is denoted ϕ(X), with X denoting the reference
material coordinates. Under given body forces f , prescribed tractions t on ΓN , and prescribed displacements ϕD
on ΓD , the elastic body undergoes a deformation satisfying the following static equilibrium equations

−∇ · P = f in Ω (1a)

F − ∇ϕ = 0 in Ω , (1b)

P −
∂Ψ

∂F
= 0 in Ω , (1c)

ϕ = ϕD, on ΓD, (1d)

P N = t on ΓN . (1e)

Here, F is the deformation gradient and P is the first Piola–Kirchhoff stress tensor. The gradient ∇, and the
divergence ∇· operators are defined with respect to the initial (undeformed) material coordinate system. And N is
the outward normal on the undeformed body surface. We assume that the material properties, applied loads and
boundary conditions are sufficiently smooth.

We limit the scope of this article to hyperelastic materials. In particular, we assume that an elastic potential energy
function Ψ (F) exists as a function of the deformation gradient, and that it is related to the first Piola–Kirchhoff
stress tensors through the relation (1c).

For the applications considered in this paper, only the Saint Venant-Kirchhoff and the Neo-Hookean hyperelastic
models will be considered. Their respective elastic potential functions are given by

Ψ (F) =
λ

2
(tr E)2

+ µ tr(E2) Saint Venant-Kirchhoff (2a)

Ψ (F) =
µ

2

(
tr(FT F) − 3 − 2 ln J

)
+
λ

2
(ln J )2 Neo-Hookean (2b)

where (λ,µ) are the Lamé parameters of the model, J = det F is the Jacobian, E =
1
2 (FT F − I) is the Lagrangian

strain tensor, and I the second order identity tensor.

2.2. Approximation spaces

We assume that Ω is divided into a partition Th of disjoint elements K , and introduce the set ∂Th = {∂K : K ∈

Th}, the set of internal faces Eo
h = {∂Ki ∩∂K j : Ki , K j ∈ Th}, the set of boundary faces E∂h = {∂Ki ∩∂Ω : Ki ∈ Th},

and set of all faces Eh = Eo
h ∪ E∂h .

We denote by Pk(K ) the set of polynomials of degree at most k whose support is the element K ., and introduce
the following broken polynomial spaces

V h := {G ∈ [L2(Ω )]d×d
: G|K ∈ [Pk(K )]d×d ,∀K ∈ Th}, (3a)

W h := {w ∈ L2(Ω )d
: w|K ∈ Pk(K )d ,∀K ∈ Th}, (3b)

Mh := {µ ∈ L2(Eh)d
: µ|F ∈ Pk(F)d ,∀F ∈ Eh}, (3c)

where L2(D) is the space of square integrable functions on D. We have chosen equal polynomial degrees for
vector, tensor and trace spaces. However, the HDG framework is quite general and, in principle, it allows for other
approximation spaces such as the Raviart–Thomas and the Brezzi–Douglas–Marini spaces as noted in [48,49].

Finally, we define various inner products for our finite element spaces

(u, v)K :=

∫
K

u · v dΩ , (u, v)Th :=

∑
K∈Th

(u, v)K , ∀u, v ∈ L2(Ω )d ,
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(G, H)K :=

∫
K

G : H dΩ , (G, H)Th :=

∑
K∈Th

(G, H)K , ∀G, H ∈ L2(Ω )d×d ,

⟨µ, η⟩∂K :=

∫
∂K

µ · η dΓ , ⟨µ, η⟩∂Th :=

∑
K∈Th

⟨µ, η⟩∂K , ∀µ, η ∈ L2(∂Th)d .

In the next section, we will define the HDG method for solving the problem (1).

3. Hybridizable discontinuous Galerkin formulation

3.1. Variational principle

As explained in [16], the HDG method for nonlinear elasticity can be seen as a minimization problem of an
energy functional. The functional proposed therein is a function of the deformation ϕ and the deformation traces
ϕ̂ := ϕ|Eh , with the deformation gradient being retrieved via the use of the DG-derivative [5,16]. We present here
an alternative 4-variables variational principle that can be used to derive the same HDG equations, without making
use of the DG-derivative.

This variational principle is associated to the following functional defined for fields
(
ϕ, P, F, ϕ̂

)
∈ W h × V h ×

V h × Mh ,

Π (ϕ, P, F, ϕ̂) := (Ψ (F), 1)Th + (P, (∇ϕ − F))Th

− ⟨P N, (ϕ − ϕ̂)⟩∂Th +
1
2
⟨(ϕ − ϕ̂), τ (ϕ − ϕ̂)⟩∂Th

− ( f ,ϕ)Th − ⟨t, ϕ̂⟩ΓN +
1
2
⟨(ϕ̂ − ϕD), τ (ϕ̂ − ϕD)⟩ΓD ,

(4)

where τ is the stabilization matrix. The first term on the right hand side corresponds to the internal energy of the
elastic body, the second measures an energy associated to the mismatch between ∇ϕ and F. The third and fourth
terms measure an energy related to the jump of the solution at the elements boundaries. In particular, the fourth term
is typical of the HDG formulation. As an energy quantity, it has to be positive i.e. the matrix τ has to be symmetric
definite positive. The choice of τ crucially affects the performances of the method (see discussion in 3.3). The
fifth term is the energy related with the external body forces. Finally, the last two terms are the energies associated
with the imposed tractions and displacements. Although the Dirichlet boundary condition is applied weakly here,
it could be applied alternatively in a strong manner through a suitable modification of the space Mh .

Interestingly, the variational principle (4) becomes the Hu–Washizu principle when ϕ̂ ≡ ϕ on Eh . Moreover, if
F ≡ ∇ϕ, it becomes the standard total energy used for continuous Galerkin displacement formulations (see for
instance [50]).

We now define the directional derivative of Π with respect to its first variable and in the direction w as

D1Π (ϕ, P, F, ϕ̂)[w] :=
∂

∂ϵ
Π (ϕ + ϵw, P, F, ϕ̂)

⏐⏐⏐⏐
ϵ=0

, (5)

for any w ∈ W h . The directional derivatives D2Π , D3Π and D4Π with respect to the other variables can be defined
in a similar way.

We can now express the HDG equations as a variational principle. The HDG approximation
(
ϕh, Ph, Fh, ϕ̂h

)
to the exact solution (ϕ, P, F, ϕ̂) is the element of the approximation space W h × V h × V h × Mh that locally
minimizes the energy functional Π , that is making all the directional derivatives simultaneously equal to zero.

Thus, for the first directional derivative, D1Π = 0 yields the following HDG approximation

(Ph,∇w)Th − ( f ,w)Th − ⟨Ph N,w⟩∂Th + ⟨τ (ϕh − ϕ̂h),w⟩∂Th = 0, (6)

for all w ∈ W h . By introducing the numerical traction traces

P̂h N := Ph N − τ (ϕh − ϕ̂h) on ∂Th, (7)

we can rewrite (6) as

(Ph,∇w)Th − ( f ,w)Th − ⟨ P̂h N,w⟩∂Th = 0, ∀w ∈ W h . (8)
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For the second directional derivative, setting D2Π = 0 we get

(
(
∇ϕh − Fh

)
, G)Th − ⟨(ϕh − ϕ̂h), GN = 0⟩∂Th , ∀G ∈ V h,

where the gradient term can be integrated by parts to obtain

− (ϕh,∇ · G)Th − (Fh, G)Th + ⟨ϕ̂h, GN⟩∂Th = 0, ∀G ∈ V h . (9)

The vanishing condition for third directional derivative, D3Π = 0, yields

(
∂Ψ (Fh)
∂Fh

− Ph, Q)Th = 0, ∀ Q ∈ V h . (10)

And finally, enforcing D4Π = 0, we obtain

⟨ P̂h N,µ⟩∂Th − ⟨t,µ⟩ΓN + ⟨τ (ϕ̂h − ϕD),µ⟩ΓD = 0, ∀µ ∈ Mh . (11)

3.2. Weak formulation

The HDG solution satisfies equations (8), (9), (10) and (11), which we gather now in a more customary fashion
: the HDG method seeks an approximation

(
ϕh, Ph, Fh, ϕ̂h

)
∈ W h × V h × V h × Mh such that

(Ph,∇w)Th − ⟨ P̂h N,w⟩∂Th = ( f ,w)Th ∀w ∈ W h, (12a)

(Fh, G)Th + (ϕh,∇ · G)Th − ⟨ϕ̂h, GN⟩∂Th = 0 ∀G ∈ V h, (12b)

(Ph, Q)Th − (
∂Ψ

∂Fh
, Q)Th = 0 ∀ Q ∈ V h, (12c)

⟨ P̂h N,µ⟩∂Th\ΓD + ⟨τ (ϕ̂h − ϕD),µ⟩ΓD = ⟨t,µ⟩ΓN ∀µ ∈ Mh, (12d)

where the numerical traction traces are

P̂h N := Ph N − τ (ϕh − ϕ̂h) on ∂Th . (12e)

Note that the equation involving the traces (12d), enforce both the boundary conditions (Neumann and Dirichlet)
and the jump of P̂h N to be zero on the internal faces. This last condition is commonly referred as the conservativity
condition.

The HDG method presented in this article is therefore similar to [15,16]. It differs from [11] since no
approximation of the pressure field as such is made in our formulation.

Although Fh and Ph are considered here as separate variables, Ph(Fh) can be computed elementwise
with Eq. (12c). Therefore, in the remainder of this paper we will consider only

(
ϕh, Fh, ϕ̂h

)
as separate variables.

3.3. Choice of the stabilization tensor

The choice of the stabilization tensor τ plays a crucial role in both the accuracy and the stability of the method.
A very large τ means a strong penalization of the inter-element discontinuities, in which case the HDG solution
becomes very close to a conforming continuous solution. Therefore, for large τ , the HDG solution mimics the
good and bad properties of conforming methods. Among the good ones, the coercivity is ensured, and hence the
stability of the linearized problem. Among the bad ones are the sensitivity of the numerical solution to the chosen
mesh and the various locking phenomena (volumetric and thickness-related lockings). In particular, the thickness-
related lockings, i.e. shear locking, membrane locking and trapezoidal locking are often too severe to make legacy
volumetric finite elements applicable to shell problems. These effects are briefly illustrated in Section 5.3.2.

On the contrary, for smaller values of the stabilization parameter, the DG-based methods have shown a better
accuracy than their CG counterparts, as allowing jumps of the solution at the elements boundaries provides a
mechanism that significantly mitigates the various locking pathologies. This advantage has justified the over-cost
of the DG-based approximations. However, it comes with the risk of losing the coercivity of the discrete problem,
which translates into either a non-convergence of the Newton algorithm, or into a converged non-physical state
of deformation (see [16]). Therefore, an ideal τ would be large enough to ensure the stability, while being small
enough to retain an optimal accuracy. How to automatically choose the optimal stabilization is still a theoretical
issue which has been partially addressed in [18] by providing lower bounds for τ and for simplex meshes. Although
a theoretical estimate of τ is beyond the scope of this paper, we hope to provide some practical insights to choose
an appropriate stabilization.
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3.3.1. Review of some stabilization tensors for nonlinear elasticity
Several stabilization strategies have been proposed in the literature for both DG and HDG approaches. However,

all of them were found to be of little use when nonlinear shell problems are solved with HDG. We now briefly
review them and mention what we think are their shortcomings.

The simplest approach [11], based on a dimensional analysis is to choose

τ =
1
Lc
µ I, (13)

where Lc is a length scale that only depends on the discretized geometry of the structure, µ the Lamé parameter
and I the second order identity tensor. The first issue is the choice of Lc. For a shell structure problem, there are at
least three different length scales candidates: the typical size of the whole structure L , the element size h and the
thickness t . Numerical experiments strongly suggest that h ⪅ Lc < L . Indeed Lc ≈ t usually gives an over-stiff
discrete model and underestimated displacements, while the coercivity may be lost for Lc ≈ L . Our experience
has shown that, although Lc may be determined after a few trials, Lc ≈ h is a safe default choice and is always
satisfactory for moderate strains. However, this relation has to remain loose since the accuracy of the approximate
gradient will deteriorate if Lc = h for very fine meshes (see [10]) and the postprocessing benefit will then be lost.
Therefore we understand Lc as the typical mesh size of a coarse mesh able to capture the features of the solution.
If the mesh is further refined to get a better accuracy, Lc is kept the same.

However the stabilization tensor (13) usually fails when large strains occur. For instance, the cylindrical test cases
presented in Section 5.3 need a greater stabilization near the applied point forces, which means that the stabilization
should be adaptive, i.e. depending on the local state of strains/stresses, as already noted in [51,52].

The first attempt [15] to design an adaptive τ was to make use of the material fourth order elasticity tensor C,
by defining

[τ ]I K =
1
Lc

C I J K L NJ NL with [C]I J K L =
∂2Ψ

∂E I J∂EK L
. (14)

However, this stabilization is also insufficient for large strains, notably when a Saint Venant-Kirchhoff model is
considered since C is then constant.

Alternatively, the viscous stabilization designed for the Navier–Stokes equations [53] could be used, with

[τ ]ik =
1
Lc

∂Pi J

∂FkL
NJ NL . (15)

Although this stabilization should intuitively grow with the local deformation gradient, there is no control on the
smallest eigenvalue of τ and it may actually become very small, making the model unstable.

All three of the above stabilizations fail at some point for the problems presented in Section 5.3. See
the Appendix C for the detailed results.

Another DG stabilization strategy [51] is based on the observation that the regions where the numerical
instabilities develop usually coincide with the regions were the elasticity tensor becomes indefinite. A small amount
of initial stabilization τ 0 is then increased with an adaptive term proportional to the lowest negative eigenvalue of
the local elasticity tensor

τ =
β

Lc

(
τ 0 − ρmin

(
∂ Ph

∂Fh

)
I
)
, (16)

where β is some scaling factor, and ρmin is the minimum negative eigenvalue of the tensor ∂ Ph
∂Fh

locally evaluated,
with ρmin = 0 if the eigenvalues are all positive. This approach worked successfully for large strains experiments
considered in [51]. However, our numerical experiments reported in Appendix C show only mitigated results for
the shell problems considered in this paper, since the parameter β has to be tuned case by case.

Lately, a lower bound for the HDG stabilization has been derived in [18] for nonlinear elasticity

τ = τ I with τ >
Co

hF
+

Cθ

hF
, (17)

where hF if the diameter of the face, Co is a local constant depending only on the local mesh properties, and Cθ

is a local constant depending on both local and global eigenvalues of the elasticity tensor. The authors propose an
astute way of solving the global eigenvalue problem by using an embedded Discontinuous Galerkin approximation.
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Moreover, although the optimal convergence of the gradient may be lost since this stabilization is of order 1/h, it
can be retrieved by using locally a polynomial degree k +1 in the elements where the elasticity tensor is indefinite.
However, this method being designed for simplexes, it cannot be included in our comparative study.

3.3.2. Proposed stabilization tensor
In this paper, we propose an empirical stabilization based on the maximum eigenvalue of the elasticity tensor,

by choosing

τ =
1

2Lc
ρmax

(
∂ Ph

∂Fh

)
I, (18)

with ρmax the maximum of the largest eigenvalue of the elasticity tensor evaluated at all the Gauss points of a
given face. Therefore τ is constant face by face and depends on the deformations gradient. This stabilization is
related to the local Lax–Friedrichs numerical flux for the hyperbolic problems. Here are a few comments regarding
equation (18).

• In the linear elasticity limit, the stabilization tensor becomes τ =
1

2Lc
(2µ+ 3λ) I . Moreover, when ν = 0, it

becomes equal to (13).
• For shell applications, we could notice that Eq. (18) adds a substantial stabilization near the point forces and

the wrinkles, where the onset of instabilities usually occurs.
• In the nearly-incompressible limit of nonlinear hyperelastic models, our experience is that the stabilization has

to be significantly increased for HDG to converge. Eq. (18) provides such a mechanism since ρmax will grow
as ν → 0.5.

All the results presented in this paper have been obtained using this stabilization mechanism, and selecting Lc

along the guidelines mentioned above. For a detailed comparison of the performances of the above stabilizations,
see Appendix C.

4. Implementation

4.1. Loading incrementation

Our load-control Algorithm 1 is provided in Appendix A. It is based on the standard incrementation algorithm
used in ABAQUS [54] with some minors modifications. Note that the external forces or prescribed tractions
appearing in (12) are denoted with the generic term Pmax. However, Pmax is not directly prescribed, but an
incremented fraction of it P = λPmax with the fraction coefficient 0 ≤ λ ≤ 1.

The Newton–Raphson procedure is not allowed to do more than nmax iterations. If the convergence is not obtained
after nmax iterations, the load increment is then decreased. On the contrary, if the convergence has been sufficiently
fast for the last two increments, the increment magnitude is then increased. We take nmax = 20 and λinit = 0.05
as default values. This algorithm is found to work well for all the test cases we have studied in this article. Our
algorithm also gives the final number of load increments ninc and the total accumulated number of Newton–Raphson
iterations ntot in order to get an idea of the method’s efficiency and stability.

4.2. Newton–Raphson algorithm

At each step of the loading Algorithm 1, the Newton–Raphson procedure is called to solve the nonlinear
system (12). The procedure evaluates successive approximations (Fl

h,ϕ
l
h, ϕ̂

l
h) of the unknowns under the current

load P starting from the converged state at the previous load (F0
h,ϕ

0
h, ϕ̂

0
h). For each Newton step l, the system of

Eqs. (12) is linearized with respect to the Newton increments
(
δFl

h, δϕ
l
h, δϕ̂

l
h

)
∈ V h ×W h × Mh . These increments

then satisfy the system

((∂Fh Ph)δFl
h,∇w)Th

−⟨(∂Fh P̂h N)δFl
h + (∂ϕh P̂h N)δϕl

h + (∂ϕ̂h P̂h N)δϕ̂l
h,w⟩∂Th = r1(w), (19a)

(δFl
h, G)Th + (δϕl

h,∇ · G)Th − ⟨δϕ̂
l
h, GN⟩∂Th = r2(G), (19b)
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((∂Fh Ph)δFl
h, Q)Th − (∂Fh (∂FhΨ (Fh))δFl

h, Q)Th = 0, (19c)

⟨(∂Fh P̂h N) + (∂ϕh P̂h N)δϕl
h + (∂ϕ̂h P̂h N)δϕ̂l

h,µ⟩∂Th\ΓD

+⟨τδϕ̂
l
h,µ⟩ΓD = r3(µ), (19d)

for all (G, Q,w, µ) ∈ V h × V h × W h × Mh , the right-hand side residuals are given by

r1(w) = ( f ,w)Th − (P l
h,∇w)Th + ⟨ P̂h(Fl

h,ϕ
l
h, ϕ̂

l
h)N,w⟩∂Th , (20a)

r2(G) = −(Fh, G)Th − (ϕl
h,∇ · G)Th + ⟨ϕ̂

l
h, GN⟩∂Th , (20b)

r3(µ) = ⟨t,µ⟩ΓN − ⟨ P̂h(Fl
h,ϕ

l
h, ϕ̂

l
h)N,µ⟩∂Th\ΓD − ⟨τ (ϕ̂l

h − ϕD),µ⟩ΓD . (20c)

All the residuals (20) are evaluated at the current iterate
(

Fl
h,ϕ

l
h, ϕ̂

l
h

)
. The external forces f and tractions t are

given by the current load P. Note that Eqs. (19a), (19b) and (19d) are the linearization of Eqs. (12a), (12b) and
(12d) respectively, while equation (19c) is the differentiation of (12c) with respect to δFl

h and yields the sensitivity
of Ph with respect to Fh . In (19), (∂Fh ·), (∂ϕh ·) and (∂ϕ̂h ·) denote the partial derivatives with respect to Fh,ϕh and
ϕ̂h respectively.

After solving (19), the numerical approximations are then updated(
Fl+1

h ,ϕl+1
h , ϕ̂

l+1
h

)
:=

(
Fl

h,ϕ
l
h, ϕ̂

l
h

)
+ α

(
δFl

h, δϕ
l
h, δϕ̂

l
h

)
, (21)

where the coefficient α is determined by a line-search algorithm in order to optimally decrease the residual. This
process is repeated and l is incremented until the residual norm is smaller than a given tolerance, typically 10−7.

4.3. Linear system resolution

At each step of the Newton–Raphson algorithm, the linearization (19) gives the following matrix system to be
solved(

Al Bl

Cl Dl

)(
δU l

δÛ l

)
=

(
Rl

12

Rl
3

)
, (22)

where δU l and δÛ l are the vectors of degrees of freedom of (δFl
h, δϕ

l
h) and δϕ̂l

h respectively. Following the HDG
resolution strategy, the system (22) is first solved for the traces only δÛ l

KlδÛ l
= Rl , (23)

where Kl is the Schur complement of the block A and Rl is the reduced residual

Kl
= Dl

− Cl (Al)−1 Bl , Rl
= Rl

3 − Cl (Al)−1
Rl

12. (24)

The reduced system (23) involves fewer degrees of freedom than the full system (22). Moreover due to the
discontinuous nature of the approximate solution (Fh,ϕh), the matrix Al and its inverse are block diagonal, and can
be computed elementwise. Once δÛ l is known, the other unknowns U l are then retrieved element-wise. Therefore,
the full system (22) is never explicitly built, and the reduced matrix Kl is build directly in an elementwise fashion,
thus reducing the memory storage.

The global system (23) can be further reduced by eliminating the unknowns located on the boundary faces. If
we denote the unknowns on the boundary faces by δÛ l

B and the unknowns on the interior faces Eo
h by δÛ l

I such
that δÛ l

= (δÛ l
B, δÛ

l
I )T , the system (23) becomes(

Kl
B B Kl

B I

Kl
I B Kl

I I

)(
δÛ l

B

δÛ l
I

)
=

(
Rl

B

Rl
I

)
. (25)

The geometrical supports of δÛ l
B and δÛ l

I are illustrated in Fig. 1. Thanks to the discontinuous nature of the
approximation space Mh , the matrix Kl

B B is block diagonal and each block can be inverted independently. Therefore,
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Fig. 1. On the left is represented a simple thin rectangular structure. The support of the hybrid unknowns δϕ̂l
h is on all the faces. On the

right is represented, for the same structure, the support of the internal DoF δÛ l
I in dark gray and the support of the boundary DoF δÛ l

B in
light gray. Only the internal DoF are actually globally coupled.

we can efficiently reduce the system (25) to

Kl
I δÛ

l
I = Rl

R, (26)

where

Kl
I = Kl

I I − Kl
I B

(
Kl

B B

)−1 Kl
B I and Rl

R = Rl
I − Kl

I B

(
Kl

B B

)−1
Rl

B . (27)

For typical thin structures, the size of the global system (26) is about half of the original system (25). As a result,
the global linear system (26) resulting from the HDG method is cheaper to solve than those from other volumetric
finite element methods. This makes the HDG method ideally suited for thin structures.

4.4. Coupled degrees of freedom

Let us consider a simple thin structure such as a rectangular plate, as shown in Fig. 1. This plate is divided into
a regular 2D grid of Nx times Ny hexahedra elements (with only one element in the thickness direction). Such a
structure contains a total of Nx(Ny + 1) + Ny(Nx + 1) + 2NxNy faces. Assuming that NDOFface degrees of freedom are
associated to each face, there is a total of

NDOFface
[
Nx(Ny + 1) + Ny(Nx + 1) + 2NxNy

]
(28)

degrees of freedom in the δÛ l vector of the reduced system (23). Removing the degrees of freedom located on
the boundary faces implies that 2(NxNy + Nx + Ny) faces are excluded. That reduces the total number of degrees of
freedom on the interior faces to be

NDOFface
[
Nx(Ny − 1) + Ny(Nx − 1)

]
(29)

which is the size of the vector δÛ l
I in the twice-reduced linear system (26). We see that, in this case, eliminating

the boundary unknowns results in a reduction by half in the total number of coupled degrees of freedom.

4.5. Arc-length algorithm

Our loading Algorithm 1 is known to be unstable when snap-through behaviors appear. The Arc-Length
algorithms [55,56] address this shortcoming and are much more robust in the presence of complex snapping
behaviors. We propose here an adaptation of the Arc-Length method to the HDG method.

The description of the Arc-Length method 2 is given in Appendix B. It makes use of two user-defined parameters
(ψ,∆l). While the parameter ψ does not have much influence on the results, the characteristic length ∆l controls
the increment size, and has to be small enough to capture the snapping behavior. The classical Arc-Length method
makes use of the global vector of nodal displacement increments δϕh in the process of determining both the load and
displacement increments. Interestingly, in the context of the HDG method, the smaller vector of hybrid increments
δϕ̂h is used instead. The computation of δλ by solving a quadratic equations gives two possible increments and
the choice of the best increment is then based upon a comparison with the previously converged increments (see
e.g. [50]).
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Fig. 2. Top left: undeformed square plate. Top right : deformed square plate at maximum load. Bottom left : incipient instability for an
insufficient penalization (13) at 0.27 Pmax. Bottom right : distribution of ρmax at maximum load. Results are represented here for k = 2 and
a 8 × 8 mesh.

5. Numerical examples

In this section, we discuss the behavior of the present HDG solid element formulation. We compare our numerical
results with shell elements or analytical solutions, when available. When a comparisons with ABAQUS shell
elements is shown, it implies that a Saint Venant-Kirchhoff constitutive law has been used, in order to be consistent
with the ABAQUS-S4R element formulation [57]. We use the loading Algorithm 1 by default, and all results
presented in this section make use of the proposed stabilization (18).

Whenever a point force is applied, it is implemented as a nodal force. The node is located on the external (resp.
internal) surface for an outward (resp. inward) force, in order to avoid the unpleasant det(Fh) ≤ 0 locally.

5.1. Numerical convergence test

In order to illustrate the convergence of the HDG method for thin structures, we propose the following numerical
test. A thin square plate of length L = 1 and thickness t = 0.005 is clamped on its four sides. A Saint
Venant-Kirchhoff model is considered with µ = 1 and λ = 2, i.e. ν = 1/3. Body forces and tractions are
prescribed to the plate such that the exact solution for the deformed configuration is ux = X, u y = Y , and
uz = Z + 0.4 sin(πX ) sin(πY ), where X = (X, Y, Z )T are the coordinates of the undeformed plate. Fig. 2 shows
the undeformed plate, and the plate at maximum deformation.

We use the postprocessing presented in [11] to get a more accurate approximation of the deformation by making
use of the approximate gradient. For each K ∈ Th , we build the postprocessed variable ϕ∗

h ∈ Pk+1(K )d such as

(∇ϕ∗

h,∇w)Th = (Fh,∇w)Th , ∀w ∈ Pk+1(K )d (30a)

(ϕ∗

h, 1)Th = (ϕh, 1)Th . (30b)

Table 1 shows the errors of the HDG results and the estimated orders of convergence (e.o.c) when the mesh
is refined uniformly in the ex and ey directions. All simulations make use of only one element in the thickness
direction. Polynomial orders k ∈ {1, 2, 3} are considered, and the adaptive stabilization is given by (18) with
Lc = 0.5 as characteristic length.

The optimal order of convergence k +1 is observed for the displacement at all polynomial degrees. The observed
order of convergence of the gradient varies between k +

1
2 and k + 1. Accordingly, the postprocessed displacement
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Table 1
History of convergence of the HDG method for the sinusoidally loaded plate, and for a compressible material (ν = 1/3).

k Mesh size h ∥ϕ − ϕh∥ e.o.c ∥F − Fh∥ e.o.c ∥ϕ − ϕ∗

h∥ e.o.c

0.5000 2.08e−03 – 2.15e−02 – 2.38e−03 –
0.2500 8.54e−04 1.28 7.06e−03 1.61 2.88e−04 3.05

1 0.1667 3.99e−04 1.88 3.80e−03 1.53 1.01e−04 2.58
0.1250 2.34e−04 1.86 2.44e−03 1.54 4.80e−05 2.60
0.0833 1.08e−04 1.92 1.31e−03 1.54 1.66e−05 2.62
0.0625 6.15e−05 1.94 8.41e−04 1.53 7.77e−06 2.63

0.5000 3.04e−04 – 2.14e−03 – 1.16e−04 –
0.2500 3.19e−05 3.25 2.66e−04 3.01 8.32e−06 3.80

2 0.1667 1.01e−05 2.85 8.79e−05 2.73 1.77e−06 3.81
0.1250 4.34e−06 2.92 3.80e−05 2.91 5.69e−07 3.95
0.0833 1.30e−06 2.97 1.17e−05 2.91 1.16e−07 3.93
0.0625 5.52e−07 2.98 5.13e−06 2.87 3.77e−08 3.90

0.5000 2.66e−05 – 4.69e−04 – 2.15e−05 –
0.2500 2.70e−06 3.30 2.19e−05 4.42 4.26e−07 5.66

3 0.1667 5.32e−07 4.01 5.44e−06 3.43 6.34e−08 4.70
0.1250 1.74e−07 3.89 1.90e−06 3.66 1.76e−08 4.45
0.0833 3.53e−08 3.94 4.24e−07 3.69 2.95e−09 4.41
0.0625 1.13e−08 3.96 1.48e−07 3.64 7.86e−10 4.60

Table 2
History of convergence of the HDG method for the sinusoidally loaded plate, and for a nearly-incompressible material (ν = 0.49999).

k Mesh size h ∥ϕ − ϕh∥ e.o.c ∥F − Fh∥ e.o.c ∥ϕ − ϕ∗

h∥ e.o.c

0.5000 2.22e−03 – 2.37e−02 – 2.43e−03 –
0.2500 6.75e−04 1.72 7.86e−03 1.59 3.06e−04 2.99

1 0.1667 3.18e−04 1.85 4.25e−03 1.51 1.20e−04 2.30
0.1250 1.87e−04 1.84 2.72e−03 1.56 6.07e−05 2.38
0.0833 8.66e−05 1.90 1.44e−03 1.56 2.26e−05 2.43
0.0625 4.96e−05 1.94 9.22e−04 1.56 1.10e−05 2.48

0.5000 2.72e−04 – 2.40e−03 – 1.14e−04 –
0.2500 2.61e−05 3.38 3.64e−04 2.72 1.35e−05 3.42

2 0.1667 7.81e−06 2.98 1.19e−04 2.75 2.84e−06 3.84
0.1250 3.26e−06 3.04 5.20e−05 2.89 9.00e−07 3.99
0.0833 9.51e−07 3.04 1.59e−05 2.91 1.78e−07 3.99
0.0625 3.97e−07 3.03 6.88e−06 2.92 5.70e−08 3.97

0.5000 4.79e−05 – 7.08e−04 – 3.64e−05 –
0.2500 4.47e−06 3.42 3.08e−05 4.52 6.40e−07 5.83

3 0.1667 8.87e−07 3.99 5.71e−06 4.15 6.24e−08 5.74
0.1250 2.88e−07 3.90 2.07e−06 3.53 1.59e−08 4.74
0.0833 5.81e−08 3.95 5.06e−07 3.47 2.67e−09 4.40
0.0625 1.85e−08 3.97 1.84e−07 3.50 7.63e−10 4.36

converges with orders between k +
3
2 and k +2. Note that, by varying the values of t and ν, slightly different orders

of convergence may be observed, but the previous observations remain valid. See, for instance, the e.o.c in the
nearly-incompressible limit (with µ = 1 and ν = 0.49999) reported on Table 2. Also, in order to get an accurate
postprocessing, Lc has to be large enough, typically L > Lc ≫ t .

Interestingly, for a linear elastic body and for the mesh sizes considered, the optimal orders of convergence are
achieved for a small uniform τi i ≤ 0.5. However, that level of stabilization would be clearly insufficient in the
nonlinear case and the Newton algorithm would quickly diverge. Even the higher amount of uniform stabilization
given by (13) would fail at some point before Pmax is reached. On the contrary, our adaptive stabilization is
successful by using higher values 8 ≤ τi i ≤ 19, and the areas where the stabilization is large seem to match the
areas of incipient instabilities (see Fig. 2, bottom). Therefore, we believe that the discrepancy between the amount
of stabilization expected to converge optimally, and the one needed to stabilize the nonlinear model at finite strains
is the cause of the slightly suboptimal orders of convergence observed for the gradient.
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Fig. 3. Cantilever subjected to a lifting force. Left : cantilever undeformed, and under the maximum deformation, for a 8 × 1 mesh and
with k = 2. Right : corresponding deflections of the cantilever’s tip, recorded at point A. Results from 8 × 1 S4R shell elements are
reported as a reference.

Although the postprocessing may not always achieve an extra full order of convergence, it always computes a
significantly more accurate displacement, at a negligible cost. It therefore remains an attractive feature of the HDG
approach. Consequently, all the results presented in this paper are the postprocessed displacements.

5.2. Cantilever problems

5.2.1. Cantilever subjected to a lifting force
Let us consider a cantilever of length L = 10 m, width l = 1 m and thickness t = 0.1 m, with mechanical

properties E = 1.2 × 106 kPa and ν = 0. The cantilever is clamped at one end, and is subjected to a lifting force
P = 4 kPa at its other end (see Fig. 3). The lifting force is usually a distributed line force when shell elements are
considered (for instance [58–60]). Here the corresponding force is applied through a Neumann boundary condition
prescribing the traction t = A−1P with A the cantilever end area. The adaptive stabilization (18) is used with
Lc = 1 m. The displacements of the lifted tip are reported in Fig. 3 and show a good agreement when compared to
S4R shell elements when quadratic HDG elements (k = 2) are used. For linear HDG elements, at least 50 elements
would have been necessary to get reasonably accurate results.

5.2.2. Cantilever subjected to a bending moment
The following example is a very popular benchmark considered by [59,60] and others. The purpose of this

benchmark is to test the modeling of large bending deformations for thin beams. We consider the same cantilever
as before, but slightly longer (L = 12 m). Instead of a lifting force, the cantilever is now subject to a maximum
bending moment Mmax =

50π
3 × 1000 kN m−1 at its other end (see Fig. 4, left). The bending moment is numerically

applied as a Neumann boundary condition, prescribing on the tip surface an equivalent normal traction t varying
linearly in the vertical direction. For an applied moment 0 ≤ M ≤ Mmax, analytical solutions give the horizontal
and vertical displacements of a tip point A located on the mean surface

UA = L
Mmax

2πM
sin
(

2πM
Mmax

)
+ L and WA = L

Mmax

2πM

(
1 − cos

(
2πM
Mmax

))
.

The displacements of the tip are reported in Fig. 4, right, for both quadratic and cubic HDG elements, and
the adaptive stabilization is the same as before. Converged results are obtained with a 16 × 1 mesh for quadratic
elements and a 8 × 1 mesh for cubic elements.

5.3. Shell problems

5.3.1. Slit annular plate
The slit annular plate benchmark checks the accuracy of the combined bending and torsional deformations. Let

us consider a slit annular plate of internal radius r = 6 m, external radius R = 10 m and thickness t = 0.03 m
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Fig. 4. Cantilever subjected to a bending moment. Left : cantilever undeformed, and under the maximum deformation, for a 8 × 1 mesh
and with k = 3. Right : corresponding deflections of the cantilever’s tip, recorded at point A. The exact solution is also shown, as well as
a solution performed with a 16 × 1 mesh and k = 2.

Fig. 5. Slit annular plate subjected to a lifting force. Left : plate undeformed, and under the maximum deformation, for a 6 × 30 mesh and
with k = 2. Right : corresponding deflections of the lifted end, recorded at points A and B. A reference solution computed with a mesh of
10 × 80 S4R shell elements is also displayed.

clamped at one end of the slit and subjected to a lifting force P at the other end (see Fig. 5, left). The P force
with a maximum magnitude 0.8 kN is applied as a traction distributed over the slit end. The material parameters
are E = 21 × 106 kPa and ν = 0. We use Lc = 1 m, for the adaptive stabilization. For k = 2, the converged HDG
results on a 6 × 30 mesh are in excellent agreement with the reference results computed with S4R shell elements
(see Fig. 5, right).

5.3.2. Hemispherical shell with a 18o hole
We present here the hemispherical shell problem considered by [26,27,30,59–61] and others. This benchmark

tests the ability to model combined large membrane and bending deformations in double-curved shell geometries.
The structure studied is a hemispherical shell with a 18o centered circular hole. The material properties considered

are E = 6.825 × 107 kPa, ν = 0.3. The radius of the hemisphere is R = 10 m and its thickness is t = 0.04 m.
The shell is subjected to four alternating radial point forces, whose magnitude are P = 400 kN each (see Fig. 6,
left). Due to the symmetries, the computational domain is only one quarter of the full problem. Symmetry boundary
conditions are then applied (see Fig. 6, right).

The HDG solution for the deflections at the nodes A and B is computed with an 8 × 8 mesh, using polynomial
order k = 3 and the adaptive τ is computed with Lc = 3 m. For k = 2, converged results are obtained for a finer
mesh of 20 × 20 elements. The results, given in Fig. 7 show an excellent agreement with the reference solution
presented in [60] which is computed with 16 × 16 S4R shell elements.

In order to illustrate how the right amount of stabilization mitigates the locking pathologies, we also display
the displacements obtained by using a very large τm = 1000µ instead of the adaptive τ , for the same quadratic
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Fig. 6. Left : cylindrical shell dimensions and applied point forces. Right : reduced computational domain and boundary conditions. Here
a 8 × 8 mesh is used, with k = 3.

Fig. 7. Left : deformed hemispherical shell under maximum load. Right : radial deflections of points A and B are compared against a shell
elements reference result.

mesh. Clearly the deflections become severely underestimated and the HDG model locks. As continuous Galerkin
can be regarded as a limit of HDG [48] when τ → ∞, we expect that similar deflections would be obtained with
a standard continuous Galerkin method.

5.3.3. Pullout of an open-end cylinder
The pullout of a cylindrical shell with free edges is a benchmark used to check the accuracy in modeling large

bending and membrane deformations. We consider a cylinder of radius R = 4.953 m, length L = 10.35 m and
thickness t = 0.094 m, subjected to a pair of symmetrical radial pulling forces P whose maximal magnitudes are
Pmax = 4 × 104 kN. Material properties are E = 10.5 × 106 kPa and ν = 0.3125. Owing to symmetries, only one
eighth of the structure is modeled, using the suitable symmetric boundary conditions (see Fig. 8). Based on the
mesh size, the characteristic length is Lc = 0.4 m.

Accurate results are obtained with a 12 × 18 mesh for quadratic (k = 2) elements (see Figs. 8 and 9). For
k = 3, a similar accuracy is obtained with a 8 × 12 mesh. Note that, although refining the mesh does not lead to a
significant modification (< 1%) of the deflection of points B and C , it will slightly increase the deflection of point
A, where the force is applied. This is due to a local 3D effect, which is amplified when the support of the point
force shrinks.

The displacements of all three points A, B and C , match very well the reference solution computed with 24 × 36
S4R shell elements (see Fig. 9).

Table C.6 gives the solver metrics as well as a comparison between different stabilizations. Interestingly, by using
the same characteristic length Lc, most stabilization functions would fail to reach Pmax. By using (18), a sufficient
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Fig. 8. Left : cylinder dimensions and applied point forces. Right : reduced computational domain and boundary conditions. Here a 12 × 18
mesh is represented, and k = 2.

Fig. 9. Left : deformed cylindrical shell under maximum load, for a 12 × 18 quadratic elements mesh. Right : radial deflections at points
A, B and C are compared against a shell elements reference result.

amount of stabilization is provided near the point force, and the number of load increments is ninc = 26. However,
Fig. 9, right, displays more data points for the sake of comparison by using artificially lower load increments.

5.3.4. Pinched cylinder with end diaphragms
The pinched cylindrical shell is one of the most demanding classical benchmark that can be found in the literature.

Simo et al. [62] explained that the difficulty comes from the inextensional bending and the complex membrane
states of stress. The deformations involve the development of wrinkles, which are quite hard to model with low
order elements or with coarse meshes, and most of the finite elements formulations have a hard time converging
for this particular example (see for instance [28]).

We consider a cylinder represented in Fig. 10, whose radius is R = 10 m, length L = 20 m and thickness
t = 0.1 m. The cylinder is subjected to a pair of symmetrical radial pinching forces P whose maximal magnitudes
are Pmax = 120 kN. The cylinder is closed with rigid diaphragms on its ends such that the ends points can only
move in the z-direction. Thanks to the different symmetries in the problem, only one octant of the geometry needs
to be modeled (see Fig. 10). Converged results are obtained when the octant is meshed with a 48 × 48 mesh for
polynomial order k = 2. Alternatively, for k = 3, the results converge for a coarser 24 × 24 mesh. We picked
Lc = 0.25 m for the stabilization. Without the proper adaptive mechanism, most stabilizations fail for that case, or
induce a non-physical oscillatory behavior (see Table C.7).

The computed radial deflections at points A and B show a globally good agreement with the S4R solution,
although HDG predicts slightly smaller deflections for the point A at large deformations (see Fig. 11). Such level
of discrepancies between numerical methods are however common for the pinched cylinder case (see [63,64]). For
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Fig. 10. Left : cylindrical shell dimensions and applied point forces. Right : reduced computational domain and boundary conditions. Here
a 48 × 48 mesh is used, and k = 2.

Fig. 11. Left : deformed cylindrical shell under maximum load, for a 24 × 24 cubic elements mesh. Right : corresponding radial deflections
at points A and B being compared against a 48 × 48 S4R shell elements reference result (only selected data points are displayed).

this specific case, the Newton–Raphson procedure converges rather slowly and we increased the maximum number
of Newton iterations to 50. For k = 2, the total number of load increments and Newton iterations are ninc = 50
and ntot = 468 respectively, which is comparable to the S4R results (respectively 70 and 406, according to [60]).

5.3.5. Hinged roof
The following numerical experiment was introduced first in [65] and since then has been extensively studied as

an example of snapping instabilities.
The roof structure is a section of cylindrical shell hinged on two sides, with radius R = 25.4 m, length

L = 2.54 m, and angle θ = 0.1 rad (see Fig. 12). A vertical point load Pmax = 300 N is applied at the center
of the structure. The material properties are E = 3102.75 kPa and ν = 0.3. Only one quarter of the full structure
is modeled and converged results are obtained using an 8 × 8 quadratic element mesh. The characteristic length is
therefore Lc = 0.3 m.

As a side note, in order to implement the hinged boundary conditions we found it more practical to strongly
enforce all the Dirichlet-like boundary conditions (including the hinged ones). Therefore, for this specific numerical
experiment, the variational principle (4), the HDG trace equation (12d) and the space of traces (3) should all be
modified accordingly.
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Fig. 12. Left : full roof structure with boundary conditions. Right : quarter of the full structure actually modeled.

Fig. 13. Results obtained for a 8 × 8 mesh with k = 2. Left : radial deflection of point A for t = 127 mm, and comparison against a
16 × 16 S4R shell element result. The snap-through instability arises at 72.5% of the maximum load. Right : radial deflection of point A
for t = 63.5 mm compared against a 24 × 24 shell elements result. The first snap-through instability arises around 20% of the total load
while the first snap-back instability appears around 1%.

The behavior of the structure changes dramatically with the thickness of the roof. For a thick roof, i.e.
t = 127 mm, the structure exhibits a snap-through instability, whereas for a thinner roof, i.e. t = 63.5 mm, a
snap-back instability is observed (see Fig. 13).

The Newton–Raphson algorithm typically fails on either configuration, because the Jacobian matrix in (22)
becomes singular for loads smaller then Pmax. We therefore use the Arc-Length Algorithm 2 with parameters

ψ =
1

0.1 ∥Pmax∥
and ∆l =

{
0.2 m if t = 127 mm
0.3 m if t = 63.5 mm

(31)

The converged deflections at the center of the roof, shown in Fig. 13, essentially agree with the results obtained
using ABAQUS standard S4R shell elements. The full snapping behaviors are properly modeled, and the instabilities
are handled correctly by the Arc-Length method. Although the agreement is excellent for the thin roof, the snap-
through occurs slightly earlier with HDG for the thick roof (72.5% of the total load instead of 74% for the shell
elements).

5.4. Thick–thin structure

We now present a simple example of a thick solid-thin shell structure. The structure is composed of a thick
pillar supporting an arch with a variable thickness (see Fig. 14). The thickness of the arch is 0.5 m at the root, and
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Fig. 14. Meshes used for the thick–thin arch structure. Left: coarse mesh modeling the arch 8 elements, with k = 2. The pressure is applied
on the arch only. Right: fine mesh modeling the arch with 68 elements, and with k = 3. Reference results are computed using the fine
mesh.

Table 3
Horizontal and vertical deflections of the point A obtained with a coarse mesh and
a fine reference mesh.

UA VA

Coarse mesh −0.1411 −0.9796
Reference mesh −0.1405 −0.9458

0.025 m at the tip. The 2D geometry presented in Fig. 14 is extruded 0.5 m in the normal direction. The base of the
pillar is clamped and a uniform pressure P is applied on the upper skin of the arch such that the total integrated
pressure is equivalent to a 1000 kN force. A neo-Hookean model with E = 200 GPa and ν = 0.28 is used.

Two discretizations are considered. The first one uses a coarse mesh with k = 2, modeling the arch with only
8 elements. Therefore the element aspect ratios vary from almost 1 (near the pillar) to 20 (near the tip). A second
discretization, used to generate the reference solution, makes use of a finer mesh with k = 3. By using 68 elements
for modeling the arch, the aspect ratio is kept small for all the elements. For both meshes, the final deflections of
the arch tip (point A) are recorded. For both numerical simulations, we will take Lc = 1 m.

The results under maximum load are reported in Table 3. The coarse mesh exhibits a good accuracy for the
deflection of point A although the vertical displacement is slightly overestimated. This example confirms that our
approach, making use of volumetric elements, is indeed suitable for thin–thick structures.

5.5. Realistic structure: wing mesh

While all the applications presented so far can be easily run on a single CPU core, many complex realistic
structures will need more computational resources. We have therefore implemented a parallel version of our method
that make use of the HDG solver previously developed for CFD applications (see [66]). The global system (26)
is solved by a parallel Generalized Minimal Residual (GMRES) method, using a block incomplete LU (BILU)
factorization as a left preconditioner.

We have used this parallel solver to compute the deformations of a complex aircraft wing structure, comprising
an upper and a lower skin, spars and multiple ribs (see [67] for a precise description of the geometry). The mesh
consists of 13 382 hexahedra whose aspect ratio varies between 1.1 and 75. Although the parallel solver can solve
nonlinear problems, we consider here a linear application in order to provide some indications of the code efficiency
in solving a single linearized step. The linear elastic moduli are E = 70 GPa and ν = 0.35 for the whole structure.
The wing root is clamped, and a traction equivalent to a 200 kN lifting force is applied on the wing tip. A polynomial
degree k = 2 is considered, and the characteristic length is set to Lc = 0.1 m. Fig. 15 shows the deformed wing as
well as the distribution of the Von Mises stresses.
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Fig. 15. Static analysis of an airliner wing structure. Top left: mesh of the wing — zoom on the wing root. Top right: vertical displacements
at maximum load. Bottom: Von Mises stress distribution on the upper skin (left) and on the lower skin (right). The concentration of stresses
at the connection between the ribs and the skin is clearly visible, showing the strengthening effect of the ribs.

The parallel code ran on 2 Haswell nodes of the NASA Pleiades supercomputer, each node being a 12-cores
Intel Xeon E5-2680v3 at 2.50 GHz. The resolution of the linear system lasted approximately 10 min, with GMRES
needing around 1500 iterations to converge. The BILU preconditioner, which is more suited for hyperbolic problems,
is probably the cause of the relatively high number of iterations. We believe that a specific preconditioner for
elastostatic HDG applications should therefore be developed.

6. Conclusion

We have presented a HDG method for solving nonlinear elastic structures including thin components. Our
approach models the full 3D structure and does not require typical approximations used in shell theories. The size of
the global systems of equations can be significantly reduced when thin structures are modeled, which is an appealing
feature compared to other volumetric approaches. Moreover, optimal rate of convergence for the deformation is
observed, and the postprocessing provides between one half and one full extra order of convergence at a negligible
cost. We have validated our method studying classical benchmarks for both cantilever and shell structures. Our
numerical results show that when quadratic or cubic polynomial approximations are used, the method is free from
locking and gives accurate converged results. The HDG approach is therefore worth considering for modeling finite
deformations of shell structures.
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Appendix A. Loading algorithm

Algorithm 1 Load incrementation algorithm

Require: Initialize F0
h = Id ; (ϕ0

h, ϕ̂
0
h) = X (initial geometry)

Require: Initialize λ = λinit ; P = λPmax ; ntot = 0 ; ninc = 0 ; nit1 = 0
while λ < 1 do

Assign λ := λ+ ∆λ
Assign P := λPmax
Call of the Newton–Raphson procedure, converging in nit iterations
Compute (Fh,ϕh, ϕ̂h, nit) = Newton–Raphson(F0

h,ϕ
0
h, ϕ̂

0
h,P)

if nit ≤ nmax then
Convergence of Newton–Raphson
Assign (Fh,ϕh, ϕ̂h) := (F0

h,ϕ
0
h, ϕ̂

0
h)

if nit < 5 and nit1 < 5 then
Assign ∆λ := 1.5 ∆λ

end if
Assign ntot := ntot + nit
Assign ninc := ninc + 1
Assign nit1 := nit

else
No or poor convergence of Newton–Raphson
Assign λ := λ− ∆λ
Assign ∆λ := 0.5 ∆λ

end if
end while
return (Fh,ϕh, ϕ̂h, nit, ninc)

Appendix B. Arc-length algorithm

Algorithm 2 Arc-Length(Fh,ϕh, ϕ̂h, λ,∆l, ψ)

Require: Initialize ∆ϕ̂h = 0 ; ∆λ = 0
Compute (K, R) from (Fh,ϕh, ϕ̂h, λPmax) using (22)-(24)
while residual>tol do

Compute δϕ̂R
h = K−1 R

Compute δϕ̂P
h = −K−1Pmax

δλ = solve
[
(∆ϕ̂h + δϕ̂

R
h + δλδϕ̂

P
h )2

+ ψ2(∆λ+ δλ)2P2
max = ∆l2

]
Compute δϕ̂h = δϕ̂

R
h + δλδϕ̂

P
h

Assign ∆ϕ̂h := ∆ϕ̂h + δϕ̂h
Assign ∆λ := ∆λ+ δλ

Compute (δFh, δϕh) from δϕ̂h using (22)
Assign (Fh,ϕh, ϕ̂h) := (Fh,ϕh, ϕ̂h) + (δFh, δϕh, δϕ̂h)
Compute (K, R) from (Fh,ϕh, ϕ̂h, λPmax) using (22)-(24)
Compute residual = ∥R∥

end while
return (Fh,ϕh, ϕ̂h,∆ϕ̂h,∆λ)
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Table C.4
Cantilever bent into a ring 5.2.2: solver metrics for several stabilization functions. Here nmax = 50 has been
used for all runs.

Stabilization k Mesh Lc ninc ntot Reach Pmax Notes

(13) 2 16 × 1 1 23 678 � –
(13) 3 8 × 1 1 141 1652 � –

(14) 2 16 × 1 1 21 617 � Slight locking
(14) 3 8 × 1 1 123 1283 � Slight locking

(15) 2 16 × 1 1 22 652 � Slight locking
(15) 3 8 × 1 1 139 1635 � Slight locking

(C.1) 2 16 × 1 1 23 695 � –
(C.1) 3 8 × 1 1 140 1633 � –

(18) 2 16 × 1 1 23 682 � –
(18) 3 8 × 1 1 141 1629 � –

Table C.5
Hemispherical shell case 5.3.2: solver metrics for several stabilization functions.

Stab. β k Mesh Lc ninc ntot Reach Pmax Notes

(13) – 2 20 × 20 3 15 116 Fails at 0.48 Pmax
(13) – 3 8 × 8 3 26 181 Fails at 0.88 Pmax

(14) – 2 20 × 20 3 14 125 Fails at 0.41 Pmax
(14) – 3 8 × 8 3 29 209 Fails at 0.89 Pmax

(15) – 2 20 × 20 3 25 205 Fails at 0.40 Pmax
(15) – 3 8 × 8 3 31 289 Fails at 0.35 Pmax

(C.1) 1 2 20 × 20 3 23 157 Fails at 0.48 Pmax
(C.1) 10 2 20 × 20 3 28 177 Fails at 0.56 Pmax
(C.1) 100 2 20 × 20 3 21 128 � –
(C.1) 1 3 8 × 8 3 31 206 Fails at 0.89 Pmax
(C.1) 10 3 8 × 8 3 31 189 Fails at 0.89 Pmax
(C.1) 100 3 8 × 8 3 21 131 � –

(18) – 2 20 × 20 3 20 128 � –
(18) – 3 8 × 8 3 21 132 � –

Appendix C. Comparisons of several stabilization functions and solver metrics

We present here some comparative data to assess the relative performance of the five stabilization functions
mentioned in Section 3.3.

Note that we tested a slightly different version of stabilization (16). Indeed, we instead implemented

τ = τ 0 −
β

Lc
ρmin

(
∂ Ph

∂Fh

)
I, (C.1)

for the following reason. The original stabilization (16), presented for the DG method [51], makes use of a very
small τ 0 (with even τ 0 = 0 for most numerical examples) such that the scaling factor β essentially amplifies ρmin.
This is however impossible in a HDG context since a minimum amount of stabilization is always required for the
method to work, even when ρmin = 0. For our HDG method, a good estimation of τ 0 for moderate strains is given
by (13), which is noticeably larger than ρmin for the applications considered in this paper. Therefore, it is more
relevant to consider (C.1), where only ρmin is amplified by β, such that the contribution of ρmin to the stabilization
can be isolated and assessed. When not specified, we use the default value β = 1.

In the following tables, we arbitrarily define the slight locking pathology as an underestimation of the
displacements by less than 10% at maximum load. And we simply call locking the larger underestimations. When
the loading algorithm 1 fails, the arc-length 2 is not expected to provide a more stable solution, except when the
displacements are non-monotonic functions of the load, which happens only for the hinged roof case.
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Table C.6
Pullout cylinder case 5.3.3: solver metrics for several stabilization functions. Here, λinit = 0.02 have been used
for all runs.

Stab. β k Mesh Lc ninc ntot Reach Pmax Notes

(13) – 2 12 × 18 0.4 24 278 Fails at 0.41 Pmax
(13) – 3 8 × 12 0.4 14 190 Fails at 0.18 Pmax

(14) – 2 12 × 18 0.4 25 165 Fails at 0.51 Pmax
(14) – 3 8 × 12 0.4 34 542 Fails at 0.54 Pmax

(15) – 2 12 × 18 0.4 20 201 Fails at 0.17 Pmax
(15) – 3 8 × 12 0.4 10 110 Fails at 0.08 Pmax

(C.1) 1 2 12 × 18 0.4 27 286 Fails at 0.45 Pmax
(C.1) 10 2 12 × 18 0.4 36 370 Fails at 0.81 Pmax
(C.1) 100 2 12 × 18 0.4 32 171 � –
(C.1) 1 3 8 × 12 0.4 19 264 Fails at 0.20 Pmax
(C.1) 10 3 8 × 12 0.4 42 529 Fails at 0.67 Pmax
(C.1) 100 3 8 × 12 0.4 35 212 � –

(18) – 2 12 × 18 0.4 26 227 � –
(18) – 3 8 × 12 0.4 38 255 � –

Table C.7
Pinched cylinder case 5.3.4: solver metrics for several stabilization functions. Here, nmax = 50 and λinit = 0.02
have been used for all runs. In the notes column, oscillatory means that the model develops some mesh-dependent
non-physical oscillatory pattern.

Stab. β k Mesh Lc ninc ntot Algo Pmax Notes

(13) – 2 48 × 48 0.25 34 802 1 Fails at 0.35 Pmax
(13) – 3 24 × 24 0.25 31 770 1 Fails at 0.16 Pmax

(14) – 2 48 × 48 0.25 53 855 1 � Oscillatory, slight locking
(14) – 3 24 × 24 0.25 50 1033 1 � Oscillatory, locking

(15) – 2 48 × 48 0.25 70 1138 1 Fails at 0.18 Pmax
(15) – 3 24 × 24 0.25 33 761 1 Fails at 0.15 Pmax

(C.1) 1 2 48 × 48 0.25 49 540 1 Fails at 0.76 Pmax
(C.1) 10 2 48 × 48 0.25 68 601 1 � –
(C.1) 100 2 48 × 48 0.25 64 557 1 � –
(C.1) 1 3 24 × 24 0.25 23 644 1 Fails at 0.20 Pmax
(C.1) 10 3 24 × 24 0.25 156 2474 1 Fails at 0.74 Pmax
(C.1) 100 3 24 × 24 0.25 178 1895 1 � Oscillatory

(18) – 2 48 × 48 0.25 50 468 1 � –
(18) – 3 24 × 24 0.25 50 1056 1 � –
(18) – 2 48 × 48 0.50 48 573 2 � Oscillatory

For the cantilever cases 5.2 and the slit plate 5.3.1, all the stabilization methods provide roughly the same amount
of penalization since ν = 0 and the strains remain moderate. For the first cantilever problem 5.2.1, all stabilizations
ensure the convergence of the Algorithm 1 with ninc = 10 and ntot = 65. For the second cantilever problem, some
of the stabilizations lead to a slight locking pathology, as reported in Table C.4. For the slit plate case, all the
stabilizations work well with 42 ≤ ninc ≤ 53, and 250 ≤ ntot ≤ 270 without any locking.

The differences are more noticeable with the hemispheric shell, the pullout cylinder and the pinched cylinder
cases, whose results are reported in Tables C.5–C.7 respectively. All these benchmarks have in common the
concentration of large strains in localized areas (near the applied forces and wrinkles). Most stabilizations fail at
some point, while (18) appears to work well. Interestingly, by using the minimum eigenvalue, the stabilization (C.1)
may also work provided that the coefficient β is tuned. However, β appears to be case-dependent. If Lc is chosen
too large for the pinched cylinder, the adaptive stabilization may still work, but the solution shows some strong
spurious oscillations that require then the use of the arc-length Algorithm 2.
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The hinged roof 5.3.5, although having a very nonlinear response with respect to the load, involves only small
strains. Therefore all the penalization functions perform equally well with ninc = 54 and ntot = 108 for the thick
roof, and ninc = 48 and ntot = 128 for the thin roof. Note that these numbers largely depend on the choice of the
user-defined characteristic length ∆l.
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