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In this paper, we introduce a hybridizable discontinuous Galerkin method for Stokes flow. The method is
devised by using the discontinuous Galerkin methodology to discretize a velocity–pressure–gradient for-
mulation of the Stokes system with appropriate choices of the numerical fluxes and by applying a hybrid-
ization technique to the resulting discretization. One of the main features of this approach is that it
reduces the globally coupled unknowns to the numerical trace of the velocity and the mean of the pres-
sure on the element boundaries, thereby leading to a significant reduction in the size of the resulting
matrix. Moreover, by using an augmented lagrangian method, the globally coupled unknowns are further
reduced to the numerical trace of the velocity only. Another important feature is that the approximations
of the velocity, pressure, and gradient converge with the optimal order of kþ 1 in the L2-norm, when
polynomials of degree k P 0 are used to represent the approximate variables. Based on the optimal con-
vergence of the HDG method, we apply an element-by-element postprocessing scheme to obtain a new
approximate velocity, which converges with order kþ 2 in the L2-norm for k P 1. The postprocessing
performed at the element level is less expensive than the solution procedure. Numerical results are pro-
vided to assess the performance of the method.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we introduce a hybridizable discontinuous Galer-
kin (HDG) method for the Stokes system

�mDuþrp ¼ f ; in X;

r � u ¼ 0; in X;

u ¼ g; on @X;

ð1Þ

where X is a bounded domain in Rd with Lipschitz boundary @X; m
is a viscosity, f 2 ½L2ðXÞ�d is a given source term, and g 2 ½H1=2ð@XÞ�d

is the Dirichlet boundary data. We assume that m is a constant func-
tion on X and that g satisfies the compatibility conditionZ
@X

g � n ¼ 0;

where n denotes the outward unit normal vector on the boundary
@X. We thus continue the study of HDG methods for second-order,
symmetric elliptic problems [5,9,11], convection–diffusion prob-
lems [15], and nonlinear convection–diffusion problems [16]. Our
long-term goal is to devise HDG methods for the incompressible
Navier–Stokes equations; the consideration of the Stokes system
is thus a necessary intermediate step towards this goal.
ll rights reserved.
Several hybridizable methods have been developed for the
velocity–pressure–vorticity formulations of the Stokes flow.
Hybridization, as a technique to avoid the construction of diver-
gence-free velocities, was introduced in [4] for an LDG method.
The technique was then extended to a classical mixed method
for the two-dimensional and three-dimensional Stokes problems
in [6,7]. This was the first hybridization of the Stokes problem
giving rise to a global system involving the degrees of freedom
of unknowns (the tangential velocity and the pressure) defined
solely on the faces of the elements. Recently, motivated by the
fact that the HDG methods for second-order symmetric elliptic
equations [9] can be efficiently implemented and are more accu-
rate than other DG methods [5,11], a new class of HDG methods
was introduced for the Stokes problem [8]. It was shown to be
hybridizable in four different ways including a tangential veloc-
ity/pressure hybridization and a velocity/average pressure
hybridization.

In this paper, we apply the approach proposed in [8] to devise a
new HDG method for the velocity–pressure–gradient formulation
of the Stokes equations

L �ru ¼ 0; in X;

r � ð�mL þ pIÞ ¼ f ; in X;

r � u ¼ 0; in X;

u ¼ g; on @X:

ð2Þ

http://dx.doi.org/10.1016/j.cma.2009.10.007
mailto:cuongng@mit.edu
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma
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Here L ¼ ru is the second-order velocity gradient tensor and I is
the second-order identity tensor. The resulting method is closely re-
lated to the DG method proposed in [12] and to the mixed method
proposed in [17]. Indeed, the only difference between the HDG
method we propose here and the DG method considered in [12] is
the definition of the numerical traces. However, this difference al-
lows us to hybridize the method, to obtain optimally convergent
approximations for the velocity gradient and the pressure, and to
obtain superconvergence properties for the velocity. The method
proposed in [17] can be hybridized to give a globally coupled sys-
tem in terms of the velocity on the faces of the elements and the
pressure in the whole domain, whereas our method can be hybrid-
ized to give a system involving the velocity on the faces and the
average of the pressure on the elements. For k ¼ 0, the method pro-
posed in [17] is not defined. For k P 1, it uses smaller spaces and is
able to provide approximations converging with the same order of
accuracy as ours. However, it does not have the ability of handling
nonmatching meshes and variable-degree approximations typical
of DG methods.

The HDG method applied to the above system is devised as fol-
lows. First, we introduce the numerical trace of the velocity and the
mean of the pressure on each element as new approximate vari-
ables. On each element of the triangulation, we can now express
the approximate velocity, pressure and gradient in terms of the
numerical trace of the velocity and the mean of pressure, which
we shall refer as the local solver. Furthermore, new equations have
to be added to the system to render it solvable. These equations en-
force the continuity of the normal components of the total flux. In
this way, the velocity, pressure, and gradient can be expressed in
an element-by-element fashion in terms of the numerical trace
of the velocity and the mean of the pressure. This allows us to ob-
tain the final system involving only the numerical trace of the
velocity and the mean of the pressure, thereby reducing the glob-
ally coupled unknowns significantly. In addition to the reduction in
the number of unknowns, the HDG method possesses various
advantages related to convergence properties and postprocessing
of the numerical solution.

We show that the HDG method is well-defined, that is, that the
numerical solution exists and is unique. We present numerical
examples to examine the accuracy and convergence properties of
the method. They indicate that when polynomials of degree
k P 0 are used to represent the velocity, pressure, and velocity gra-
dient, all the variables converge optimally with the order kþ 1 in
the L2-norm for Stokes problems with smooth solution. Moreover,
we use an element-by-element postprocessing to obtain a new
approximate velocity which converges with order kþ 2 in the L2-
norm for k P 1. Since the local postprocessing is performed at
the element level, the postprocessed velocity is less expensive to
compute than the original approximate solution. Therefore, the
kþ 1 convergent pressure and kþ 2 convergent velocity can be
computed at the cost of a DG approximation using polynomials
of degree k.

Finally, we propose an efficient implementation of the HDG
method via the augmented Lagrangian approach by introducing a
time derivative of the pressure into the continuity equation. In this
way, we can express the pressure in terms of the velocity, thereby
eliminating the mean of the pressure from the local solver. As a re-
sult, we arrive at a system in terms of the approximate trace of the
velocity only. The main advantage of this implementation strategy
is that the new system has less degrees of freedom than the origi-
nal system involving both the approximate trace of the velocity
and the mean of the pressure.

The paper is organized as follows. In Section 2 we introduce the
HDG method for solving the Stokes system and apply a local post-
processing to compute a new approximation of the velocity. In Sec-
tion 3 we describe the detailed implementation of the HDG
method. In Section 4 we provide numerical results to assess the
convergence and accuracy of the method. Finally, in Section 5 we
present some concluding remarks.

2. The hybridizable discontinuous Galerkin method

2.1. Notation

Before describing the HDG method, we need to introduce some
notation. We denote by Th a collection of disjoint regular elements
K that partition X and set @Th :¼ f@K : K 2Thg. For an element K
of the collection Th; F ¼ @K \ @X is the boundary face if the d� 1
Lebesgue measure of F is nonzero. For two elements Kþ and K� of
the collection Th; F ¼ @Kþ \ @K� is the interior face between Kþ

and K� if the d� 1 Lebesgue measure of F is nonzero. We denote
by Eo

h and E@
h the set of interior and boundary faces, respectively.

We set Eh ¼ Eo
h [ E@

h.
Let nþ and n� be the outward unit normal vectors on two neigh-

boring elements @Kþ and @K�, respectively. We use ðG�;v�; q�Þ to
denote the traces of ðG;v ; qÞ on F from the interior of K�, where G,
v, and q are second-order tensorial, vectorial, and scalar functions,
respectively. Then, we define the jumps s � t as follows. For F 2 Eo

h,
we set

sGnt ¼ Gþnþ þ G�n�;
sv � nt ¼ vþ � nþ þ v� � n�;
sv � nt ¼ vþ � nþ þ v� � n�;
sqnt ¼ qþnþ þ q�n�:

For F 2 E@
h , the set of boundary edges on which G, v and q are single-

valued, we set

sGnt ¼ Gn;
sv � nt ¼ v � n;
sv � nt ¼ v � n;
sqnt ¼ qn;

where n is the unit outward normal to @X. Here � denotes the usual
dot product and � denotes the usual dyadic or tensor product.

Now, let PkðDÞ denote the space of polynomials of degree at
most k on a domain D and let L2ðDÞ be the space of square integra-
ble functions on D. We set PkðDÞ ¼ ½PkðDÞ�d; PkðDÞ ¼ ½PkðDÞ�d�d,
L2ðDÞ ¼ ½L2ðDÞ�d, and L2ðDÞ ¼ ½L2ðDÞ�d�d. We introduce discontinu-
ous finite element approximation spaces for the gradient, velocity,
and pressure as

Yh ¼ fG 2 L2ðThÞ : GjK 2 PkðKÞ; 8K 2Thg;
Vh ¼ fv 2 L2ðThÞ : v jK 2PkðKÞ; 8K 2Thg;
Ph ¼ fq 2 L2ðThÞ : qjK 2 PkðKÞ; 8K 2Thg:

In addition, we introduce a finite element approximation space for
the approximate trace of the velocity

Mh ¼ fl 2 L2ðEhÞ : ljF 2 PkðFÞ; 8F 2 Ehg:

We also set

MhðgÞ ¼ fl 2Mh : l ¼ Pg on @Xg;

where P denotes the L2-projection into the space flj@X 8l 2Mhg.
Note that Mh consists of functions which are continuous inside
the faces (or edges) F 2 Eh and discontinuous at their borders. We
further denote by Wh the set of functions in L2ð@ThÞ that are con-
stant on each @K for all elements K

Wh ¼ fr 2 L2ð@ThÞ : r 2 P0ð@KÞ; 8K 2Thg:

The mean of our approximate pressure will belong to this space.
Here the mean is defined as follows. For a given function q in
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L2ð@ThÞ, we use �q to define the mean of q on the element bound-
aries @K of an element K as follows:

�qj@K ¼
1
j@Kj

Z
@K

q:

Obviously, we have �q ¼ q for any q in Wh.
Finally, we define various inner products for our finite element

spaces. For functions r; q in L2ðDÞ, we denote ðr; qÞD ¼
R

D rq if D is a
domain in Rd and hr; qiD ¼

R
D rq if D is a domain in Rd�1. Likewise,

for functions w;v in L2ðDÞ, we denote ðw;vÞD ¼
R

D w � v if D is a do-
main in Rd and hw;viD ¼

R
D w � v if D is a domain in Rd�1. For func-

tions H;G in L2ðDÞ, we denote ðH;GÞD ¼
R

D H : G if D is a domain in
Rd and hH;GiD ¼

R
D H : G if D is a domain in Rd�1; recall the stan-

dard notation H : G ¼ trðHT GÞ, where tr is the trace operator. We
define the volume inner products as

ðr; qÞTh
¼
X

K2Th

ðr; qÞK ;

ðw;vÞTh
¼
X

K2Th

ðw;vÞK ;

ðH;GÞTh
¼
X

K2Th

ðH;GÞK ;

for r; q 2 L2ðThÞ; w;v 2 L2ðThÞ, and H;G 2 L2ðThÞ. We also define
the boundary inner products as

hr; qi@Th
¼
X

K2Th

hr; qi@K ;

hw;vi@Th
¼
X

K2Th

hw;vi@K ;

hH;Gi@Th
¼
X

K2Th

hH;Gi@K ;

for r; q 2 L2ðEhÞ; w;v 2 L2ðEhÞ, and H;G 2 L2ðEhÞ.

2.2. Formulation

The point of departure for devising an HDG method is to define
a local solver which computes approximate solutions within each
element once a discrete approximation to u, say ûh, is obtained
on the boundary of every mesh element. However, we note that
the local Stokes problem on each element with a Dirichlet bound-
ary data is not solvable. Hence, to render our local solver well-de-
fined we introduce a new variable �qh which approximates the
mean of pressure p on the element boundaries. Specifically, our lo-
cal Stokes problem on each element K is the following:

L �ru ¼ 0; in K;

r � ð�mL þ pIÞ ¼ f ; in K;
r � u ¼ 0; in K;

u ¼ ûh; on @K;
�p ¼ �qh;

ð3Þ

for the given pair ðûh; �qhÞ. It is obvious that this local Stokes prob-
lem is well-posed.

We first seek an approximation ðLh;uh; phÞ 2 Yh � Vh � Ph such
that for all K 2Th,

ðLh;GÞK þ ðuh;r � GÞK ¼ hûh;Gni@K ;

ðmLh � phI;rvÞK þ hð�mL̂h þ p̂hIÞn;vi@K ¼ ðf ;vÞK ;
�ðuh;rqÞK ¼ �hûh � n; q� �qi@K ;

�ph ¼ �qh;

ð4Þ

for all ðG;v; qÞ 2 PkðKÞ � PkðKÞ � PkðKÞ. Here the numerical traces ûh

and �mL̂h þ p̂hI are approximations to u and �mL þ pI over @K ,
respectively. Furthermore, �qh is an approximation of the mean of
the pressure on the element boundary @K . Note that (4) is nothing
but the DG discretization of the local Stokes problem (3). Note also
that the presence of �q in the third equation of (4) is necessary to en-
force the identity hûh � n; q� �qi@K ¼ 0 for q 2 Wh, since ðuh;rqÞK ¼ 0
for q 2 Wh.

Next, we specify the numerical trace �mL̂h þ p̂hI of the form

�mL̂h þ p̂hI ¼ �mLh þ phIþ Sðuh � ûhÞ � n: ð5Þ

Here S is the second-order tensor consisting of stabilization param-
eters. It has an important effect on both the stability and accuracy of
the resulting scheme. The selection of the stabilization tensor S will
be discussed in our numerical experiments given in Section 4. Let us
briefly motivate the choice of the above numerical trace. We want it
to depend only on ðLh;uh;ph; ûhÞ, so that we can express ðLh;uh;phÞ
in terms of ðûh; �qhÞ. As we shall discuss in Section 2.3, this allows us
to eliminate all other variables to obtain a weak formulation in
terms of ðûh; �qhÞ only.

By adding the contribution of (4) over all the elements, and
appending three suitably chosen equations, we arrive at the fol-
lowing problem: find an approximation ðLh;uh; ph; ûh; �qhÞ 2 Yh�
Vh � Ph �MhðgÞ �Wh such that

ðLh;GÞTh
þ ðuh;r � GÞTh

� ûh;Gnh i@Th
¼ 0;

ðmLh � phI;rvÞTh
þ ð�mL̂h þ p̂hIÞn; v
D E

@Th

¼ ðf ;vÞTh
;

�ðuh;rqÞTh
þ ûh � n; q� �qh i@Th

¼ 0;
�ph ¼ �qh;

ð�mL̂h þ p̂hIÞn;l
D E

@Th

¼ 0;

ûh � n; �w
� �

@Th
¼ 0;

ðph;1ÞTh
¼ 0:

ð6Þ

for all ðG;v; q;l; �wÞ 2 Yh � Vh � Ph �Mhð0Þ �Wh. Note that the
Dirichlet boundary condition has been enforced by requiring that
ûh 2MhðgÞ.

Let us briefly comment on the three added equations. The first
enforces the continuity of the normal component of the numerical
trace of the total flux �mbLh þ p̂hI on the interelement boundaries.
The second is needed for the consistency of the method and en-
sures that the velocity can be weakly, locally divergence-free. Fi-
nally, the third equation is just the average pressure constraint
and is needed for the sake of well-posedness of the method.

Let us briefly comment on the conservative property of our
numerical fluxes. We observe that ûh is single-valued over Eh since
ûh belongs to Mh. Furthermore, if ð�mbLh þ p̂hIÞn belongs to Mh, then
the fifth equation in (6) simply states that sð�mbLh þ p̂hIÞnt ¼ 0
pointwise over the interior faces Eo

h; in other words, the normal
component of the numerical trace �mbLh þ p̂hI is single-valued.
Hence, both ûh and �mL̂h þ p̂hI are conservative fluxes according
to the definition in [1].

Let us briefly motivate the hybridization of the HDG method. At
first sight, the system (6) appears unattractive since it involves too
many unknowns. However, it turns out that by appealing to the lo-
cal solver (4) we can eliminate all the variables Lh, uh, and ph to ob-
tain a weak formulation in terms of ðûh; �qhÞ only. After solving for
ðûh; �qhÞ, the approximate gradient, velocity, and pressure,
ðLh;uh; phÞ, can be inexpensively computed in an element-by-ele-
ment fashion. Since ûh is defined on element faces and since �qh

is defined as a constant function on each element boundary, the
hybridization approach reduces significantly the number of the
globally coupled unknowns. This is precisely what we are going
to accomplish in the next subsection.

2.3. Characterization of the numerical trace ûh and the pressure mean �qh

We begin by introducing the specific local solvers. The first local
solver associates to f 2 L2ðXÞ the function ðLf

h;u
f
h; p

f
hÞ 2 ðYh;Vh; PhÞ
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satisfying (4) when we set ûh ¼ 0 and �qh ¼ 0. The second local sol-
ver associates to g 2Mh the function ðLg

h;u
g

h; p
g

hÞ 2 ðYh;Vh; PhÞ satis-
fying (4) when we set f ¼ 0; �qh ¼ 0, and ûh ¼ g. And the third local
solver associates to �w 2 Wh the function ðL�w

h ;u
�w
h ; p

�w
h Þ 2 ðYh;Vh; PhÞ

satisfying (4) when we set f ¼ 0; ûh ¼ 0, and �qh ¼ �w. More pre-
cisely, we have

ðLf
h;u

f
h; p

f
hÞ :¼Lðf ;0;0Þ;

ðLg

h;u
g

h; p
g

hÞ :¼Lð0; g; 0Þ;
ðL�w

h ;u
�w
h ; p

�w
h Þ :¼Lð0;0; �wÞ;

where L denotes the local solver (4) that maps ðf ; ûh; �qhÞ into
ðLh; uh;phÞ.

We next introduce the numerical traces

�mbL f
h þ p̂f

hI ¼ �mLf
h þ pf

hIþ Sðuf
h � nÞ;

�mbLg

h þ p̂g

hI ¼ �mLg

h þ pg

hIþ Sðug

h � gÞ � n;

�mbL �w
h þ p̂

�w
h I ¼ �mL

�w
h þ p

�w
h Iþ Sðu�w

h � nÞ:

ð7Þ

We obtain the following auxiliary result whose proof is given in
Appendix A.

Lemma 2.1. For any g; l 2Mh and �w 2 �Wh, we have

� ð�mL̂f
h þ p̂f

hIÞn;l
D E

@Th

¼ � f ;ul

h

� �
Th
;

� ð�mL̂g

h þ p̂g

hIÞn;l
D E

@Th

¼ ðmLl

h; L
g

hÞTh
þ Sðug

h � gÞ; ðul

h � lÞ
� �

@Th
;

� ð�mL̂
�w
h þ p̂

�w
h IÞn; l

D E
@Th

¼ � �w;l � n
� �

@Th
:

ð8Þ

We are ready to state the characterization result.

Theorem 2.1. Let ðLh;uh; ph; ûh; �qhÞ be the solution of (6). We have
that

Lh ¼ Lf
h þ Lk

h;

uh ¼ uf
h þ uk

h;

ph ¼ pf
h þ pk

h þ p.
h ;

ûh ¼ k;

�qh ¼ .;

ð9Þ

where ðk;.Þ 2 ðMhðgÞ; �WhÞ satisfies

ahðk;lÞ þ bhð.;lÞ ¼ ‘hðlÞ; 8l 2Mhð0Þ;
bhð�w; kÞ ¼ 0; 8�w 2 �Wh;

ð10Þ

and

ðpf
h þ pk

h þ p.
h ;1ÞTh

¼ 0:

Here the forms are given by

ahðg;lÞ ¼ ðmLg

h; L
l

hÞTh
þ Sðug

h � gÞ; ðul

h � lÞ
� �

@Th
;

bhð�w;lÞ ¼ � �wh;l � n
� �

@Th
;

‘hðlÞ ¼ ðf ;ul

hÞTh
;

ð11Þ

for all g 2Mh; l 2Mh, and �w 2 Wh.

Proof. We first note from (6) and (7) that ðLh; uh; ph; ûh; �qhÞ satisfies

Lh ¼ Lf
h þ Lk

h;

uh ¼ uf
h þ uk

h;

ph ¼ pf
h þ pk

h þ .;
ûh ¼ k;

�qh ¼ .;

where ðk;.Þ 2 ðMhðgÞ; �WhÞ is such that
ð�mðL̂f
h þ L̂k

h þ L̂.
hÞ þ ðp̂f

h þ p̂k
h þ p̂.

hÞIÞn;l
D E

@Th

¼ 0; 8l 2Mhð0Þ;

�hk � n; �whi@Th
¼ 0; 8�w 2 �Wh;

ðpf
h þ pk

h þ p.
h ;1ÞTh

¼ 0:

ð12Þ
The desired result then follows from Lemma 2.1 and (10)–(12). h
2.4. Existence and uniqueness of the numerical solution

A multi-valued tensor S is said to be positive-definite on a face F,
if both branches, Sþ and S�, of S are positive-definite, namely,

hS�v ;viF > 0; 8v–0: ð13Þ

When S is positive-definite on all faces of Eh we say that S is strictly
positive-definite and indicate this by S > 0 on Eh.

With a strictly positive-definite stabilization tensor S we can
prove the existence and uniqueness of the HDG solution as follows.
We first need to prove the well-posedness of the local solvers.

Lemma 2.2. If the stabilization tensor S satisfies the condition

S > 0 on Eh; ð14Þ

we have that both ðLf
h;u

f
h; p

f
hÞ and ðLg

h; u
g

h;p
g

hÞ exist and are unique.

Proof. Substituting (7) into (49) we obtain

ðLf
h;GÞK þ ðu

f
h;r � GÞK ¼ 0; ð15aÞ

ðr � ð�mLf
h þ pf

hIÞ;vÞK þ Suf
h;v

D E
@K
¼ ðf ;vÞK ; ð15bÞ

� ðuf
h;rqÞK ¼ 0; ð15cÞ

�pf
h ¼ 0; ð15dÞ

for all ðG;v ; qÞ 2 PkðKÞ � PkðKÞ � PkðKÞ. Due to the linearity, finite
dimensionality, and to the fact that this is a square system, it is suf-
ficient to show that the only solution of the above system for f ¼ 0
is ðLf

h;u
f
h;p

f
hÞ ¼ ð0;0; 0Þ. Indeed, taking G ¼ mLf

h; v ¼ uf
h, and q ¼ pf

h

and adding the first three equations, we get

ðmLf
h; L

f
hÞK þ hSuf

h;u
f
hi@K ¼ 0:

This equation implies that Lf
h ¼ 0 over the simplex K and that uf

h ¼ 0
on @K since we assume S > 0. It thus follows from (15a) that

ðruf
h;GÞK ¼ 0; 8G 2 PkðKÞ:

Since uf
h 2 PkðKÞ the above equation implies ruf

h is constant over K.
As a consequence, uf

h ¼ 0 over K since uf
h ¼ 0 on @K . Hence, from

(15b) we have

ðrpf
h;vÞK ¼ 0; 8v 2 PkðKÞ:

Since pf
h 2 PkðKÞ the above equation implies pf

h is constant over K.
We thus obtain that pf

h ¼ 0 since �pf
h ¼ 0. The existence and unique-

ness of ðLg

h; u
g

h;p
g

hÞ can be shown in the same manner. This completes
the proof. h

Theorem 2.2. If the stabilization parameter S satisfies the condition
(14) we have that the solution ðk;.Þ of the variational formulation
(10) given in Theorem 2.1 exists and is unique.

Proof. The existence and uniqueness of ðk;.Þ follows if we show
that the only solution of the problem (10) for f ¼ 0 and g ¼ 0 is
k ¼ 0 and . ¼ 0. In (10) we choose l ¼ k and �w ¼ . and subtract
the first equation from the second one to obtain

ðmLk

h; L
k

hÞTh
þ hSðuk

h � kÞ; ðuk
h � kÞi@Th

¼ 0:

As a consequence, we can conclude that Lk

h ¼ 0 on X and uk
h ¼ k on

Eh since we assume S > 0.
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After a simple integration by parts, the Eq. (50a), with g
replaced by k, now reads

ðruk
h;GÞTh

¼ 0; 8G 2 Yh:

This implies that uk
h is a constant on Th. As a consequence, k is also

a constant on Eh and, since k 2Mhð0Þ, we must have that k ¼ 0 on
Eh. Finally, we insert k ¼ 0 into the first equation of (10) to obtain

h.; l � ni@Th
¼ 0; 8l 2Mhð0Þ;

which implies . ¼ 0. This completes the proof of Theorem 2.2. h

As a consequence of Lemma 2.2 and Theorem 2.2, the approxi-
mate solution ðLh;uh; ph; ûh; �qhÞ of the mixed formulation (6) exists
and is unique.

2.5. The general form of the numerical traces

We have shown how to eliminate ðLh;uh; phÞ to obtain a weak
formulation in terms of ðûh; �qhÞ. The key elements are the local sol-
ver (4), the definition of the numerical trace (5), and the jump
condition

hsð�mL̂h þ p̂hIÞnt;liEh
¼ 0; 8l 2 Mhð0Þ: ð16Þ

Here we show that the HDG method can be formally stated by a for-
mulation in which the unknown variables are Lh; uh, and ph only.
We proceed as follows.

First, we derive an explicit expression for the numerical traces
in terms of ðLh;uh; phÞ. By the choice of the space Mh, and assuming
that the stabilization tensor S is constant on each face in Eh, the
jump condition (16) implies that

sð�mL̂h þ p̂hIÞnt ¼ 0; on Eo
h:

Inserting (5) into the above equation, we obtain

sð�mLh þ phIÞntþ Sþuþh þ S�u�h � ðS
þ þ S�Þûh ¼ 0; on Eo

h:

Since both S� and Sþ are positive definite, and S� þ Sþ is invertible
we obtain that, on Eo

h,

ûh¼ðS� þSþÞ�1ðSþuþh þS�u�h ÞþðS
� þSþÞ�1

sð�mLhþphIÞnt: ð17Þ

Substituting this expression into (5) yields on Eo
h,

� mL̂h þ p̂hI ¼ S�ðS� þ SþÞ�1ð�mLþh þ pþh IÞ
þ SþðS� þ SþÞ�1ð�mL�h þ p�h IÞ þ S�ðS� þ SþÞ�1Sþsuh � nt: ð18Þ

Recall that since ûh 2MhðgÞ, on the boundary faces E@
h , we have

ûh ¼ Pg;
�mL̂h þ p̂hI ¼ �mLh þ phIþ Sðuh � PgÞ � n:

ð19Þ

Thus, we can view the HDG method as: find an approximate solu-
tion ðLh;uh;phÞ 2 ðYh;Vh; PhÞ such that

ðLh;GÞTh
þ ðuh;r � GÞTh

� ûh;Gnh i@Th
¼ 0;

�ð�mLh þ pI;rvÞTh
þ ð�mL̂h þ p̂hIÞn; v
D E

@Th

¼ ðf ;vÞTh
;

�ðuh;rqÞTh
þ ûh � n; qh i@Th

¼ 0;
ðph;1ÞTh

¼ 0;

ð20Þ

for all ðG;v; qÞ 2 ðYh;Vh; PhÞ, where the numerical traces, ûh and
�mL̂h þ p̂hI, are given by Eqs. (17)–(19).

Note that this is nothing but the weak formulation of the DG
method proposed in [12]. The spaces are also identical to ours but,
as we pointed out in the Introduction, the numerical traces are differ-
ent. The difference lies in the definition of the numerical trace for the
velocity. Indeed, in contrast with our choice, the numerical trace of
the velocity used in [12] has two components: one for the first equa-
tion and another for the third equation. The one for the first equation
lacks the term involving the jump of the total flux and the one for the
third equation lacks the term involving the velocity gradient. This
subtle difference is responsible for the huge difference in the approx-
imation properties of the methods, as we are going to see in the Sec-
tion of numerical experiments.

2.6. Local postprocessing of the velocity

We use the local postprocessing proposed in [17] to obtain a
new approximate velocity, u�h of u, which may converge at faster
rate than the original approximation uh. We define the postpro-
cessed approximate velocity u�h on K 2Th as the element of
Pkþ1ðKÞ such that

mru�h;rv
� �

K ¼ � Lh;rvð ÞK ; 8v 2 Pkþ1ðKÞ;
ðu�h;1ÞK ¼ ðuh;1ÞK :

ð21Þ

To compute u�h we need only to invert a matrix of size equal to the
dimension of Pkþ1ðKÞ for each element K of the triangulation Th.
Therefore, the postprocessed velocity is less expensive to compute
than the original approximate velocity.

2.7. Neumann boundary condition

Let us end this section by extending the method to the case
when the Neumann boundary condition ð�mL þ pIÞn ¼ gN is en-
forced in part of the boundary @X; @XN . First, we require that the
approximate trace kh belongs to

MhðgÞ ¼ fl 2 Mh : l ¼ g on @XDg; ð22Þ

where @XD ¼ @X n @XN is the Dirichlet boundary. We then replace
the jump condition with

hð�mL̂h þ p̂hIÞn;li@Th
¼ hgN ;li@XN

; 8l 2 Mhð0Þ: ð23Þ

As a result, the bilinear forms ah and bh of the weak formulation (10)
remain unchanged, while the linear functional ‘h is now given by

‘hðlÞ ¼ ðf ;ul

hÞ þ hgN; li@XN
; 8l 2 Mh: ð24Þ

Hence, in order to incorporate the Neumann condition
ð�mL þ pIÞn ¼ gN on @XN we need only to redefine the space
MhðgÞ according to (22) and modify ‘h according to (24).

3. Implementation aspects of the HDG method

In this section, we describe in detail how to efficiently imple-
ment the HDG method via an augmented Lagrangian approach;
see [13] and the references therein. Towards this end, we introduce
a time derivative of the pressure into the continuity equation. In
this way, we can express the pressure in term of the velocity,
thereby eliminating the mean of the pressure from the local solver.
Thus, we arrive at a system in terms of the approximate trace of the
velocity only. The efficiency of this implementation strategy lies in
the fact that the new system has less degrees of freedom than the
original system which involves both the approximate trace of the
velocity and the mean of the pressure. Although the HDG method
can also be implemented by using the Uzawa method, we choose
the augmented Lagrangian method because it is more efficient
than Uzawa method for solving the saddle point system associated
with the Stokes problem. We refer to [13] for a detailed discussion.

3.1. Motivation of the method

The idea of the method is to introduce an evolution problem
whose limit, as time goes to infinity, is nothing but the solution
of the original problem. Let us show that for the continuous prob-
lem. For a given initial pressure p0 2 L2

0ðXÞ :¼ fq 2 L2ðXÞ :

ðq;1ÞX ¼ 0g, the evolution problem is
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@pðtÞ
@t þr � uðtÞ ¼ 0; in X� ð0;1Þ;

pðt ¼ 0Þ ¼ p0; on @X;
ð25Þ

where uðtÞ is a function of pðtÞ and defined as the solution of

LðtÞ � ruðtÞ ¼ 0; inX� ð0;1Þ;
r � ð�mLðtÞ þ pðtÞIÞ ¼ f ; in X� ð0;1Þ;
uðtÞ ¼ g; on @X� ð0;1Þ:

ð26Þ

The system (25) and (26) is the time-dependent version of the ori-
ginal problem (1).

We proceed as follows. We first set dLðtÞ :¼ LðtÞ � L; duðtÞ
:¼ uðtÞ � u and dpðtÞ :¼ pðtÞ � p, where we recall that ðL;u; pÞ is
the solution of the steady-state original problem (1). It then fol-
lows from (25)-(26), and (1) that

@dp

@t þr � d
u ¼ 0; in X� ð0;1Þ;

dpðt ¼ 0Þ ¼ p0 � p; on @X;
ð27Þ

where du is a function of dp and defined as the solution of

dL �rdu ¼ 0; in X� ð0;1Þ;
�r � dL ¼ �m�1 r � ðdpIÞ; in X� ð0;1Þ;
du ¼ 0; on @X� ð0;1Þ:

ð28Þ

Multiplying the first equation (27) by dpðtÞ and integrating on X, we
get

1
2

d
dt
kdpk2 þH ¼ 0;

where k � k is the L2ðXÞ-norm and H :¼ ðr � du; dpÞX. It follows from
the equations (28) and integration by parts that

H ¼ �ðdu;r � ðdpIÞÞX ¼ �mðdu;r � ðdLÞÞX ¼ mðrdu; dLÞX ¼ mkdLk2
:

Now, by the equations (28), we have that dLðtÞ ¼ m�1IðdpðtÞIÞ;
where I :¼ rðDÞ�1r�. Since I is a self-adjoint, strongly elliptic
operator, its smallest eigenvalue k is strictly positive and we can
write that

H P
k2

m
kdpk2

:

This implies that

1
2

d
dt
kdpk2 þ k2

m
kdpk2

6 0;

and, as a consequence, that

kdpðtÞk 6 e�tk2=mkdpð0Þk:

This shows that as time goes to infinity, pðtÞ converges exponen-
tially fast in time to p. It follows from this result and from the equa-
tions (28) that LðtÞ and uðtÞ also converge exponentially fast in time
to L and u, respectively.

3.2. Augmented Lagrangian approach

The augmented Lagrangian method we use is obtained by dis-
cretizing equations (25) and (26) in time by using the backward-
Euler method and in space by using the HDG formulation described
Section 2 for the spatial discretization. The main difference, how-
ever, is that the local problem is now given by

@pðtÞ
@t þr � uðtÞ ¼ 0; in K � ð0;1Þ;

pðt ¼ 0Þ ¼ p0; on @K;
LðtÞ � ruðtÞ ¼ 0; in K � ð0;1Þ;
r � ð�mLðtÞ þ pðtÞIÞ ¼ f ; in K � ð0;1Þ;
uðtÞ ¼ ûhðtÞ; on @K � ð0;1Þ:

ð29Þ
Note that we no longer need to use the mean of the pressure �qhðtÞ
since this is now a time-dependent problem.

Thus, we begin defining the iterative method by providing the
following initial guess for the approximate pressure p0

h 2 Ph:

ðp0
h; qÞTh

¼ ðp0; qÞTh
; ð30Þ

for all q 2 Ph. Next, given a constant time step Dt and a pressure pn�1
h

for n P 1, we define the iterate pn
h 2 Ph as an approximation to

pðnDtÞ such that

1
Dt
ðpn

h; qÞTh
� ðun

h;rqÞTh
þ ûn

h � n; q
� �

@Th
¼ 1

Dt
ðpn�1

h ; qÞTh
; ð31Þ

Here the functions un
h and ûn

h are components of the function
ðLn

h;u
n
h; û

n
hÞ 2 Yh � Vh �MhðgÞ determined by the equations

ðLn
h;GÞTh

þ ðun
h;r � GÞTh

� ûn
h;Gn

� �
@Th
¼ 0;

�ð�mLn
h þ pn

hI;rvÞTh
þ ð�mL̂n

h þ p̂n
hIÞn;v

D E
@Th

¼ ðf ; vÞTh
;

ð�mL̂n
h þ p̂n

hIÞn;l
D E

@Th

¼ 0;

ð32Þ

for all ðG;v ;lÞ 2 Yh � Vh �Mhð0Þ, where

�mL̂n
h þ p̂n

hI ¼ �mLn
h þ pn

hIþ Sðun
h � ûn

hÞ � n on @Th: ð33Þ

Here Ln
h and un

h are approximations to LðnDtÞ and uðnDtÞ, respec-
tively. The system of Eqs. ()()()(31)–(33) is nothing but the back-
ward-Euler method for the temporal discretization and the HDG
method described in Section 2 for the spatial discretization of the
continuous equations (25) and (26).

3.3. Convergence to the original HDG approximation

In a similar manner as the exact solution, we show that as n
goes to infinity, ðLn

h;u
n
h; p

n
hÞ converges exponentially in time to the

original HDG approximation ðLh;uh; phÞ introduced in Section 2.
The proof of the following result can be found in Appendix B.

Lemma 3.1. Let dL;n
h :¼ Ln

h � Lh; du;n
h :¼ un

h � uh; dp;n
h :¼ pn

h � ph and
dû;n

h :¼ ûn
h � ûh. Then the error dp;n

h :¼ pn
h � ph satisfies

1
2Dt

kdp;n
h k

2 � kdp;n�1
h k2

� �
þHn

h 6 0; ð34Þ

where

Hn
h ¼ mðdL;n

h ; dL;n
h ÞTh

þ hSðdu;n
h � dû;n

h Þ; ðd
u;n
h � dû;n

h Þi@Th
: ð35Þ

It now follows from Lemma 3.1 and Section 3.1 that

Hn
h 6

k2
h

m
kdp;n

h k
2
; ð36Þ

where kh is an approximation to the smallest eigenvalue k. We thus
obtain

1
2Dt
ðkdp;n

h k
2 � kdp;n�1

h k2Þ þ k2
h

m
kdp;n

h k
2
6 0; ð37Þ

which yields

kdp;n
h k 6 rnkdp;0

h k; ð38Þ

where r :¼ ð1þ 2k2
hDt=mÞ�1=2. This result implies that as n goes to

infinity, pn
h converges to ph. The same conclusion holds for the

remaining components of the approximation.
In practice, we stop the iterations when the relative error of the

pressure is less than a prescribed tolerance etol, that is, when
n ¼ niter such that

kpniter
h � pniter�1

h kTh

kpniter
h kTh

< etol: ð39Þ
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We note from (38) that niter depends on the artificial time step Dt in
such a way that niter decreases as Dt increases.

3.4. Characterization of the approximate solution

Having established that the iterates of the augmented Lagrang-
ian method converge to the approximation solution of the HDG
method of Section 2, we now show how to efficiently implement
the method. Towards this end, we begin by characterizing each
of the iterates by means of a hybridization technique similar to
that used to hybridize the original HDG method.

We first introduce three local solvers. The first local solver maps
f 2 L2ðXÞ to ðLf ;Dt

h ;uf ;Dt
h ; pf ;Dt

h Þ 2 Yh � Vh � Ph satisfying

ðLf ;Dt
h ;Gf ;DtÞK þ ðu

f ;Dt
h ;r � GÞK ¼ 0;

ðr � ð�mLf ;Dt
h þ pf ;Dt

h IÞ;vÞK þ Suf;Dt
h ;v

D E
@K
¼ ðf ; vÞK ;

1
Dt ðp

f ;Dt
h ; qÞK � ðu

f;Dt
h ;rqÞK ¼ 0;

ð40Þ

for all ðG;v ; qÞ 2 PkðKÞ � PkðKÞ � PkðKÞ. The second local solver
maps ph 2 Ph to ðLph ;Dt

h ;uph ;Dt
h ;pph ;Dt

h Þ 2 Yh � Vh � Ph satisfying

ðLph ;Dt
h ;Gph ;DtÞK þ ðu

ph ;Dt
h ;r � GÞK ¼ 0;

ðr � ð�mLph ;Dt
h þ pph ;Dt

h IÞ;vÞK þ Suph ;Dt
h ;v

D E
@K
¼ 0;

1
Dt ðp

ph ;Dt
h ; qÞK � ðu

ph ;Dt
h ;rqÞK ¼ 1

Dt ðph; qÞTh
;

ð41Þ

for all ðG;v ; qÞ 2 PkðKÞ � PkðKÞ � PkðKÞ. The last local solver maps
g 2Mh to ðLg;Dt

h ;ug;Dt
h ;pg;Dt

h Þ 2 Yh � Vh � Ph satisfying

ðLg;Dt
h ;GÞK þ ðu

g;Dt
h ;r � GÞK ¼ g;Gnh i@K ;

ðr � ð�mLg;Dt
h þ pg;Dt

h IÞ;vÞK þ Sug;Dt
h ;v

D E
@K
¼ Sg;vh i@K ;

1
Dt ðp

g;Dt
h ; qÞK � ðu

g;Dt
h ;rqÞK ¼ � g � n; qh i@K ;

ð42Þ

for all ðG;v ; qÞ 2 PkðKÞ � PkðKÞ � PkðKÞ. Note that the local solvers
here are different from the ones introduced in Section 2.

The following theorem characterizes the numerical trace ûn
h as

the solution of a variational formulation. The proof of this theorem
follows almost directly from those of Theorems 2.1 and 2.2 and is
thus omitted here.

Theorem 3.1. Let ðLn
h;u

n
h; p

n
h; û

n
hÞ be the solution of (31)–(33). We

have that

Ln
h ¼ Lf ;Dt

h þ L
pn�1

h
;Dt

h þ Lkn ;Dt
h ;

un
h ¼ uf ;Dt

h þ u
pn�1

h
;Dt

h þ ukn ;Dt
h ;

pn
h ¼ pf ;Dt

h þ p
pn�1

h
;Dt

h þ pkn ;Dt
h ;

ûn
h ¼ kn;

ð43Þ

where kn is the only function in MhðgÞ satisfying

aDt
h ðk

n;lÞ ¼ ‘Dt
h ðl; pn�1

h Þ; 8l 2Mhð0Þ: ð44Þ

Here the forms are given by
Table 1
Implementation of the HDG method via the augmented Lagrangian approach.

Implementation steps

Step 1. Given etol , pick Dt, and set p0
h ¼ 0 and n :¼ 1

Step 2. For all of K of Th , compute ðLf ;Dt
h ;uf ;Dt

h ;pf;Dt
h Þ by solving (40); ðLuj ;Dt

h ;u
uj ;Dt
h ;

and ðLli
K ;u

li
K ; p

li
K Þ by solving (42) for g ¼ li for all shape functions li 2Pk

Step 3. Calculate the elemental matrix AK according to (47) and form the stiffn
Step 4. Calculate the elemental vector FK;n according to (47) and form the vecto
Step 5. Solve AKn ¼ Fn , where Kn represents the degrees of freedom of kn

Step 6. Compute pn
h according to (48)

Step 7. If (39) does not hold, set n :¼ nþ 1 and go to Step 4
Step 8. If it does, compute ðLn

h ;u
n
hÞ according to (43) and stop
aDt
h ðg;lÞ ¼ mLg;Dt

h ; Ll;Dt
h

� �
Th

þ Sðug;Dt
h � gÞ; ðul;Dt

h � lÞ
D E

@Th

þ 1
Dt

pg;Dt
h ;pl;Dt

h

� �
Th

;

‘Dt
h ðl; pn�1

h Þ ¼ ðf ; ul;Dt
h ÞTh

� 1
Dt

pn�1
h ;pl;Dt

h

� �
Th

;

ð45Þ

for all g;l 2Mh.

We note that the bilinear form aDt
h is similar to ah defined in (11)

of the HDG method of Section 2 except that aDt
h has an additional

term due to the pressure. Similarly, the functional ‘Dt
h has an addi-

tional term due to the pressure. These pressure terms result from
introducing the time derivative into the continuity equation.

3.5. Implementation considerations

The characterization result in Theorem 3.1 allows for an effi-
cient implementation of the HDG method, which we shall articu-
late as follows. First, for each element K 2Th, we compute the
function ðLf ;Dt

h ;uf ;Dt
h ; pf ;Dt

h Þ by solving the local solver (40); the func-
tion ðLu;Dt

h ; u
u;Dt
h ; pu;Dt

h Þ by solving the local solver (41) for all ele-
ments u of a basis of PkðKÞ; and the function ðLg;Dt

h ; ug;Dt
h ; pg;Dt

h Þ by
solving the local solver (42) for all elements g of a basis of
PkðFÞ; 8F 2 @K . We then need to compute kn for each time level n.

To compute kn, we note that the matrix equation of the weak
formulation (44) is of the form

AKn ¼ Fn ð46Þ

where Kn represents the degrees of freedom for kn. The matrix A

and vector Fn can be formed by the usual finite element assembly
procedure once the elemental matrices and vectors are computed
as follows.

Let li 2PkðfF : F 2 @KgÞ; 1 6 i 6 N; where N ¼ ðdþ 1Þ dim
PkðFÞ; be the set of basis functions on the faces of the boundary
@K of an element K 2Th. (Note that these basis functions are con-
structed from polynomials of degree k which are defined on the
faces of @K .) The elemental matrix and vector are then given by

AK
ij ¼ mLli ;Dt

K ;L
lj ;Dt
K

� �
K
þ 1

Dt ðp
li ;Dt
K ;p

lj ;Dt
K ÞK þ Sðuli ;Dt

K �liÞ;ðu
lj ;Dt
K �ljÞ

D E
@K
; 16 i; j6N;

FK;n
i ¼ ðf ;u

li ;Dt
K ÞK � 1

Dt ðpn�1
h ;pli ;Dt

K ÞK ; 16 i6N:

ð47Þ

where ðLli ;Dt
K ;uli ;Dt

K ;pli ;Dt
K Þ 2 PkðKÞ � PkðKÞ � PkðKÞ is the solution of

the second local solver (42) on the element K for g :¼ li.
To verify the stopping criterion (39) we need to update the pres-

sure pn
h as

pn
h ¼ pf ;Dt

h þ p
pn�1

h
;Dt

h þ pkn ;Dt
h ; ð48Þ

where pf ;Dt
h ; p

pn�1
h

;Dt

h , and pkn ;Dt
h are calculated from (40), (41) for

ph ¼ pn�1
h , and (42) for g ¼ kn, respectively. If (39) does not hold,

we increase n :¼ nþ 1, assemble the right-hand side of (46), solve
the system (46) for Kn, and update the pressure pn

h according to
(48). When (39) holds, we terminate the process and compute
p
uj ;Dt
h Þ by solving (41) for ph ¼ uj for all shape functions uj 2 PkðKÞ, 1 6 j 6 M;
ðfF : F 2 @KgÞ; 1 6 i 6 N
ess matrix A by applying the finite element assembly procedure
r Fn by applying the finite element assembly procedure
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ðLn
h;u

n
hÞ from (43). The implementation of the HDG method is sum-

marized in Table 1.
Finally, we point out the degrees of freedom and sparsity struc-

ture of the discrete system (46), restricting our attention to the
case of a conforming triangulation Th (no hanging nodes). It is
Table 2
History of convergence of the HDG method for ms ¼ h.

Degree k Mesh h�1 ku� uhkTh
kp� phkTh

Error Order Error

0 2 3.40e�0 – 1.16e�0
4 4.10e�0 �0.27 5.42e�1
8 3.94e�0 0.06 3.41e�1
16 3.87e�0 0.03 1.94e�1
32 3.85e�0 0.01 1.11e�1

1 2 1.45e�0 – 8.75e�1
4 6.84e�1 1.08 2.69e�1
8 3.45e�1 0.99 7.34e�2
16 1.73e�1 1.00 1.86e�2
32 8.65e�2 1.00 4.65e�3

2 2 3.20e�1 – 2.07e�1
4 8.23e�2 1.96 3.38e�2
8 2.13e�2 1.95 4.59e�3
16 5.38e�3 1.98 5.86e�4
32 1.35e�3 2.00 7.34e�5

Table 3
History of convergence of the HDG method for ms ¼ 1.

Degree k Mesh h�1 ku� uhkTh
kp� phkTh

Error Order Error

0 2 2.06e�0 – 1.35e�0
4 1.56e�0 0.40 5.75e�1
8 7.19e�1 1.12 4.82e�1
16 3.34e�1 1.10 2.66e�1
32 1.58e�1 1.08 1.44e�1

1 2 9.55e�1 – 9.36e�1
4 2.51e�1 1.93 2.87e�1
8 6.61e�2 1.93 7.85e�2
16 1.62e�2 2.03 2.01e�2
32 3.98e�3 2.02 5.04e�3

2 2 2.31e�1 – 2.27e�1
4 3.47e�2 2.74 3.77e�2
8 4.21e�3 3.04 5.10e�3
16 5.26e�4 3.00 6.50e�4
32 6.54e�5 3.01 8.14e�5

Table 4
History of convergence of the HDG method for ms ¼ 1=h.

Degree k Mesh h�1 ku� uhkTh
kp� phkTh

Error Order Error

0 2 1.51e�0 – 1.77e�0
4 1.11e�0 0.44 1.08e�0
8 5.30e�1 1.07 2.32e�0
16 3.88e�1 0.45 2.53e�0
32 3.44e�1 0.18 2.64e�0

1 2 7.66e�1 – 1.09e�0
4 2.04e�1 1.91 4.75e�1
8 5.67e�2 1.84 2.00e�1
16 1.43e�2 1.99 9.25e�2
32 3.60e�3 1.99 4.39e�2

2 2 2.10e�1 – 2.84e�1
4 3.23e�2 2.70 7.20e�2
8 3.82e�3 3.08 1.62e�2
16 4.85e�4 2.98 3.68e�3
32 6.12e�5 2.99 8.65e�4
clear that the matrix A has a block structure with square blocks
of order equal to the dimension of ðdþ 1ÞPkðFÞ for each face F.
The number of block rows and block columns is equal to the num-
ber of interior faces of the triangulation NF . Furthermore, on each
block row, there are at most ð2dþ 1Þ blocks that are not equal to
kL � LhkTh
ku� u�hkTh

Order Error Order Error Order

– 1.70e�9 – 3.81e�0 –
1.10 1.33e�9 0.35 4.19e�0 �0.14
0.67 8.24e�0 0.70 3.96e�0 0.08
0.81 4.60e�0 0.84 3.87e�0 0.03
0.80 2.54e�0 0.85 3.85e�0 0.01

– 7.33e�0 – 4.44e�1 –
1.70 2.57e�0 1.51 9.34e�2 2.25
1.87 7.34e�1 1.81 1.39e�2 2.75
1.98 1.95e�1 1.92 1.92e�3 2.86
2.00 4.99e�2 1.96 2.53e�4 2.92

– 1.97e�0 – 9.00e�2 –
2.62 3.13e�1 2.65 8.09e�3 3.48
2.88 4.38e�2 2.84 5.51e�4 3.88
2.97 5.66e�3 2.95 3.54e�5 3.96
3.00 7.15e�4 2.98 2.24e�6 3.99

kL � LhkTh
ku� u�hkTh

Order Error Order Error Order

– 1.47e�9 – 2.60e�0 –
1.23 1.05e�9 0.48 1.67e�0 0.64
0.25 6.75e�0 0.64 7.46e�1 1.16
0.86 4.14e�0 0.71 3.40e�1 1.14
0.89 2.45e�0 0.76 1.59e�1 1.10

– 6.97e�0 – 4.17e�1 –
1.71 2.34e�0 1.57 8.92e�2 2.22
1.87 7.48e�1 1.65 1.47e�2 2.60
1.97 2.08e�1 1.85 2.11e�3 2.80
1.99 5.51e�2 1.92 2.86e�4 2.89

– 2.12e�0 – 9.53e�2 –
2.59 3.50e�1 2.60 9.98e�3 3.26
2.89 4.89e�2 2.84 6.79e�4 3.88
2.97 6.56e�3 2.90 4.56e�5 3.90
3.00 8.49e�4 2.95 2.96e�6 3.94

kL � LhkTh
ku� u�hkTh

Order Error Order Error Order

– 1.32e�9 – 2.13e�0 –
0.71 8.78e�0 0.59 1.19e�0 0.84
�1.11 5.72e�0 0.62 5.45e�1 1.12
�0.12 4.76e�0 0.27 3.91e�1 0.48
�0.06 4.39e�0 0.11 3.44e�1 0.18

– 7.08e�0 – 4.45e�1 –
1.19 2.88e�0 1.30 1.34e�1 1.74
1.25 1.75e�0 0.72 3.83e�2 1.80
1.11 8.85e�1 0.98 9.80e�3 1.97
1.08 4.46e�1 0.99 2.49e�3 1.98

– 2.50e�0 – 1.14e�1 –
1.98 6.13e�1 2.03 1.96e�2 2.55
2.15 1.40e�1 2.13 2.33e�3 3.07
2.14 3.56e�2 1.97 3.03e�4 2.94
2.09 9.02e�3 1.98 3.89e�5 2.96



Fig. 1. Horizontal component of the original velocity (left) and the postprocessed velocity (right) for polynomial degree k ¼ 1 (top), k ¼ 2 (middle) and k ¼ 3 (bottom) over
the original mesh ‘ ¼ 0.

Table 5
Comparison of the hybridized globally divergence-free LDG method [4] and the HDG method for ms ¼ 1.

Degree k Mesh h�1 Hybridized LDG method [4] HDG method

ku� uhkTh
kp� phkTh

kp� phkTh
ku� uhkTh

ku� u�hkTh

Error Order Error Order Error Order Error Order Error Order

1 2 7.30e�1 – 2.20e�0 – 9.36e�1 – 9.55e�1 – 6.41e�1 –
4 3.90e�1 0.93 1.30e�0 0.70 2.87e�1 1.71 2.51e�1 1.93 1.36e�1 2.24
8 6.60e�2 2.50 7.30e�1 0.90 7.85e�2 1.87 6.61e�2 1.93 2.03e�2 2.74
16 1.40e�2 2.25 3.70e�1 0.97 2.01e�2 1.97 1.62e�2 2.03 2.76e�3 2.88
32 3.10e�3 2.10 1.80e�1 0.99 5.04e�3 1.99 3.98e�3 2.02 3.62e�4 2.93

2 2 2.90e�1 – 7.40e�1 – 2.27e�1 – 2.31e�1 – 1.22e�1 –
4 7.00e�2 2.00 2.40e�1 1.59 3.77e�2 2.59 3.47e�2 2.74 1.18e�2 3.38
8 1.20e�2 2.61 6.70e�2 1.86 5.10e�3 2.89 4.21e�3 3.04 8.08e�4 3.86
16 1.70e�3 2.71 1.70e�2 1.96 6.50e�4 2.97 5.26e�4 3.00 5.33e�5 3.92
32 2.40e�4 2.87 4.30e�3 1.99 8.14e�5 3.00 6.45e�5 3.01 3.42e�6 3.96
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zero. Hence, the size of the matrix A is NA � NA, where
NA ¼ NFðdþ 1Þ dimPkðFÞ.

4. Numerical experiments

We consider the Stokes problem whose exact solution coincides
with the analytical solution of the incompressible Navier–Stokes
equations obtained by Kovasznay in [14], namely,

u1 ¼ 1� expðkx1Þ cosð2px2Þ;

u2 ¼
k

2p expðkx1Þ sinð2px2Þ;

p ¼ 1
2

expð2kx1Þ;
Fig. 2. Vertical component of the original velocity (left) and the postprocessed velocity (
original mesh ‘ ¼ 0.
where k ¼ Re
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2

4 þ 4p2
q

and Re ¼ 1
m is the Reynolds number. The

Kovasznay flow is also a solution of the Stokes problem (1) with
the source term f ¼ �ðu � rÞu. We take Dirichlet boundary condi-
tions for the velocity as the restriction of the exact solution to the
domain boundary. Here the computational domain is X ¼ ð0;2Þ�
ð�0:5;1:5Þ and m ¼ 0:1 so that the Reynolds number is Re ¼ 10.

In our experiments, we consider meshes that are refinements of
a uniform mesh of 32 ðh ¼ 1=2Þ congruent triangles. Each refine-
ment is obtained by subdividing each triangle into four congruent
triangles. We say that the mesh has level ‘ ðh ¼ 1=2‘þ1Þ if it is ob-
tained from the original mesh by ‘ of these refinements. On these
meshes, we consider polynomials of degree k to represent all the
approximate variables using a nodal basis within each element,
with the nodes uniformly distributed. The numerical example
right) for polynomial degree k ¼ 1 (top), k ¼ 2 (middle) and k ¼ 3 (bottom) over the
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and meshes are taken from [4] to permit comparison. In all test
cases, the stabilization tensor S is chosen as

S ¼ m
s 0
0 s

	 

;

where s is a positive constant function defined on Eh. In our imple-
mentation, we set etol ¼ 10�8 for the error tolerance.

Below we present numerical results to assess the convergence
and accuracy of the HDG method. We first explore the effect of
the stabilization parameter s on the convergence of the HDG meth-
od and compare the results of the HDG method with those of the
hybridized globally divergence-free LDG method [4]. We then
demonstrate the effectiveness of the local postprocessing in
improving the approximate solution. Finally, we study the effect
Fig. 3. Streamline of the original velocity (left) and the postprocessed velocity (right) for
mesh ‘ ¼ 0.
of the artificial time step Dt on the condition number of the dis-
crete matrix and the required number of iterations.

4.1. Convergence of the HDG method

We first present the convergence results of the HDG method in
Table 2 for ms ¼ h, Table 3 for ms ¼ 1, and Table 4 for ms ¼ 1=h. We
can clearly see the effect of the stabilization parameter s on the
accuracy and convergence of the numerical solution. In particular,
when the stabilization parameter is chosen as ms ¼ h the approxi-
mate velocity converges with the suboptimal order k, while both
the approximate pressure and gradient converge with the optimal
order kþ 1. On the other hand, when we set ms ¼ 1=h the approx-
imate velocity converges with the optimal order kþ 1; however, in
polynomial degree k ¼ 1 (top), k ¼ 2 (middle) and k ¼ 3 (bottom) over the original
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this case, both the approximate pressure and gradient seem to con-
verge with order k. Setting the stabilization parameter to ms ¼ 1, all
the variables converge at the optimal rate of kþ 1. These results
indicate that the optimal value of the stabilization parameter is
in order of unity. It is interesting to note that the HDG method re-
sult in approximations which converge optimally for k ¼ 0 when
ms ¼ 1, while some other DG methods such as the LDG method
may not produce optimal convergent approximations in this case.
Moreover, the approximate rotational tensor Wh :¼ Lh � ðLhÞT con-
verges with the same order kþ 1 as Lh for ms ¼ h and ms ¼ 1.

We next plot the approximate solution for different meshes
and polynomial degrees. Figs. 2–6 show the two components of
the approximate velocity and the streamline over the original
mesh ‘ ¼ 0 and the mesh ‘ ¼ 1 for different values of k ¼ 1; 2;
and 3. We see that the approximate solution can be significantly
Fig. 4. Horizontal component of the original velocity (left) and the postprocessed veloci
the mesh ‘ ¼ 1.
improved by increasing the polynomial degree or refining the
mesh.

We now compare our results with those obtained the hybrid-
ized globally divergence-free LDG method [4]. We note that for
other DG methods such as the LDG method [4,12] and Bassi–Rebay
method [2,3] the approximate pressure, gradient, and vorticity
converge suboptimally with order k. To wit, we display in Table 5
the error and order of convergence of the hybridized globally
divergence-free LDG method and the HDG method with ms ¼ 1
for the same Stokes problem on the same meshes. The results from
this table are taken from [4]. We see that the approximate velocity
of the HDG method has considerably smaller errors than that of the
hybridized globally divergence-free LDG method although they
both converge with the same order kþ 1. The approximate pres-
sure of the HDG method converges with order kþ 1 (one order
ty (right) for polynomial degree k ¼ 1 (top), k ¼ 2 (middle) and k ¼ 3 (bottom) over
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higher) and thus has significantly smaller errors than that of the
hybridized globally divergence-free LDG method. The postpro-
cessed velocity of the HDG method for k ¼ 1 has roughly the same
magnitude errors as the approximate velocity of the hybridized
globally divergence-free LDG method for k ¼ 2. These results indi-
cate that the HDG method can provide the same accuracy with far
less computational cost.

4.2. Effectiveness of the local postprocessing

The error and order of convergence of the postprocessed veloc-
ity are also displayed in Tables 2–4. For the case ms ¼ 1=h the post-
processed velocity u�h appears to have the same order of
Fig. 5. Vertical component of the original velocity (left) and the postprocessed velocity (
mesh ‘ ¼ 1.
convergence as the original velocity uh. For the case ms ¼ 1 we ob-
serve that u�h superconverges with order kþ 2 for k P 1, which is
one order higher than uh. It is interesting to note that for the case
ms ¼ h the postprocessed velocity superconverges with order kþ 2
for k P 1, while the original velocity converges with order k only.
For k ¼ 0, however, u�h converges with the same order as uh in all
cases.

Furthermore, we present in Fig. 1 the horizontal component, in
Fig. 2 the vertical component, and in Fig. 3 the streamline of the
original velocity and the postprocessed velocity over the original
mesh ‘ ¼ 0. We also plot in Figs. 4–6 the same quantities over
the mesh ‘ ¼ 1. In all these of figures, we see a clear improvement
of the approximations as we increase from k ¼ 0 to k ¼ 2. Most
right) for polynomial degree k ¼ 1 (top), k ¼ 2 (middle) and k ¼ 3 (bottom) over the



Fig. 6. Streamline of the original velocity (left) and the postprocessed velocity (right) for polynomial degree k ¼ 1 (top), k ¼ 2 (middle) and k ¼ 3 (bottom) over the mesh
‘ ¼ 1.
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notably, the local postprocessing improves the approximation of
the velocity significantly for k ¼ 1 and k ¼ 2, since the postpro-
cessed velocity u�h is clearly superior to the original velocity uh.
4.3. Effect of the artificial time step

Finally, we examine how the artificial time step Dt affects the
condition number of the matrix A and the number of iterations re-
quired to reach the error tolerance etol ¼ 10�8. (Recall that the solu-
tion procedure is started with zero pressure and terminated
successfully when the relative error of the pressure is less than
etol.) We define the condition number ratio R as

R ¼ C

ð1þ Dt=mÞðkþ 1Þh�2 ;
where C is the condition number of the matrix A. Here the condition
number is defined as the ratio of the largest singular value of A to
the smallest singular value, which are computed by a singular value
decomposition of A.

We report in Tables 6 and 7 the condition number ratio R and
the number of iterations for convergence, respectively, as a func-
tion of h and k for several values of Dt. In Table 6, we see that
the ratio R remains remarkably close to 1/2. As a consequence,
we have that the condition number of A is close to

1
2
ð1þ Dt=mÞðkþ 1Þh�2

:

In Table 7, we see that the number of iterations for convergence is
relatively small and independent of the mesh size h and polynomial
degree k. Hence, the augmented Lagrangian approach is attractive



Table 6
The condition number ratio R as a function of h; k, and Dt.

Degree k Mesh h�1 Artificial time step

Dt ¼ 1 Dt ¼ 2 Dt ¼ 4 Dt ¼ 8 Dt ¼ 16

1 2 .54 .52 .50 .50 .49
4 .51 .50 .50 .50 .50
8 .48 .47 .47 .47 .47
16 .47 .46 .46 .46 .46
32 .46 .46 .46 .46 .46

2 2 .57 .54 .53 .52 .52
4 .52 .50 .49 .49 .48
8 .49 .48 .47 .47 .47
16 .49 .47 .47 .46 .46
32 .48 .47 .47 .46 .46

Table 7
The number of iterations required for convergence as a function of h; k, and Dt.

Degree k Mesh h�1 Artificial time step

Dt ¼ 1 Dt ¼ 2 Dt ¼ 4 Dt ¼ 8 Dt ¼ 16

1 2 16 12 9 7 6
4 16 12 9 7 6
8 16 12 9 7 6
16 16 12 9 8 6
32 17 12 9 8 6

2 2 16 12 9 7 6
4 16 12 9 7 6
8 16 12 9 8 6
16 17 12 9 8 6
32 17 12 9 8 6
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for solving the discrete Stokes system arising from the HDG
discretization.

5. Conclusions

In this paper, we present a hybridizable DG (HDG) method for
Stokes flow. We also use a local postprocessing to improve the
numerical approximations. The main features of our approach
and the results of our numerical experiments can be summarized
as follows.

	 All the approximate variables converge with the optimal order
kþ 1 for an appropriate choice of the stabilization parameter,
which in our particular example is of order unity. The approxi-
mate solution can be postprocessed to yield a new approximate
velocity which converges with an additional order kþ 2 for
k P 1. Note that these results are only observed for smooth
problems.

	 The approximate pressure and postprocessed velocity of the
HDG method using polynomials of degree k P 1 have accuracy
comparable to the approximate pressure and velocity of the
hybridized globally divergence-free LDG method [4] using poly-
nomials of degree kþ 1.

	 Although the global coupled unknowns are the approximate
trace of the velocity and the mean of pressure, the method can
be better implemented by using the augmented Lagrangian
approach since the mean of pressure is eliminated. Numerical
results indicate that the number of iterations required for con-
vergence is independent of both the mesh size and the polyno-
mial degree.

The extension of this work to the incompressible Navier–Stokes
equations constitute the subject of ongoing research. We end this
paper by pointing out that the a priori error analysis of the HDG
method presented here is provided in [10].
Appendix A. Proof of Lemma 2.1

Proof. We integrate by parts the local solver (4) to obtain

ðLf
h;GÞK þ ðu

f
h;r � GÞK ¼ 0; ð49aÞ

ðr � ð�mLf
h þ pf

hIÞ;vÞK þ ð�mL̂f
h þ p̂f

hIþ mLf
h � pf

hIÞn;v
D E

@K
¼ ðf ; vÞK ;

ð49bÞ

�ðuf
h;rqÞK ¼ 0;ð49cÞ

�pf
h ¼ 0; ð49dÞ

for all ðG;v; qÞ 2 PkðKÞ � PkðKÞ � PkðKÞ when we consider the data
ðf ;0;0Þ. Similarly, we obtain

ðLg

h;GÞK þ ðu
g

h;r � GÞK ¼ g;Gnh i@K ; ð50aÞ

ðr � ð�mLg

h þ pg

hIÞ;vÞK þ ð�mL̂g

h þ p̂g

hIþ mLg

h � pg

hIÞn;v
D E

@K
¼ 0;ð50bÞ

� ðug

h;rqÞK ¼ � g � n; q� �qh i@K ; ð50cÞ
�pg

h ¼ 0; ð50dÞ

for all ðG;v; qÞ 2 PkðKÞ � PkðKÞ � PkðKÞ when we set the data to be
ð0; g;0Þ. Moreover, we note that ðL�w

h ;u
�w
h ;p

�w
h Þ ¼ ð0;0; �wÞ for the data

ð0;0; �wÞ. The first identity in (8) can be derived as follows:

� ð�mL̂f
h þ p̂f

hIÞn;l
D E

@Th

¼ � �mLf
hn;l

D E
@Th

� pf
h; l � n

D E
@Th

� ð�mL̂f
h þ p̂f

hIþ mLf
h � pf

hIÞn; l
D E

@Th

¼ ðmLl

h; L
f
hÞTh

þ ðul

h;r � mLf
hÞTh

� rpf
h;u

l

h

� �
Th

� �pf
h;l � n

D E
@Th

� ð�mL̂f
h þ p̂f

hIþ mLf
h � pf

hIÞn; l
D E

@Th

;

by (50a) with g :¼ l and G :¼ mLf
h, and (50c) with g :¼ l and q :¼ pf

h.
Then

� ð�mL̂f
h þ p̂f

hIÞn;l
D E

@Th

¼ �ðf;ul

hÞTh
þ ðmLl

h; L
f
hÞTh

þ ð�mL̂f
h þ p̂f

hIþ mLf
h � pf

hIÞn;ul

h � l
D E

@Th

;

by (49b) with v :¼ ul

h and (49d). By (49a) with G :¼ mLl

h and (50b)
with v :¼ uf

h,

� ð�mL̂f
h þ p̂f

hIÞn;l
D E

@Th

¼ �ðf ;ul

hÞTh
� ðr � ðpl

hIÞ;uf
hÞTh

� ð�mL̂l

h þ p̂l

hIþ mLl

h � pl

hIÞn;uf
h

D E
@Th

þ ð�mL̂f
h þ p̂f

hIþ mLf
h � pf

hIÞn; ul

h � l
D E

@Th

¼ �ðf ;ul

hÞTh
;

by (49c) with q :¼ pl

h and (7). The second identity in (8) can be de-
rived as follows:

� ð�mL̂g

h þ p̂g

hIÞn;l
D E

@Th

¼ � �mLg

hn;l
� �

@Th
� pg

h;l � n
� �

@Th

� ð�mL̂g

h þ p̂g

hIþ mLg

h � pg

hIÞn; l
D E

@Th

¼ ðmLl

h; L
g

hÞTh
þ ðul

h;r � mLg

hÞTh

� rpg

h;u
l

h

� �
Th
� �pg

h;l � n
� �

@Th

� ð�mL̂g

h þ p̂g

hIþ mLg

h � pg

hIÞn; l
D E

@Th

;
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by (50a) with g :¼ l and G :¼ mLg

h, and (50c) with g :¼ l and q :¼ pg

h.
Then

� ð�mL̂g

h þ p̂g

hIÞn; l
D E

@Th

¼ ðmLl

h; L
g

hÞTh

þ ð�mL̂g

h þ p̂g

hIþ mLg

h � pg

hIÞn; ul

h � l
D E

@Th

¼ ðmLl

h; L
g

hÞTh
þ Sðug

h � gÞ; ul

h � l
� �

@Th
;

by (50b) with v :¼ ul

h, (50d), and (7). Finally, the last identity in (8)
follows from the identity ðL�w

h ;u
�w
h ;p

�w
h Þ ¼ ð0;0; �wÞ. This completes the

proof. h
Appendix B. Proof of Lemma 3.1

Proof. We first note that

ðdp;0
h ; qÞTh

¼ ðp0 � ph; qÞTh
;

for all q 2 Ph. Given the pressure error dp;n�1
h for n P 1, we have from

(31) and (6) that dp;n
h 2 Ph satisfies

1
Dt
ðdp;n

h ; qÞTh
� ðdu;n

h ;rqÞTh
þ dû;n

h � n; q
� �

@Th
¼ 1

Dt
ðdp;n�1

h ; qÞTh
; ð51Þ

for all q 2 Ph. Here ðdL;n
h ; du;n

h ; dû;n
h Þ is the element of Yh � Vh �Mhð0Þ

such that

ðdL;n
h ;GÞTh

þ ðdu;n
h ;r � GÞTh

� dû;n
h ;Gn

� �
@Th
¼ 0;

�ð�mdL;n
h þ dp;n

h I;rvÞTh
þ ð�mdL̂;n

h þ dp̂;n
h IÞn;v

D E
@Th

¼ 0;

ð�mdL̂;n
h þ dp̂;n

h IÞn;l
D E

@Th

¼ 0;

ð52Þ

for all ðG;v ; q;lÞ 2 Yh � Vh �Mhð0Þ, where

�mdL̂;n
h þ dp̂;n

h I ¼ �mdL;n
h þ dp;n

h Iþ Sðdu;n
h � dû;n

h Þ � n on @Th:

Taking q :¼ dp;n
h in (51), we obtain that

1
Dt
ðdp;n

h � dp;n�1
h ; dp;n

h ÞTh
þHn

h ¼ 0;

where Hn
h :¼ �ðdu;n

h ;rdp;n
h ÞTh

þ hdû;n
h � n; d

p;n
h i@Th

. Then application of
the Cauchy–Schwartz inequality yields

1
2Dt
ðkdp;n

h k
2 � kdp;n�1

h k2Þ þHn
h 6 0:
Moreover, by choosing G ¼ mdL;n
h ; v ¼ du;n

h , and l ¼ dû;n
h in (52) and

summing the three equations up, we obtain

Hn
h ¼ mðdL;n

h ; dL;n
h ÞTh

þ hSðdu;n
h � dû;n

h Þ; ðd
u;n
h � dû;n

h Þi@Th
:

The desired result follows from the last two equations. This com-
pletes the proof. h
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