Spectral approximations by the HDG method

Abstract

We consider the numerical approximation of the spectrum of a second-order elliptic eigenvalue problem by the hybridizable discontinuous Galerkin (HDG) method. We show for problems with smooth eigenfunctions that the approximate eigenvalues and eigenfunctions converge at the rate 2k+1 and k+1, respectively. Here k is the degree of the polynomials used to approximate the solution, its flux, and the numerical traces. Our numerical studies show that a Rayleigh quotient-like formula applied to certain locally postprocessed approximations can yield eigenvalues that converge faster at the rate 2k + 2 for the HDG method as well as for the Brezzi-Douglas-Marini (BDM) method. We also derive and study a condensed nonlinear eigenproblem for the numerical traces obtained by eliminating all the other variables.

Publication
Mathematics of Computation
Click the Cite button above to import publication metadata into your reference management software.
Ngoc Cuong Nguyen
Ngoc Cuong Nguyen
Principal Research Scientist

My research interests include computational mechanics, molecular mechanics, nanophotonics, scientific computing, and machine learning.