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ABSTRACT
This paper focuses on the parametric study of steady and

unsteady forced and natural convection problems by the certi-
fied reduced basis method. These problems are characterized by
an input-output relationship in which given an input parameter
vector — material properties, boundary conditions and sources,
and geometry — we would like to compute certain outputs of en-
gineering interest — heat fluxes and average temperatures. The
certified reduced basis method provides both (i) a very inexpen-
sive yet accurate output prediction, and (ii) a rigorous bound
for the error in the reduced basis prediction relative to an un-
derlying expensive high-fidelity finite element discretization. The
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feasibility and efficiency of the method is demonstrated for three
natural convection model problems: a scalar steady forced con-
vection problem in a rectangular channel is characterized by two
parameters — Péclet number and the aspect ratio of the channel
— and an output – - the average temperature over the domain;
a steady natural convection problem in a laterally heated cav-
ity is characterized by three parameters — Grashof and Prandtl
numbers, and the aspect ratio of the cavity — and an output —
the inverse of the Nusselt number; and an unsteady natural con-
vection problem in a laterally heated cavity is characterized by
two parameters — Grashof and Prandtl numbers— and a time-
dependent output — the average of the horizontal velocity over a
specified area of the cavity.

Keywords Reduced basis method, error estimators, steady
and unsteady heat transfer, natural and forced convection,
parametrized systems, Graetz flow, Péclet number, Grashof num-
ber, and Prandtl number.
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ERRATA We have discovered by development of a completely independent 
code by another member of our group that the exponential stability 
factors reflected in Section 3.2.2 of this paper for the unsteady Boussinesq 
equations are in error — and in the wrong direction: the error bounds 
reported are thus not rigorous and in particular too optimistic. The 
theory of Section 2.2 is correct; however, it is now clear that the theory 
as presented is practically restricted to somewhat smaller times 
or lower Grashof number than claimed in the paper. We will report 
elsewhere on improvements to the theory and associated (new) 
computational results. Note all other sections of the paper are free of 
(known) errors. 



1 INTRODUCTION
Several processes in convective heat and mass transfer

can be modeled by parametrized partial differential equations
(PDEs). Engineering analysis of these processes requires pre-
diction of certain outputs of interest for any given instance of the
parameter input vector. The input-parameter vector may char-
acterize either the geometric configuration, some physical prop-
erties, or boundary conditions and source terms. The outputs of
interest may be the maximum or average system temperature, or
a heat flux, or a channel flowrate or pressure drop. These out-
puts may be best articulated as functionals of the field variables
of the underlying PDEs, which typically represent velocity, pres-
sure, and temperature.

There are many examples of reduced order models not only
for linear and nonlinear heat transfer (conduction) problems [22]
but also for fluid dynamics and Boussinesq natural convection
flows [5, 11, 15, 16, 24]. The reduced order model can often cap-
ture the desired system input–output behavior accurately; fur-
thermore, at least for systems with only quadratic nonlinearities
— such as the Boussinesq equations — the reduced order model
can be significantly less costly than high-fidelity models obtained
by classical discretization techniques such as the finite element
method. However, parametric certified reduced order models for
nonlinear PDEs are generally not available due to both (i) lack of
uniform convergence in the parameter domain — hence typically
only time or at most one parameter is considered, and (ii) lack of
rigorous error bounds — of the many earlier examples of reduced
order models for the incompressible Navier-Stokes and Boussi-
nesq equations [5, 11, 15, 24], none is endowed with rigorous er-
ror estimators.

In this paper we discuss a parametric certified reduced ba-
sis approach — built upon an underlying “truth” finite element
discretization which we wish to accelerate — that provides both
reliable results and rapid response in the real-time and many-
query contexts. Reliability is ensured by rigorous a posteriori
bounds for the error in the reduced basis approximation relative
to the truth finite element discretization: in particular, we pro-
vide error bounds for the outputs of interest. Rapid response is
ensured by an Offline–Online computational strategy that min-
imizes marginal cost: in an expensive Offline stage we prepare
a very small reduced basis “database”; in the Online stage, for
each new parameter value of interest, we rapidly evaluate both
the output of interest and the associated a posteriori error bound
in complexity independent of the dimensionality of the truth fi-
nite element approximation space.

The essential ingredients of our parametric certified reduced
basis approach are Galerkin projection onto a low-dimensional
space associated with a smooth parametric manifold — to pro-
vide dimension reduction [1, 21, 23, 25, 30]; an efficient Greedy
sampling method for identification of optimal and numerically
stable approximations [18, 30] — to yield rapid convergence;
accurate (Online) calculation of the stability factor by the Suc-

cessive Constraint Method [13, 19] — to quantify the growth of
residuals; rigorous a posteriori error bounds for the errors in the
reduced basis approximation and associated outputs — to pro-
vide certainty in our predictions; and an Offline-Online compu-
tational decomposition strategy for our reduced basis approxi-
mation and associated error bound [29] — to minimize marginal
cost for high performance in the real-time (e.g., parameter-
estimation, control) and many-query (e.g., design optimization,
stability map) contexts.

In this paper we describe our work on certified reduced ba-
sis methods for steady and unsteady conduction [10, 25, 29, 30],
steady and unsteady forced convection [30], and steady and un-
steady natural convection [6, 7, 17, 18, 34]. As we already re-
port in [29] on steady and unsteady conduction, we choose here
a complementary emphasis: forced and natural convection. In
Section 2 we review the certified reduced basis approach. In
Section 3 we present results for a (prescribed velocity) steady
forced convection problem — a Graetz problem, and for steady
and unsteady natural convection problems — enclosure flows.

2 A BRIEF OVERVIEW ON CERTIFIED REDUCED BA-
SIS METHOD
Given space restrictions we summarize the reduced basis ap-

proach only for (steady and unsteady) natural convection. We
refer the reader to the previous work [6, 7, 17, 18, 20, 34] and ref-
erences therein for further details.

The reduced basis (RB) approximation is built upon, and the
error in the RB approximation is measured relative to, a high–
fidelity (expensive) “truth” finite element approximation. We
shall denote the truth finite element approximation space of di-
mension N as XN ⊂ X ; here X is the function space over the
domain Ω associated with weak formulation of the continuous
problem — for example, H1

0 (Ω) for a simple scalar conduc-
tion/convection problem with homogeneous temperature bound-
ary conditions. Note for the particular case of Navier–Stokes or
Boussinesq natural convection we may consider either “mixed”
spaces or divergence–free spaces

The point of departure for the RB approximation is the set
of hierarchical RB approximation subspaces XN ≡ span{ξn,1≤
n ≤ N}, 1 ≤ N ≤ Nmax, where ξn ∈ XN ,1 ≤ n ≤ Nmax, is a
set of mutually (·, ·)X -orthogonal basis functions. In actual prac-
tice, the spaces XN ⊂ XN will be generated by a Greedy sam-
pling procedure which combines spatial snapshots in parame-
ter [30] (or for unsteady problems POD-Greedy sampling pro-
cedure which combines spatial snapshots in time and parame-
ter [18]) in an optimal fashion; for our present purposes, how-
ever, XN can in fact represent any sequence of (low-dimensional)
hierarchical approximation spaces [30]. It immediately follows
that XN ⊂ XN , and we may hence pursue a Galerkin projection
with respect to the space XN .

2 Copyright c© 2009 by ASME



2.1 Steady Natural Convection
In this section we summarize our approach to a general class

of quadratically nonlinear problems that are “inf–sup” stable in
an appropriate sense. Our steady natural convection problem —
presented in strong form in the Section 3.2.1 — is a particular
instance of this framework, though there are certain aspects of the
Navier–Stokes system (in particular related to stable treatment of
the pressure) that require special treatment [26, 31].

For simplicity in our description we consider only homo-
geneous Dirichlet (wall) boundary conditions: thus the velocity
space Y is the space of all functions uuu = (u1,u2) ∈ (H1(Ω)0)2

that vanish on selected segments of the boundary; the temper-
ature space W is the space of all functions in H1(Ω) that van-
ish on the left and right walls; we also introduce the pressure
space M ≡ L2

0(Ω) of all functions q in L2(Ω) functions of zero
mean over Ω. We then define X ≡ Y ×W ×M; note that for
any member w of X the first two components w1 and w2 re-
fer to x1 and x2 components of velocity, respectively, while
the last two components w3 and w4 refers to temperature and
pressure, respectively. We next associate to X the inner prod-
uct (w,v)X =

∫
Ω

∂wi
∂x j

∂vi
∂x j

(1 ≤ i ≤ 3,1 ≤ j ≤ 2)+
∫

Ω
w4v4 and in-

duced norm ‖ · ‖X =
√

(·, ·)X for w = (w1,w2,w3,w4) ∈ X and
v = (v1,v2,v3,v4) ∈ X .

We can now state the parametrized weak formulation of
the steady Boussinesq equations: for given µµµ in the parame-
ter domain D , the velocity-temperature-pressure field u(µµµ) ≡
(u1(µµµ),u2(µµµ),T (µµµ), p(µµµ)) ∈ X satisfies

A(u(µµµ),v;µµµ) = f (v;µµµ),∀v ∈ X . (1)

As usual, the form A includes diffusion, buoyancy, convection,
and incompressibility, and the functional f represents the forcing
term. Our particular interest is not in the solution field per se,
but rather in the output s which is defined as a linear functional `
of the solution s(µµµ) = `(u(µµµ);µµµ). We may also readily consider
quadratic outputs, however efficient treatment of more general
nonlinear outputs requires additional ingredients [9].

We shall assume that A is affine in the parameter µµµ: in par-
ticular, for some finite Q0 and Q1 the form A : X ×X → R can
be expressed as

A(u,v;µµµ) =
Q0∑

q=1

Θ
q
0(µµµ)Aq

0 (u,v)+
1
2

Q1∑
q=1

Θ
q
1(µµµ)Aq

1 (u,u,v), (2)

for u,v in X and µµµ in D , where Θ
q
0,Θ

q
1 : D → R are parameter-

dependent continuously differentiable functions and Aq
0 : X ×

X → R, 1 ≤ q ≤ Q0, and Aq
1 : X ×X ×X → R, 1 ≤ q ≤ Q1, are

parameter-independent continuous bilinear and trilinear forms.

We also assume that the functionals f and ` satisfy a similar
affine decomposition. The affine assumption (2) is crucial to the
performance of the Offline-Online computational decomposition
and is satisfied by our numerical examples in the next section.

We next denote by XN the standard conforming P2−P2−
P1 (quadratic/quadratic/linear) velocity-temperature-pressure
Taylor-Hood finite element approximation subspace of X over
a uniform “triangulation” of Ω; note that XN is of dimension N .
We can now define the FE approximation for (1): for given µµµ in
the parameter domain D we look for uN (µµµ) ∈ XN such that

A(uN (µµµ),v;µµµ) = f (v;µµµ), ∀v ∈ XN . (3)

We then evaluate the output of interest sN (µµµ) = `(uN (µµµ);µµµ).

We denote by XN ⊂ XN the RB space of dimension N. Our
RB approximation with respect to (3) can be stated as: for given
µµµ in D , we find uN(µµµ) ∈ XN such that

A(uN(µµµ),v;µµµ) = f (v;µµµ), ∀v ∈ XN . (4)

We then apply Newton iteration to find uN(µµµ): if we denote
the current Newton iterate as uN(µµµ) then the Newton increment
δuN(µµµ) satisfies

DA(uN(µµµ);µµµ)(δuN(µµµ),v) = f (v;µµµ)−A(uN(µµµ),v;µµµ) ∀v ∈ XN ;
(5)

here DA(w;µµµ)(u,v) is the Frechet derivative of A(u,v;µµµ) at the
current point w and is given by

DA(w;µµµ)(u,v) =
Q0∑

q=1

Θ
q
0(µµµ)Aq

0 (u,v)+
Q1∑

q=1

Θ
q
1(µµµ)Aq

1 (u,w,v).

(6)
The next iterate is then given by uN(µµµ) + δuN(µµµ); we continue
until convergence. The linearized problem (5) can be treated ef-
ficiently by an Offline-Online decomposition as described below.

The Offline-Online computational decomposition relies on
the affine assumption of our form A . We first express uN(µµµ) =∑N

n=1 cN n(µµµ)ξn, δuN(µµµ) =
∑N

j=1 δcN j(µµµ)ξ j, and choose v = ξi
in (5) to obtain

DA(uN(µµµ);µµµ)(δuN(µµµ),ξi) =
N∑

j=1

 Q0∑
q=1

Θ
q
0(µµµ)Aq

0 (ξ j,ξi)

+
N∑

n=1

Q1∑
q=1

Θ
q
1(µµµ)cN n(µµµ)Aq

1 (ξ j,ξn,ξi)

δcN j(µµµ). (7)

3 Copyright c© 2009 by ASME



The Offline-Online decomposition is now clear: in the Offline
stage, we can form and store Aq

0 (ξ j,ξi) and Aq′
1 (ξ j,ξn,ξi),1 ≤

i, j,n ≤ N,1 ≤ q ≤ Q0,1 ≤ q′ ≤ Q1, with N -dependent cost,
since these quantities are µµµ-independent; in the Online stage, we
perform the sum in the parenthesis of (7) in only Q0N2 + Q1N3

operations. The Offline-Online decomposition for the function-
als f and ` can be implemented in the same manner.

To provide a posteriori error bound for the error in the
solution, we apply the Brezzi-Rappaz-Raviart theory [4]. For
simplicity of exposition we present the result in the X-norm,
though in actual practice we incorporate a more efficient “nat-
ural norm” [6, 33]. It can be shown that the X-norm of the RB
error, ||u(µµµ)−uN(µµµ)||X , can be bounded by

||u(µµµ)−uN(µµµ)||X ≤ ∆N(µµµ)≡ βLB(µµµ)
ρ

(
1−
√

1− τN(µµµ)
)

, (8)

where τN(µµµ) = 2ρεN(µµµ)
(βLB(µµµ))2 and βLB(µµµ) is the lower bound of the inf-

sup stability constant β(µµµ) = infw∈X supv∈X
dA(uN(µµµ);µµµ)(w,v)
||w||X ||v||X ; we

assume that β(µµµ) > 0 for all µµµ in D , that is, we are on an isolated
solution branch without bifurcations. Note here that εN(µµµ) =
supv∈XN r(v;µµµ)/‖v‖X is the dual norm of the residual r(v;µµµ) =
f (v)−A(uN(µµµ),v;µµµ), and ρ is a constant related to the L4(Ω)-
H1(Ω) Sobolev embedding [6, 7]. The lower bound βLB(t;µµµ)
[13, 19, 30], and the dual norm of the residual [17, 18] are also
amenable to an Offline–Online computational decomposition.

It should be noted that ∆N(µµµ) is not well defined for
βLB(µµµ) < 0 and τ(µµµ) > 1. Fortunately, these conditions can be
verified Online: if βLB(µµµ) > 0 and τ(µµµ) ≤ 1 then our RB solu-
tion uN(µµµ) is unique and satisfies (8); if τ(µµµ) > 1 (i.e., we can
not guarantee that uN(µµµ) is close to uN (µµµ)) then we enrich our
RB space XN (by increasing N) to reduce εN(µµµ) and thus render
τ(µµµ)≤ 1.

Finally, the bound for the error in the output, |sN (µµµ)−
sN(µµµ)|, is defined as ∆s

N(µµµ) = supv∈XN (`(v;µµµ)/‖v‖X )∆N(µµµ).

2.2 Unsteady Natural Convection
We assume the same spaces as the steady case. However,

unlike the steady case, we shall work with incompressible ve-
locity fields. Henceforth, our solution space X is re-defined as
X ≡ Z×W , where Z is the space of all divergence-free functions
in Y ; note that for any member w of X the first two components
w1 and w2 refer to x1 and x2 components of velocity, respec-
tively, while the third component w3 refers to temperature. We
next associate to X the inner product (w,v)X =

∫
Ω

∂wi
∂x j

∂vi
∂x j

and

induced norm ‖ · ‖X =
√

(·, ·)X for w = (w1,w2,w3) ∈ X and
v = (v1,v2,v3) ∈ X . We also define, for any members w ∈ X ,
v ∈ X , the (L2(Ω))3 inner product (w,v) =

∫
Ω

wivi and induced

norm ‖ · ‖ =
√

(·, ·). The repeated index indicates summation
over the range of the index, that is, i = 1,2,3 and j = 1,2 in the
above expressions.

We can now state the parametrized weak formulation of the
unsteady Boussinesq equations: for given µµµ in the parameter do-
main D and all times t ∈ (0, t f ], the velocity-temperature field
u(t;µµµ)≡ (u1(t;µµµ),u2(t;µµµ),T (t;µµµ)) ∈ X satisfies

(ut(t;µµµ),v)+a(u(t;µµµ),v;µµµ)+b(u(t;µµµ),v;µµµ)
+ c(u(t;µµµ),u(t;µµµ),v;µµµ) = f (v;µµµ), ∀ v ∈ X , (9)

subject to initial condition u(t = 0;µµµ) = 0. Note that the pressure
is eliminated thanks to our divergence-free velocity (test) space.
We subsequently evaluate our output of interest as s(t;µµµ) =
`(u(t;µµµ);µµµ). The forms a,b,c represent (roughly) diffusion,
buoyancy, and convection (the pressure term vanishes thanks to
the div-free space): the particular definition of our forms a,b,c
and functionals f , ` depends on the particular problem; the strong
formulation will be given later in the example of Section 3.3.

We next denote by XN ∈ X the truth FE approximation of
dimension N . We can now define the semi-discrete FE approx-
imation for (9): for given µµµ in the parameter domain D and all
times t ∈ (0, t f ], we look for uN (µµµ) ∈ XN such that

(uN
t (t;µµµ),v)+a(uN (t;µµµ),v;µµµ)+b(uN (t;µµµ),v;µµµ)

+ c(uN (t;µµµ),uN (t;µµµ),v;µµµ) = f (v;µµµ), ∀ v ∈ XN , (10)

subject to initial condition uN (t = 0;µµµ) = 0. We then evaluate
the output of interest sN (t;µµµ) = `(uN (t;µµµ);µµµ). (In actual prac-
tice we apply the Crank-Nicolson scheme for the temporal dis-
cretization of the system (10). For brevity in this paper we shall
describe the RB methodology only for the semi–discrete formu-
lation (10), however all of our results — including the rigorous
error estimator — extend to fully discrete case that we actually
consider in practice [17].)

We may pursue Galerkin projection with respect to (10): for
given µµµ in the parameter domain D and all times t ∈ (0, t f ], we
look for uN(µµµ) ∈ XN such that

(uN t(t;µµµ),v)+a(uN(t;µµµ),v;µµµ)+b(uN(t;µµµ),v;µµµ)
+ c(uN(t;µµµ),uN(t;µµµ),v;µµµ) = f (v;µµµ), ∀ v ∈ XN , (11)

subject to initial condition uN(t = 0;µµµ) = 0. We then evaluate the
RB output as sN(t;µµµ) = `(uN(t;µµµ);µµµ).

It can be shown that the L2(Ω) norm of the RB error,
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‖uN (t;µµµ)−uN(t;µµµ)‖ can be bounded as

‖uN (t;µµµ)−uN(t;µµµ)‖ ≤ ∆N(t;µµµ)≡
(∫ t f

0
ε

2(t ′;µµµ)

exp(−
∫ t

t ′
ρ

LB
N (t ′′;µµµ)dt ′′)dt ′

)1/2

(12)

where ε(t;µµµ) = supv∈XN r(v; t;µµµ)/‖v‖X is the dual norm of the

residual r(v; t;µµµ) ≡ f (v;µµµ)− (uN
t (t;µµµ),v)− a(uN (t;µµµ),v;µµµ)−

b(uN (t;µµµ),v;µµµ)− c(uN (t;µµµ),uN (t;µµµ),v;µµµ), and ρLB
N (t;µµµ) is a

lower bound for the stability constant

ρN(t;µµµ)≡ inf
v∈XN

2c(uN(t;µµµ),v,v;µµµ)+2b(v,v;µµµ)+a(v,v;µµµ)
‖v‖2 .

(13)
The error in the output, |sN (t;µµµ)−sN(t;µµµ)|, can then be bounded
as

|sN (t;µµµ)−sN(t;µµµ)| ≤ ∆
s
N(t;µµµ)≡

(
sup

v∈XN

`(v;µµµ)
‖v‖

)
∆N(t;µµµ). (14)

In practice, our error bounds (12) and (14) inherit the Crank-
Nicolson temporal discretization of the system (10).

The RB coefficients of uN(t;µµµ), the output sN(t;µµµ), the sta-
bility factor ρLB

N (t;µµµ) [13,19,30], and the dual norm of the resid-
ual [17,18] are all amenable to an Offline–Online computational
decomposition. In particular, the unsteady case is very similar
to the steady case discussed in the the previous section: we first
calculate and store a “few” quantities once in an Offline stage —
with O(N ) complexity; we can then rapidly evaluate the output
and output error bound many times in an Online stage — with
complexity dependent on N and K (where K denotes the number
of time steps in the Crank-Nicolson scheme used to discretize
the time derivative) but independent of N . The method is thus of
interest in the real–time and many–query contexts in which the
Offline stage is unimportant or amortized, respectively, and only
the rapid Online stage is relevant.

Finally, we address the generation of our hierarchical RB
spaces XN ,1 ≤ N ≤ Nmax. Here we combine the POD (Proper
Orthogonal Decomposition) in t — to capture the causality asso-
ciated with our evolution equation — with the Greedy in µµµ — to
treat efficiently the higher dimensions and more extensive ranges
of parameter variation [12]. In the weighted POD-Greedy ap-
proach [17–19] we first select — by inexpensive evaluation of
our error bound over a large training sample — the parameter
least well approximated by our current RB approximation; we
then invoke the POD procedure to select optimal combinations
of snapshots at this selected parameter value.

3 NUMERICAL EXAMPLES
3.1 Steady Forced Convection: Graetz Flow

In this section we introduce an example (“worked
problem”) dealing with steady heat (and mass)
transfer: a parametrized Graetz flow [3]. Many
other model problems are available at the address
http://augustine.mit.edu/workedProblems.htm
where illustrative calculations/visualization are provided by a
Matlab R© webserver.

The Graetz flow is a classical problem in literature dealing
with forced steady heat convection combined with heat conduc-
tion in a duct with walls at different temperature, see [2, 3, 32].
The first portion of the duct has “cold” walls, while the second
portion has “hot” walls. The flow has an imposed temperature at
the inlet and a known convective field (i.e. a given parabolic ve-
locity profile). From the engineering point of view, this problem
illustrates the application of conduction analysis to an important
class of heat transfer problems in fluidic devices.

The domain Ωo is given by [0, h̃ + L̃] × [0, h̃] in which
the region [0, h̃]× [0, h̃] is denoted the “entrance” region and
[h̃, h̃ + L̃]× [0, h̃] is denoted the “developing” region. We fur-
ther denote the boundary segment Γo1 as inflow (on which we
impose a temperature T̃inlet ) and the boundary segment Γo4 as
the outflow, the boundary segements Γo2 (bottom) and Γo6 (top)
as the cold wall (on which we impose temperature T̃inlet ) and the
boundary segments Γo3 (bottom) and Γo5 (top) as the hot wall
(on which we impose T̃hot ). Note here ∼ denotes dimensional,
and o refers to a parameter dependent domain. We next nondi-
mensionalize by h̃ which yields the nondimensional domain Ωo
and corresponding boundary segments Γo ·.

We assume that κ̃ is the dimensional thermal diffusivity for
the air flowing in the duct, while Ũ is a reference dimensional
velocity for the convective field (defined as four times the max-
imum velocity). We introduce the Péclet number, Pe = Ũ h̃

κ̃
. We

consider here P = 2 parameters: µ1 is a geometrical parame-
ter representing the non-dimensional length of the “developing”
portion of the duct L̃/h̃; the remaining (always non-dimensional)
parameter is given by µ2 as the Péclet number, representing the
ratio between convection and conduction terms. The parameter
domain is given by D = [1,10]× [0.1,100].

The nondimensional temperature To(µµµ) = T̃−T̃inlet
T̃hot−T̃inlet

over the
nondimensional domain Ωo(µµµ) satisfies the convection–diffusion
equation

− ∂

∂xoi

([
µµµ2
−1 0
0 µµµ2

−1

]
︸ ︷︷ ︸

κoi j

∂To(µµµ)
∂xo j

)
+ xo2 (1− xo2)

∂To(µµµ)
∂xo1

= 0

with summation (i, j = 1,2) over repeated indices. We note
that the forced convection field is given by a parabolic (dimen-
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sional) velocity profile x̃o2
(
h̃− x̃o2

)
Ũ in the xo1 direction. On

boundaries Γo1, Γo2 and Γo6 we impose homogeneous Dirich-
let conditions To(µµµ) = 0 (representing the imposition of the tem-
perature in the “cold” zone of the duct and at the inlet, where
the temperature of the fluid is known); on Γo3 and Γo5 we im-
pose non-homogeneous Dirichlet conditions To(µµµ) = 1 (repre-
senting the imposition of the temperature in the “hot” zone of
the duct); and on Γo4 (outflow) we impose Neumann condition
niκi j

∂To
∂xo j

(µµµ) = 0, where ni denotes unit outward normal.
This problem is then mapped to a fixed reference domain

Ω [29, 30] throught a piecewise affine map given by the identity
in the entrance region and a dilation in the developing region;
the problem is then discretized by a P1 finite element (FE) dis-
cretization [27] with N = 3178 degrees of freedom. This FE
approximation is typically too slow for many applications, and
we hence approximate the FE prediction for the output and field
variable by the reduced basis (RB) method.

We present below in Fig. 1 some representative solutions for
different values of Péclet (µ2 = 1 and µ2 = 100) with µ1 = 2. Our
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1  
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1

Figure 1. Representative temperature for µ2 = 100 (left) and µ2 = 1
(right) for the case µ1 = 2.

output of interest is, for simplicity, the nondimensional average
temperature Toav(µµµ) over the domain (other outputs that could be
considered include the Nusselt number on the hot wall [3]): we
present in Figure 2 our results as a plot of the RB output and
RB error bars — defined as the interval [sN(µµµ)−∆s

N(µµµ),sN(µµµ)+
∆s

N(µµµ)] in which the truth FE solution must reside — as a func-
tion of µ2 for µ1 = 1 and N = 18. To improve the accuracy of
the RB prediction and effectivity of the associated error bound
(in particular for this non–symmetric convection–diffusion op-
erator) we consider a primal–dual formulation [30]; hence N
refers to the number of primal modes and the number of dual
modes [25, 30]. These results demonstrate the small value of
N required to achieve certified high accuracy; these results also
demonstrate the importance of the error bounds not only in cer-
tifying the results but also in ensuring efficiency — permitting
us to safely choose a small value of N without sacrificing accu-
racy or certainty. The method also converges very quickly —
increasing N to 30 reduces the certified error (maximum error

bar in Figure 2) by a factor of 102— the error bars are no longer
discernable. As regards computational times, a RB Online evalu-

0 20 40 60 80 1000.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

µ2

Figure 2. RB output sN(µµµ) = Toav(µµµ) and RB error bars — defined as
the interval [sN(µµµ)−∆s

N(µµµ),sN(µµµ)+ ∆s
N(µµµ)] — as a function of µ2 for

µ1 = 1.0, and N = 18.

ation requires on average 0.08s for N = 18 and 0.12s for N = 30,
including both sN(µµµ) and ∆s

N(µµµ); FEM solution µµµ→ sN (µµµ) re-
quires 3.8s to be completed. Hence an average Online evaluation
requires only ∼ 3% of the FEM computational cost.

3.2 Natural Convection in a Laterally Heated Cavity

We consider the flow of a “Boussinesq” fluid with kinematic
viscosity ν̃, density ρ̃, thermal diffusivity κ̃, and thermal expan-
sion coefficient β̃ in a rectangular cavity. The horizontal walls
are thermally insulated. We impose no-slip velocity conditions
on all four walls. This model corresponds to the benchmark case
defined in [8, 28]. The Prandtl and the Grashof numbers are de-
fined as Pr = ν̃/κ̃ and Gr = g̃β̃∆T H̃3/ν̃2, respectively, where−g̃
is acceleration due to gravity in the x̃2-direction. Recall also that
Ra = Gr Pr is the Rayleigh number.

We consider that the problem is already in a non-
dimensional form and that the cavity is a rectangular domain Ωo
of height equal to 1 and length equal to A (aspect ratio, see Fig-
ure 3). The flow is described by the momentum, continuity, and
energy equations in a Cartesian coordinate system (xo1,xo2) for
the velocity field uuuo = (uo1,uo2), the pressure po (perhaps elim-
inated via div-free spaces), and the temperature To.

3.2.1 Steady case We first consider a steady case
where the left wall of the cavity is maintained at constant temper-
ature To = 0 and at the right side the heat flux is constant equal
to 1. The system of parameterized partial differential equations
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Figure 3. Enclosure geometry for the steady and unsteady natural con-
vection problems.

in the original rectangular domain Ωo reads

− 1√
Gr

∆uuuo +∇po +(uuuo ·∇)uuuo−To
(

0
1

)
= 0,

divuuuo = 0, (15)

− 1√
GrPr

∆To +(uuuo ·∇)To = 0.

We scale the pressure so that
∫

Ωo
po = 0. Our output of inter-

est is the inverse of the Nusselt number [20] s(µµµ) = `(To(µµµ)) =
1
|Γoh|

∫
Γoh

To(µµµ). The parameters entering our PDE are µµµ =

(µ1,µ2,µ3) = ( 1√
Gr

, 1
Pr
√

Gr
,A).

We introduce our variables with respect to a reference unit
square domain Ω, hence our weak form needs to incorporate a
deformation in the x1 direction. We denote with the pedix o the
variables in their original domain Ωo (which depends only on A),
and without o the variables on the reference domain Ω. The form
A defined in (2) is given by

A(u,v;µµµ) =
µ1

µ3

∫
Ω

∂1u j∂1v j +µ1µ3

∫
Ω

∂2u j∂2v j

+
µ2

µ3

∫
Ω

∂1T ∂1θ+µ2µ3

∫
Ω

∂2T ∂2θ

+
∫

Ω

u j∂1u1v j +
∫

Ω

u j∂1u1v j +
∫

Ω

u1∂1T θ+
∫

Ω

u1∂1ζθ

+µ3

∫
Ω

u j∂2u2v j +µ3

∫
Ω

u j∂2u2v j +µ3

∫
Ω

u2∂2T θ+µ3

∫
Ω

u2∂2ζθ

−
∫

Ω

p∂1v1−
∫

Ω

q∂1u1−µ3

∫
Ω

p∂2v2−µ3

∫
Ω

q∂2u2

+µ3λ

∫
Ω

p+µ3γ

∫
Ω

q−µ3

∫
Ω

T v2,

where ∂i = ∂/∂i, u = (u1,u2,T, p,λ) and v = (v1,v2,θ,q,γ). (The
extra scalar Lagrange multiplier λ enforces the zero pressure
average condition.) The functional space suited for the weak

formulation of our PDE is X = H1
0 (Ω)2 ×H1(Ω)× L2(Ω)×

R. The finite element “truth” approximation is modeled by a
P2−P1−P2 (quadratic velocity/linear pressure/quadratic tem-
perature) Taylor-Hood spatial discretization with a grand total of
N = 38000 degrees of freedom.

We have carried out two different test cases: in the first test
we fixed A equal to 1 and let Gr and Pr vary in [103,105]×
[0.7,7]; in the second test , we fixed the Prandl number to 7 and
let Gr and A vary in [5 ·104,7.5 ·104]× [1.25,1.5]. In Figure 4 we
show the temperature and the streamlines for some values of Pr
and Gr. As we can see from the flows, we are considering quite
different behaviors from a physical point of view.

We run the Offline process with the constraint on the param-
eters cited above (timing showed in Table 1). The Offline time is
much larger than the time to find one FE solution, but we recall
that we are interested in real-time input-ouput relationships for a
priori unknown parameter values. The Offline time spent for the
RB error bound component is much larger then for the RB output
components.

We then run the Online part for many other different pa-
rameters in the same region. We have set N = 12, leading to a
dimension of VN equal to 50, i.e., 2 basis functions for the con-
stant pressure and the Lagrange multipliers, N for the velocity,
the temperature, and the pressure basis functions, and another N
for the supremizer stabilizing the projection space [26, 31]. In
Figure 5 we show the behavior of the output and its error bound
on a smaller region. The triangulation has no meaning per se, in-
stead each vertex represent one selected parameter for which we
computed the output by the RB method. Note that although the
dimension of the reduced basis is very small, the RB approxima-
tion is very accurate and is able to characterize the output with
“high resolution” with respect to µµµ.

In Figure 6 we reported the timing and some error bound
components. In the Gr− Pr case, maxτN is greater than 1 for
N < 12; this means that for some parameters in the range we do
not have any proof of a nearby FE solution; when N = 12 τ(µµµ) is
smaller than 1 for all the simulations. In the Gr−A case the con-
vergence of the RB approximation is very rapid. In both cases,
the online time for assembling and solving the reduced basis sys-
tem is proportional to N (we expected N2, but there is a dominant
linear component), while the time to compute all the error bound
components is proportional to N3.4 (due to the assembly of the
dual norm of the residual, expected N4).

3.2.2 Unsteady case The set of Boussinesq equations
for the non-dimensional velocity uuu, temperature T , and pressure
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Figure 4. Temperature and (approximate) streamlines for Grashof
number equal to 105, Prandtl number equal to 0.7 (top) and 7 (bottom),
and aspect ratio equal to 1.25 (left) and 1.5 (right).

Offline RB (Nmax) Offline (error bound) FE

Gr–Pr 1h44’ (12) 27h15’ 3’20”

Gr–A 11h24’ (18) 41h48’ 2’33”

Table 1. Wall times on a 16 nodes cluster; “Offline RB”: computation
of the reduced basis ingredients, Nmax is the number of basis functions;
“Offline (error bound)”: computation of the error bound ingredients;
“FE”: mean time for the solution of one finite element problem.
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Figure 5. Output (left) and error bound (right, in logscale (base 10)) for
Gr and Pr varying in the given range. A is fixed.

p for t ∈ (0, t f ] (t f is the final time) are given by

∂uuu
∂t
−∆uuu+

√
GrPr∇p+

1√
GrPr

(uuu ·∇)uuu−
√

GrPrT
(

0
1

)
=
√

GrPrTL
(

0
1

)
,

divuuu = 0, (16)
∂T
∂t
− 1

Pr
∆T +

1√
GrPr

(uuu ·∇)T = 0.
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Figure 6. Online timings and maximum values of the error bound com-
ponents (left: Gr–Pr, right: Gr–A). RB/FE is the ratio between a RB and
a FE solve and ∆/FE is the ratio between the time needed for the error
bound computation and a FE solve. On the left, τN has been divided by
104 for visualization reasons; on the left, maxτN is smaller than 1 only
for N = 12

The initial conditions are uuu = 0 and T = 0. The aspect ratio A of
the cavity is equal to 4 and the left side and the right side of the
cavity have the temperature equal to one and zero, respectively.
Note we lift the temperature by the function TL = 1− x1/A.

We consider the solution of these Boussinesq equations for
t f = 0.15 and Gr ∈ [0.5 · 105,2 · 105], Pr ∈ [0.01,0.05]. Our pa-
rameter is µµµ≡ (µµµ1,µµµ2)≡ (Gr,Pr), which implies that the param-
eter domain D is equal to [0.5 · 105,2 · 105]× [0.01,0.05]. The
final time t f and the parameter domain D are sufficiently large to
observe (almost) steady states, the onset of oscillatory instabil-
ity, and supercritical unsteady regimes. Note that we choose the
particular “balanced” scaling of variables and equations — one
of many possible classical options for distributing the parame-
ters — in order to obtain better a posteriori error estimates for
the subsequent reduced basis approximation.

Our particular interest is not in the solution field per se,
but rather in the output s representing a local average-velocity.
This output can be expressed as a functional of the x1-velocity,
namely, s(t;µµµ) = 1√

µµµ1µµµ2|D|
∫

D u1(t;µµµ); here D = [1.81,2.20]×
[0.60,0.67], the shaded area in Figure 3, is the subdomain over
which the x1 velocity is averaged. Note that the output s(t;µµµ), as
scaled, can be interpreted as an effective Reynolds number — a
measure of nonlinearity.

We can interpret our model problem as a “response to distur-
bance.” We commence initially with no flow and uniform tem-
perature conditions T̃hot = T̃cold everywhere. We then abruptly
increase T̃hot which, given Pr� 1, rapidly produces the conduc-
tion equilibrium temperature distribution TL — for simplicity we
assume this field is established instantaneously and hence impose
(perturbation temperature) T (x,0) = 0. The flow then responds
via buoyancy to (and of course subsequently affects) the temper-
ature distribution. We measure the parametric dependence of this
response through our output s(µµµ, t).

The Finite Element “truth” approximation is modeled by
a classical P2 − P1 − P2 (quadratic/linear/quadratic) Taylor-
Hood spatial discretization with a total of N = 6,371 veloc-
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Figure 7. The streamline of the velocity at tk = 0.10 for (Gr,Pr) =
(2.0×105,0.02).

ity, pressure, and temperature degrees-of-freedom and a Crank-
Nicholson temporal discretization with constant time step ∆t =
.0005 (corresponding to K = 300 time levels for our final time
t f = 0.15). We show in Figure 7 the streamline of the veloc-
ity field corresponding to (Gr,Pr) = (2×105,0.02). Clearly, the
flow field exhibits very interesting dynamics with multiple cell
patterns.

We present in Figure 8 the scaled vertical velocity at the spa-
tial point x = (2,0.8) as a function of time tk for both the “truth”
and the RB approximation for (Gr,Pr) = (2×105,0.01). Despite
the complex behavior of the flow and the relatively wide range of
(Gr,Pr), the RB approximation accurately captures the dynam-
ics of the truth finite element solution — re-equilibration below
Grcr and oscillatory growth above Grcr — with only relatively
few (N = 60) basis functions. We can attribute this rapid con-
vergence to the Galerkin projection and the effectiveness of the
POD-Greedy sampling procedure; the latter can be viewed as a
systematic parametric extension of earlier POD model reduction
approaches [5] to flow problems.

Finally, we turn to a more realistic “real-time” context. We
show in Figure 9 the RB output sN(tk;µµµ) and output bounds
s±N (tk;µµµ) = sN(tk;µµµ)±∆s

N(tk;µµµ) as a function of tk for (Gr,Pr) =
(2×105,0.01) for N = 40 and N = 80. We observe good conver-
gence and meaningful/useful rigorous error bounds. Furthermore
we note that, even for N = 80, Online calculation of the RB out-
put sN(tk;µµµ) (respectively, the RB output error bound ∆s

N(tk;µµµ)),
1 ≤ k ≤ K, is roughly 1,100× faster (respectively, 170× faster)
than direct evaluation of the FE output sN (tk;µµµ),1 ≤ k ≤ K;
and, for N = 40, Online calculation of sN(tk;µµµ) (respectively,
∆N(tk;µµµ)), 1 ≤ k ≤ K, is roughly 2,400× faster (respectively,
750× faster) than direct evaluation of sN (tk;µµµ), 1 ≤ k ≤ K. We
note that the Online time to evaluate the error bound ∆N(tk;µµµ)
is dominant because it has higher computational complexity than
the RB output sN(tk;µµµ). We note that for natural convection prob-
lems in three space dimensions the RB savings will be even more
significant.
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