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ABSTRACT
In this paper we discuss the application of the certified

reduced basis method and the associated software package
rbMIT c© to “worked problems” in steady and unsteady con-
duction. Each worked problem is characterized by an input pa-
rameter vector — material properties, boundary conditions and
sources, and geometry — and desired outputs — selected fluxes
and temperatures. The methodology and associated rbMIT c©
software, as well as the educational worked problem frame-
work, consists of two distinct stages: an Offline (or “Instructor”)
stage in which a new heat transfer worked problem is first cre-
ated; and an Online (or “Lecturer”/“Student”) stage in which
the worked problem is subsequently invoked in (say) various in–
class, project, or homework settings. In the very inexpensive On-
line stage, given an input parameter value, the software returns
both (i) an accurate reduced basis output prediction, and (ii) a
rigorous bound for the error in the reduced basis prediction rel-
ative to an underlying expensive high-fidelity finite element dis-
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cretization; as required in the educational context, the response
is both rapid and reliable. We present illustrative results for two
worked problems: a steady thermal fin, and unsteady thermal
analysis of a delamination crack.

Keywords Reduced basis method, error bounds, real-time
computation, steady and unsteady heat transfer, parametrized
systems, educational worked problems.

1 INTRODUCTION
There are many examples of numerical simulation in heat

transfer education [7,15–18,21]. However, classical approaches,
such as the finite element method, are often too slow; and more
ad hoc procedures, such as low-order heuristic models, are of-
ten unreliable. Our goal is to achieve the accuracy and reliability
of a high-fidelity approximation but at the greatly reduced cost
of a low-order model. The resulting pedagogical prospects are
very attractive: interactive in-class visualizations and parametric
exploration; rapid assessment of (classical) engineering approxi-
mations and interpretations (from thermal fins to boundary layers
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to lumped models); and incorporation of more realistic examples
in homework assignments and design projects.

Our approach is built upon the certified reduced basis
method [10, 13, 19] for rapid and reliable prediction of engi-
neering outputs associated with parametrized partial differential
equations. In particular, we consider a (say, single) “output of in-
terest” s∈R – related to temperatures or fluxes – as a function of
an “input parameter” P-vector µµµ – related to geometry, physical
properties, boundary conditions, or sources. The input parame-
ter domain – the set of possible inputs – is denoted D , which is a
subset of RP .

The output of interest s(µµµ) is a (say, linear) functional `
of a field variable u(µµµ), s(µµµ) = `(u(µµµ)). Here u(µµµ) – in our
case the temperature – satisfies a partial differential equation
parametrized with respect to µµµ. We thus arrive at an input-output
statement µµµ→ s(µµµ) evaluation of which requires solution of a
parametrized partial differential equation. We consider partial
differential equations for which the parametric dependence is
strictly or approximately affine; “affine” dependence implies that
the parametrized differential operator can be expressed as a sum
of Q products of [parameter-dependent functions] × [parameter-
independent operators].

As regards “rapid,” our method minimizes the marginal cost
associated with (approximate) input-output evaluation, and is
thus most useful either (a) in the real-time or interactive context,
or (b) in the limit of many queries. Engineering situations which
satisfy these criteria include in-the-field robust parameter estima-
tion (or inverse problems, or nondestructive evaluation), design
and optimization, and control. Many educational situations also
satisfy these criteria – from in-class demonstrations that require
extensive parameter exploration and immediate gratification to
homework assignments and projects that must be completed (by
many parties) rapidly on modest platforms.

As regards “reliable,” we provide certificates of fidelity with
every prediction: an estimate that rigorously bounds the error in
our (rapid, approximate) input-output evaluation or field variable
relative to a highly accurate (and hence very expensive) “truth”
finite element solution uN . In many engineering situations, the
certainty provided by these error bounds is crucial. For example,
in the real-time context, critical decisions must be made in the
field – quickly, without recourse to extensive Offline resources –
that are at least feasible and safe if not optimal. Educational situ-
ations also demand certainty: a demonstration or project founded
upon a-physical numerical artifacts is obviously anathema to the
development of sound engineering principles and practices.

The essential components of our approach are threefold.
(i) Rapidly convergent global reduced basis (RB) approxi-

mations [1,11] – (Galerkin) projection onto a space W N
N spanned

by solution of the governing partial differential equation at N (op-
timally) selected points SN in the parameter set D . Typically,
N will be small, as we focus attention on the (smooth) low-

dimensional parametrically-induced manifold of interest. The
RB approximations to the field variable and output are denoted
uN(µµµ) and sN(µµµ), respectively. Our approach is premised upon
a classical Finite Element (FE) method “truth” approximation
space of (typically very large) dimension N . It is the FE truth
approximation – our uN (µµµ) introduced above – upon which we
build our RB approximation, and with respect to which we mea-
sure the RB error (see (ii) below).

(ii) Rigorous a posteriori error estimation procedures – re-
laxations of the error-residual equation that provide inexpensive
yet sharp bounds for the error in the RB field-variable approx-
imation, uN(µµµ), and output(s) approximation, sN(µµµ). Our error
indicators are rigorous upper bounds for the error (relative to the
FE truth approximation) for all µµµ ∈ D and for all N; further-
more, in many cases, we can prove that the effectivity of our
error estimators – the ratio of the error bound to the true error
– is O(1)−O(10). Our inexpensive error estimators also serve
though a Greedy procedure [19] to construct the optimal RB sam-
ples and spaces which ensure an efficient and well-conditioned
RB approximation.

(iii) Offline/Online computational procedures – decomposi-
tion stratagems which decouple the generation and projection
stages of the RB approximation: very extensive (parameter-
independent) pre-processing performed Offline once that then
prepares the way for subsequent very inexpensive calculations
performed Online for each new input-output evaluation required.
The operation count for the Online stage – in which, given a new
parameter value µµµ, the RB Online Evaluator calculates the RB
output and associated error bound (relative to the expensive FE
truth approximation) – depends only on N and the parametric
complexity of the problem. The Online computational complex-
ity and mathematical stability does not depend on N , the dimen-
sion of the underlying “truth” FE approximation space; we may
thus consider a highly accurate truth approximation.

The Offline-Online procedure dramatically reduces the
marginal cost (or asymptotic average cost) of input–output eval-
uation: the RB approach is thus very attractive in the real-time
context (in which we place a premium on immediate response
and hence the Offline effort is largely irrelevant) or the many-
query context (in which we require many evaluations and hence
the Offline effort is asymptotically negligible).

In order to realize the potential of certified reduced basis
methods (in heat transfer education) we have developed and
applied the rbMIT c© package: the rbMIT c© software imple-
ments (in Matlab R©) both the Offline and Online stages of
the reduced basis approach. The Offline component of the
rbMIT c© software automates the (reduced basis) formulation
of the problem and construction of the associated FE dis-
cretization (on which the RB approximation is built); identifies
an optimal reduced basis space for rapid convergence; and
generates all the “data” — related to both RB approximation
and associated a posteriori error estimator — required for
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the Online stage. The Online component of the rbMIT c©
software includes two capabilities for probing the solution to
the problem for any given new µµµ: the RB Online Evaluator
returns (rapidly) both an accurate RB prediction for sN , sN ,
and a certificate of fidelity that rigorously bounds the error
|sN − sN |; the RB Visualizer both renders the relevant field
variable and provides a rigorous bound for the error uN −uN

N (in
a norm that measures both function and derivative)1. The open-
source rbMIT c© software may be downloaded from the URL
http://augustine.mit.edu/methodology/metho-
dology rbMIT System.htm.

In the educational context, the “Instructor” appeals to
the Offline component to construct a “worked problem”; the
“Lecturer” or “Student” invokes the Online component to
probe the worked problem in various in–class, project, or
homework settings. In this model the Instructor defines the
parametrization in the Offline stage; the Student then specifies
the parameter values — within a prescribed (typically very
broad) parameter domain — in the Online stage. (Of course, the
Instructor responsibilities may be assumed by more advanced
Students.) Libraries of worked problems can also be created:
our own library, currently heavily weighted towards heat transfer
— with many steady and unsteady conduction and forced
convection (prescribed velocity) examples — can be found at
http://augustine.mit.edu/workedProblems.htm;
for each worked problem we also include a pedagogical guide.

In this paper we first describe the certified reduced ba-
sis method. We then introduce the rbMIT c©software package
[6]. Finally, we present results for two illustrative heat transfer
worked problems: a steady thermal fin; and unsteady thermal
analysis of a delamination crack.

2 METHODOLOGY
The methodology in this section is intended for steady and

unsteady heat conduction problems. For the sake of simplicity,
we consider only symmetric spatial operators (conduction) and
compliant outputs. We refer the reader to [19] and references
therein for the treatment of nonsymmetric operators (convection-
diffusion) and general non–compliant outputs. Natural convec-
tion problems can also be treated [3, 10, 22].

2.1 Steady Heat Conduction Problems
Problem Formulation We consider the evaluation of an

output of interest so(µµµ): Given µµµ ∈ D ⊂ RP, we evaluate the

1Note that for visualization of the RB field variable approximation, the com-
plexity does scale with N – roughly as NN – since we must recreate and render
the field over the entire physical domain.

output as

so(µµµ) =
Z

BoL

uo(µµµ), (1)

where BoL is part of the domain or domain boundary. Here the
temperature field uo(µµµ) satisfies

− ∂

∂xoi

(
κ

k
oi j

∂uo(µµµ)
∂xo j

)
+ rk

ou = f k
o in Ωo(µµµ), (2)

where µµµ is the P-tuple input parameter, xo = (xo1,xo2) denotes a
point in Ωo(µµµ), and Ω̄o(µµµ)≡

SKreg
k=1 Ω̄k

o(µµµ) for Ωk
o(µµµ), 1≤ k≤Kreg,

mutually non-overlapping open subdomains of Ωo(µµµ). Also, κk
oi j

is a 2×2 SPD tensor diffusivity, rk
o is a non–negative scalar, and

f k
o is a scalar. The boundary conditions are Dirichlet uo = uoD

on ΓoD; general Neumman noiκ
k
oi j

∂uo(µµµ)
∂xo j

+ go1(uo(µµµ)− go2) =
go3 on ΓoN , where no is the outward unit normal, go1 is the Robin
coefficient, go2 is the “sink” field value, and go3 is the flux; and
continuity of temperature and flux at boundaries of Ωk

o(µµµ) which
are internal edges of Ωo(µµµ). Note that all the quantities κk

oi j, rk
o,

f k
o , uoD, go1, go2, go3 can be polynomial functions of xo and may

also depend on µµµ.
We now assume a polygonal domain Ωo(µµµ) (though in fact,

with proper care [19], curved domains can also readily be consid-
ered). The RB approach is based on similarity, and we must thus
formulate our parameter–dependent problem on a parameter–
independent reference domain. Towards that end, we construct a
“coarse” triangulation of Ωo(µµµ) that respects all boundaries of all
regions Ωk

o(µµµ), 1≤ k≤Kreg; we then construct a piecewise-affine
mapping which maps the µµµ-dependent Ω̄o(µµµ)≡

SKreg
k=1 Ω̄k

o(µµµ) to a
reference µµµ-independent Ω̄ ≡ Ω̄(µµµref) ≡

SKreg
k=1 Ω̄k, where µµµref ∈

D . We can then readily recast [19] our problem for uo(µµµ) over
Ωo(µµµ) of (1)–(2) instead as a problem for u(µµµ) over Ω — (1) and
(2) with all subscript o removed — in which the geometric vari-
ations are now captured by the coefficients of the equation; we
shall henceforth denote this new system of equations by (1)’-(2)’.

In practice, we discretize the problem (2)’ by the finite el-
ement (FE) method: Given µµµ ∈ D ⊂ RP, we evaluate sN (µµµ) =
{LN (µµµ)}T{uN (µµµ)}, where the FE temperature solution vector
{uN } of size N (which represents the function uN

o (µµµ) via the
usual FE basis functions) satisfies [KN (µµµ)]{uN (µµµ)}= {FN (µµµ)}.
Here [KN (µµµ)], {LN (µµµ)} and {FN (µµµ)} are the FE stiffness
matrix of size N ×N and force vector and output vector of
size N , respectively. For simplicity of exposition we assume
that [KN (µµµ)] is symmetric positive-definite, and {LN (µµµ)} =
{FN (µµµ)}, so that our model problem is “compliant.” We also as-
sume that {FN (µµµ)} ≡ {FN }, or {FN (µµµ)} is µµµ-independent; the
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extension to the case {FN (µµµ)} is µµµ-dependent is very straightfor-
ward [19]. We further assume that the dimension of the FE ap-
proximation N is sufficiently large so that the FE output sN (µµµ)
is indistinguishable from the exact output s(µµµ) at the accuracy
level of interest.

Finally, we assume that the matrix [KN (µµµ)] is “affine” in the
parameter µµµ, by which we mean

[KN (µµµ)] =
Q

∑
q=1

Θq(µµµ)[KN
q ]. (3)

Here, for q = 1, . . . ,Q, the Θq : D → R are (typically very
smooth) µµµ-dependent functions, and the [KN

q ] are µµµ-independent
matrices. The affine-parameter decomposition (3) is crucial to
the computational performance of the Offline-Online procedure.
This assumption is satisfied under rather general hypotheses [19].

Reduced Basis Approximation To define the RB ap-
proximation we first introduce our (nested) Lagrangian parame-
ter samples SN = {µµµ1, . . . ,µµµN),1≤N ≤Nmax, and associated (hi-
erarchical) reduced basis spaces W N

N ,1≤ N ≤ Nmax [12], W N
N =

span{uN (µµµn),1 ≤ n ≤ N} = span{ζN
n ,1 ≤ n ≤ N}, where µµµn ∈

D , 1≤ n≤Nmax, are determined by the Greedy sampling method
[19]. Note the ζ

N
n are computed from the snapshots uN (µµµn)

by a Gram-Schmidt process such that {ζζζN
m }T [YN ]{ζζζN

n } = δnm,
1 ≤ m,n ≤ N; here δnm is the Kronecker-delta symbol and
[YN ] = [KN (µµµ)] for some µµµ ∈D .

We then apply a Galerkin projection [1,8,11,19]: given µµµ ∈
D , we evaluate the RB output as sN(µµµ) = {FN}T{uN(µµµ)}, where
the RB coefficient N–vector {uN(µµµ)} satisfies

[KN(µµµ)]{uN(µµµ)}= {FN}. (4)

Here [KN(µµµ)] = [ZN ]T [KN (µµµ)][ZN ] and {FN}= [ZN ]T{FN } are
of dimension N × N and N × 1, respectively, where [ZN ] ≡
[ZN

N ] = [{ζζζN
1 }| · · · |{ζζζ

N
N }] is the orthonormalized–snapshot ma-

trix of dimension N ×N. We then invoke the affine form (3)
to rewrite (4) as ∑

Q
q=1 Θq(µµµ)[KqN ]{uN(µµµ)} = {FN}, where the

[KqN ] = [ZN ]T [KN
q ][ZN ] are parameter-independent matrices of

dimension N×N. The Offline-Online strategy is clear.
In the Offline stage, we first compute the {uN (µµµn)}, 1≤ n≤

Nmax, form the matrix [ZNmax ] and then form and store {FNmax}
and [KqNmax ]. The Offline operation count depends on Nmax, Q
and N but requires only O(QN2

max) permanent storage. In the
Online stage, for a given µµµ and N (1≤N ≤Nmax), we retrieve the
pre-computed [KqN ] and {FN} (subarrays of [KqNmax ], {FNmax}),
form [KN(µµµ)], solve the resulting N ×N system (4) to obtain

{uN(µµµ)}, and finally evaluate the output sN . The Online opera-
tion count is thus O(N3) and independent of N . The implication
of the latter is two-fold: first, we will achieve very fast response
in the many-query and real-time contexts, as N is typically very
small, N�N ; and second, we can choose N arbitrary large – to
obtain as accurate FE predictions as we wish – without adversely
affecting the Online (marginal) cost.

Reduced Basis Error Estimator We now define
our error estimator and associated effectivity for the out-
put as ∆s

N(µµµ) = ε2(µµµ)/α
N
LB(µµµ) and ηs

N(µµµ) = ∆s
N(µµµ)/(sN (µµµ)−

sN(µµµ)), where ε2(µµµ) = {RN }T [YN ]−1{RN } is the square
of the dual norm of the residual vector {RN } = {FN } −
[KN (µµµ)][ZN ]{uN(µµµ)}, and α

N
LB(µµµ) is a lower bound for the dis-

crete coercivity constant [19]2. The effectivity ηs
N(µµµ) is a mea-

sure of the quality of the proposed estimator; we can show that
ηs

N(µµµ) ≥ 1, and hence our error estimator is a rigorous upper
bound.

The calculation of the dual norm of the residual is rather
simple. Following the procedure described in [19], ε2(µµµ) can be
expressed as

ε
2(µµµ) = {C}T [YN ]{C}︸ ︷︷ ︸

1×1

+2
Q

∑
q=1

Θq(µµµ){uN(µµµ)}T [Bq]T [YN ]{C}︸ ︷︷ ︸
N×1

+
Q

∑
q=1

Q

∑
q′=1

Θq(µµµ)Θq′(µµµ){uN(µµµ)}T [Bq′ ]T [YN ][Bq]︸ ︷︷ ︸
N×N

{uN(µµµ)}, (5)

where {C} = [YN ]−1{FN } and [Bq] = −[YN ]−1[KN
q ][ZN ] are

quantities formed from FE solutions.
The computation of ε2(µµµ) readily admits an Offline-Online

strategy: all the underbraced matrix-matrix or matrix-vector
products are µµµ-independent and can be pre-computed in the Of-
fline stage – with O(Q2N2

max) permanent storage; the computa-
tional cost in the Online stage is then O(Q2N2

max) – independent
of N . The low marginal cost of the error estimator also plays a
crucial role in our greedy construction of the optimal RB param-
eter sample set SNmax [19].

2.2 Unsteady Heat Conduction Problems
Problem Formulation We now consider the unsteady

version of the above model problem (which we state directly for
the reference domain): Given µµµ ∈D ⊂ RP, we evaluate the out-

2The discrete coercivity constant is, in essence, a generalized minimum eigen-
value; we invoke the SCM method [19], [5] to calculate α

N
LB(µµµ). The Online eval-

uation of α
N
LB(µµµ) does not depend on N and hence we can retain rapid response

in the many-query and real-time contexts.
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put3 as

s(µµµ) =
Z t f

0

(
h(t)

Z
BL

u(t;µµµ)
)

dt, (6)

where the temperature field u(t;µµµ) is the solution of the time-
dependent parametrized PDE

∂u
∂t
− ∂

∂xi

(
κ

k
i j

∂u
∂x j

)
+ rku = g(t) f k in Ω(µµµ), (7)

with initial condition u(t = 0;µµµ) = u0. Here t ∈ (0, t f ] is the
time variable, and h(t) ∈ L2((0, t f ]) and g(t) ∈ L2((0, t f ]) are the
output and input (control) functions of t. We assume the same
boundary conditions as before, however, now g1, g2, and g3 may
depend on t as well.

We next introduce the semi-discrete FE approximation
for (6)-(7): Given µµµ ∈ D ⊂ RP, we evaluate sN (µµµ) =R t f

0

(
h(t){LN }T{uN (t;µµµ)}

)
dt, where the FE temperature vec-

tor uN (t;µµµ) of size N satisfies for t ∈ (0, t f ]

[MN (µµµ)]{u̇N (t;µµµ)}+[KN (µµµ)]{uN (t;µµµ)}= g(t){FN }, (8)

with initial condition uN (t = 0;µµµ) = uN
0 . Here [MN (µµµ)] is the

FE mass matrix, which we assume is symmetric positive-definite
and affine in the parameter [MN (µµµ)] = ∑

J
j=1 Φ j(µµµ)[MN

j ], where,
for j = 1, . . . ,J, the Φ j : D → R are µµµ-dependent functions and
the [MN

j ] are µµµ-independent matrices.
In actual practice we apply the Euler-Backward scheme for

the temporal discretization of the system (8) and the trapezoidal
rule for the integral (6). For brevity in this paper we shall de-
scribe the RB methodology only for the semi–discrete formu-
lation (8), however all of our results — including the rigorous
error estimator — extend to fully discrete case that we actually
consider in practice [4, 8].

Reduced Basis Approximation We begin by intro-
ducing the hierarchical RB spaces W N

N = span{ζN
n ,1 ≤ n ≤

N},1 ≤ N ≤ Nmax; the basis functions ζ
N
n ,1 ≤ n ≤ Nmax, are

determined by a POD-Greedy sampling method [8, 9]. As be-
fore, [ZN ] ≡ [ZN

N ] = [{ζζζN
1 }| · · · |{ζζζ

N
N }] is the snapshot matrix of

dimension N ×N.
We now apply Galerkin projection: given µµµ ∈ D , we eval-

uate the RB output as sN(µµµ) =
R t f

0

(
h(t){LN}T{uN(t;µµµ)}

)
dt,

3It is also possible for certain output functionals to (efficiently) evaluate s(t;µµµ)
for all t ∈ (0, t f ] [8].

where {uN(t;µµµ)} satisfies the evolution equation
∑

J
j=1 Φ j(µµµ)[M j N ]{u̇N(t;µµµ)} + ∑

Q
q=1 Θq(µµµ)[KqN ]{uN(t;µµµ)} =

g(t){FN}. We have directly exploited our affine representa-
tions for stiffness and mass matrices: {LN} = [ZN ]T{LN },
{FN} = [ZN ]T{FN }, [KqN ] = [ZN ]T [KN

q ][ZN ],1 ≤ q ≤ Q, and
[M j N ] = [ZN ]T [MN

j ][ZN ],1≤ j ≤ J.
The Offline-Online procedure is now straightforward; in par-

ticular, the unsteady case is very similar to the steady case dis-
cussed in detail in the previous section. There are a few new
twists: as regards storage, we must now append to the ellip-
tic Offline dataset an affine development for the mass matrix
[M j N ],1 ≤ j ≤ J, associated with the unsteady term; as regards
computational complexity, we must multiply the elliptic oper-
ation counts by K to arrive at O(KN3) (in fact, O(KN2) for a
Linear-Time-Invariant system) for the Online operation count,
where K is the number of time steps in our temporal discretiza-
tion. (Recall that in actual practice our “truth” is discrete in time.)
Thus, the Online evaluation of sN(µµµ) remains independent of N
even in the unsteady case.

Reduced Basis Error Estimator We can now de-
fine the a posteriori error estimator for |sN (µµµ) − sN(µµµ)|

as ∆s
N(µµµ) = σ0

α
N
LB(µµµ)

((R t f
0 h2(t)dt

)(R t f
0 ε2(t;µµµ)dt

))1/2
, where

σ2
0 = {LN }T [YN ]−1{LN } is the square of the dual norm

of the output vector LN and ε2(t;µµµ) = {RN }T [YN ]−1{RN }
is the square of the dual norm of the residual vec-
tor {RN (t;µµµ)}= g(t){FN }−∑

J
j=1 Φ j(µµµ)[MN

j ][ZN ]{u̇N(t;µµµ)}−
∑

Q
q=1 Θq(µµµ)[KN

q ][ZN ]{uN(t;µµµ)}. Of course, in practice, we ap-
ply the trapezoidal rule for the integral in the error bound and the
Euler-Backward scheme for the residual expression. Then both
∆s

N(µµµ) and ε2(t;µµµ) can be expressed as sums of products of µµµ-
dependent coefficients and µµµ-independent quantities as shown in
the steady case.

Therefore, we can readily adapt the Offline-Online strategy
developed in the steady case to the unsteady case — with the
few twists already described in the previous subsection. The cru-
cial point, again, is that the cost and storage in the Online stage
— the marginal cost to evaluate ∆s

N(µµµ) for each new value of
µµµ — is independent of N : thus we can not only evaluate our
output prediction but also our rigorous output error bound very
rapidly in the parametrically interesting contexts of real-time or
many-query investigation. In short, we inherit the high fidelity
and certainty of the FE approximation but at the low cost of a
reduced-order model.

Finally, it should be noted that both the RB output and as-
sociated error bound are rather crude. In actual practice, in par-
ticular in the rbMIT c© software, we pursue primal-dual reduced
basis approximations that provide both more rapid convergence
of the RB output and also more robust (sharper) estimation of
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the output error. The primal-dual RB approach requires the in-
troduction of an adjoint problem, which admits a very similar RB
treatment as the primal problem (8) described here. We refer the
reader to [4] for details of the primal-dual RB approach.

3 THE rbMIT c©MIT SOFTWARE
The rbMIT c© software package implements in Matlab R© all

the general RB algorithms, [6]. The rbMIT c© Software archi-
tecture can be divided into three steps: the Problem Formulation
Step, the RB Offline Step, and the RB Online Step.

The User Input The user must describe the problem.
The input can be separated into three parts: the geometry, the
“material,” and the parameter control. For geometry input, the
user must describe the geometry Ωo(µµµ) by providing points co-
ordinates (which can be a function of µµµ), straight or curvy edges
that describe all regions (or holes), and finally the regions Ωk

o(µµµ)
in terms of the provided edges. For material input, the user
must provide the necessary coefficients in Eqn. (2) for each re-
gion Ωk

o(µµµ) as well as the coefficients in the boundary conditions.
For parameter control, the user must provide the parameter do-
main D , or a functional that describes the “in-out” properties of
a point µµµ ∈ RP with respect to D (and also reference parameters
for the reference mapping and inner product). The user should
also provide information which describes stopping criteria for
the RB sample set construction, for example Nmax or the RB er-
ror tolerance. The user inputs are provided in a relatively simple
“rbU” file; examples may be found in the rbMIT documentation
at http://augustine.mit.edu/methodology/..
../methodology rbMIT System.htm.

The Problem Formulation Step This step constructs
the underlying “truth” FE discretization in an affine representa-
tion suitable for subsequent Offline-Online RB approximation.
First, our coarse triangulation is constructed using data provided
in the User Input and a custom constrained Delaunay triangula-
tion algorithm with special considerations for curvy edges. Ge-
ometric transformations are then constructed symbolically for
each sub-triangle, which — coupled to the material input —
generate variable (µµµ-dependent) coefficients Θq(µµµ) for each sub-
triangle. In actual practice, the Θq(µµµ) functions are then com-
bined, by eliminating duplicated or proportional terms, to mini-
mize Q. At the final stage, a FE mesh — which conforms to all
edges of all sub-triangles — is generated and discrete FE stiff-
ness matrices and vectors are assembled for each sub-triangle
(and then combined) to form the µµµ-independent components of
Eqn. (3). Note that all (µµµ-dependent) Θq(µµµ) functions are stored
as symbolic quantities while all (µµµ-independent) FE matrices and

vectors component are stored as numeric quantities4.

The RB Offline Step This step first generates the Offline
data for the computation of the lower bound of the coercivity
constant [5]. Next, a greedy algorithm is invoked to obtain the
RB parameter sample set SNmax and [ZNmax ]. Finally, {FNmax},
[KqNmax ], and all underbraced quantities in (5) are then saved in
an “Online Database” (of size O(Q2N2

max)) for use by the RB
Online Step. The RB Offline step is the most computationally
expensive step since the operation count depends on N .

The RB Online Step In this stage, given an input pa-
rameter value in the parameter domain, the RB Online Eval-
uator retrieves the minimal pre-computed data from the “On-
line Database” and returns both (a) an accurate RB prediction
for the output, sN(µµµ), and (b) a certificate of fidelity that rigor-
ously bounds the error in the RB prediction relative to the highly
accurate truth finite element solution, ∆s

N(µµµ). For example, for
the (steady) problem named probname = ‘fin’ with output
named outputname = ‘average’, the Matlab syntax to
calculate the RB output (sN) and the associated error estimation
(DeltaN) for µµµ = [0.1,3,1] is [sN, DeltaN] = Online
RB(‘fin’,[.1,3,1],‘average’)5. The operation count
for the RB Online step is very low, independent of the resolution
of the FE approximation.

The RB Visualizer (a) renders the relevant field variable, and
(b) provides an associated rigorous bound for the error in the RB
field relative to the finite element field. In RB Visualizer, the
computational cost to recreate the RB field depends on N —
O(NN ) — however for small N real-time response can still be
attained.

4 ILLUSTRATIVE WORKED PROBLEMS
In this section we describe the application of the RB

methodology to two examples (“worked problems”) dealing
with steady and unsteady heat transfer: (1) a thermal fin problem,
and (2) a nonhomogeneous semi-infinite body problem [20].
These problems (and many others) are available at the address
http://augustine.mit.edu/workedProblems.htm
for download or via a Matlab R© webserver.

4The current rbMIT c© software supports several PDE engines for the
generation of the FE mesh and all FE matrices and vectors, including the
Matlab R©PDEtoolbox, the commercial software COMSOL R©, and a “home–
brew” PDE engine.

5This Matlab command-line entry illustrates both the simple inputs required
on the part of the Student as well as the “constrained flexibility” allowed the Stu-
dent: although the values of the three inputs are specified by the Student (Online),
the definition of these input parameters (described in Section 4.1) and the domain
D over which these parameters can vary is prescribed by the Instructor.
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4.1 The Thermal Fin Problem
This problem considers the performance of a heat sink de-

signed for the thermal management of high-density electronic
components. The heat sink, shown in Fig. 1, comprises a
base/spreader which in turn supports a number of plate fins ex-
posed to flowing air; we shall consider the shaded domain — one
half of one fin in the multi-fin sink — due to assumed periodic-
ity and symmetry. We model the flowing air through a simple
convection heat transfer coefficient; our interest is in the temper-
ature at the base of the spreader. From the engineering point of
view, this problem illustrates the application of conduction anal-
ysis [2] to an important class of cooling problems: electronic
components and systems. From the physical point of view, this

Figure 1. Heat sink problem.

worked problem illustrates many aspects of steady conduction
heat transfer: (i) the basic elements of thermal resistance, (ii) the
notion of a constriction resistance, and most importantly (iii) the
utility of the “thermal fin” concept, and (iv) the relevance of the
classical “1-D thermal fin” idealization.

We assume that the spreader has thermal conductivity κ̃sp
and that the plate fin has thermal conductivity κ̃fin; we denote
the ratio of these conductivities as κ ≡ κ̃sp/κ̃fin. The distance
between neighboring fins (and by assumption twice the thick-
ness of the fins) is denoted d̃per, while the height of the fin
is denoted L̃. We characterize the heat transfer from the fin
to the air by a heat transfer coefficient h̃c and the correspond-
ing non-dimensional Biot number, Bi ≡ h̃cd̃per/κ̃fin. Note that
a tilde ˜ denotes dimensional quantities, and the absence of a
tilde signals a non-dimensional quantity. We shall consider here
P = 3 parameters. Here µ1 is the Biot number, Bi, µ2 ≡ L =
L̃/d̃per, the nondimensional fin height, and µ3 is the spreader-
to-fin conductivity ratio, κ. The parameter domain is given by
D = [0.01,0.5]× [2,8]× [1,10].

The temperature is measured relative to the temperature
of the air “at infinity” and non-dimensionalized with respect
to (q̃d̃per/κ̃fin), where q̃ is the dimensional heat flux into the
spreader base; the spatial coordinate x̃ = (x̃o1, x̃o2) is nondimen-
sionalized with respect to d̃per. We identify in Fig. 2 the points
and regions Ωk

o(µµµ), 1 ≤ k ≤ 2, which will serve to define the
nondimensional geometry and physical properties.
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Figure 2. Heat sink: parametrized geometry and boundary.

The steady-state (non-dimensional) temperature distribution
uo(µµµ) over the (non-dimensional) domain Ωo(µµµ) satisfies the
conduction equation. We impose continuity of temperature and
heat flux at the spreader-fin interface; zero heat flux (conserva-
tively) on the horizontal exposed surfaces of the spreader and fin;
uniform heat flux at the base of the spreader (as a model of the
Joule heating from the electronic component); heat-transfer co-
efficient/convection (Robin) boundary conditions on the vertical
face of the fin — the surface exposed to the flowing air; and a
symmetry condition on the other vertical cuts.

Mathematically, uo(µµµ) satisfies

− ∂

∂xoi

([
µ3 0
0 µ3

]
︸ ︷︷ ︸

κ1
oi j

∂

∂xo j
uo(µµµ)

)
= 0 in Ω

1
o, (9)

− ∂

∂xoi

([
1 0
0 1

]
︸ ︷︷ ︸

κ2
oi j

∂

∂xo j
uo(µµµ)

)
= 0 in Ω

2
o(µ2), (10)

with summation (i, j = 1,2) over repeated indices. On the in-
ternal interface Γo4 (between the two regions), we impose con-

tinuity of temperature uo(µµµ) and heat flux noiκoi j
∂

∂xo j
uo(µµµ),

where noi denotes unit outward normal. On boundaries Γo2,
Γo3, Γo7, Γo8, Γo9 and Γo10 we impose homogeneous Neumann

conditions, noiκoi j
∂

∂xo j
uo(µµµ) = 0. Finally we impose a non-

homogeneous Neumann condition, noiκ
1
oi j

∂uo
∂xo j

(µµµ) = 1 on Γo1,

and the Robin conditions, noiκ
2
oi j

∂uo
∂xo j

(µµµ) + (µ1)uo = 0 on Γo5,

noiκ
2
oi j

∂uo
∂xo j

(µµµ) + (µ1)uo = 0 on Γo6, corresponding to flux and
heat-transfer coefficient/convection, respectively.
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The output for this problem is the average temperature over
the base of the spreader — which corresponds not only to the
point of interest (the electronic component to be cooled) but
also to the hottest location in the system. We denote this out-
put by Toav(µµµ) = 2

R
Γo1

uo(µµµ); note the output will depend on our
three parameters, µ ≡ (Bi,L,κ). (Recall that this output is non-
dimensionalized: to translate Toav(µ) into a dimensional temper-
ature we must multiply by q̃d̃per/κ̃fin and then add the ambient
temperature level.) Other outputs of interest may include the av-
erage temperature at the root of the fin (i.e., at the spreader-fin
interface), and the average temperature at the tip of the fin (re-
lated to fin efficiency).

This problem is then mapped to our fixed reference domain
Ω and subsequently discretized by a P1 finite element (FE) dis-
cretization [14]; the FE space contains N = 4198 degrees of free-
dom. This FE approximation is typically too slow for many ap-
plications, and we hence approximate the FE prediction for the
output and field variable by the certified reduced basis method
described in the previous section.

We present in Figure 3 our results as a plot of the RB
output and RB error bars — defined as the interval [sN(µµµ)−
∆s

N(µµµ),sN(µµµ) + ∆s
N(µµµ)] in which the truth FE solution must re-

side — as a function of µ1 for µ2 = 2 and µ3 = 1 for N = 6.
(Here N actually refers to the number of primal modes and dual
modes within our primal–dual formulation [13, 19].) These re-
sults demonstrate the small value of N required to achieve cer-
tified high accuracy; these results also demonstrate the impor-
tance of the error bounds not only in certifying the results but
also in ensuring efficiency — permitting us to safely choose a
small value of N without sacrificing accuracy or certainty. The
method also converges very quickly — increasing N to 13 re-
duces the certified error (maximum error bar in Figure 3) by a
factor of 102— the error bars are no longer discernable.

As regards computational times, a RB Online evaluation re-
quires on average 0.13s for N = 7 and 0.15s for N = 13, including
both sN(µµµ) and ∆s

N(µµµ); FEM solution µµµ→ sN (µµµ) requires 1.96s
to be completed. Hence an average Online evaluation requires
only 5− 6% of the FEM computational cost. This fin model is
only two-dimensional; of course a three-dimensional model is
possible and in this case the RB computational advantages will
be even more significant.

4.2 Delamination Crack
This worked problem considers the transient evolution of the

temperature field near the surface of a Fiber-Reinforced-Polymer
(FRP) Concrete (C) slab [20]. The FRP is affixed or retrofitted
to concrete or masonry surfaces to strengthen or rehabilitate the
(infra)structure; unfortunately, the FRP is susceptible to delami-
nation, and the formation of cracks at the FRP-Concrete interface
can jeopardize integrity [8, 20]. The problem geometry — FRP,
C, and delamination crack — is shown in Figure 4 (note that

0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

μ1

Figure 3. RB output and RB error bars — defined as the interval
[sN(µµµ)−∆s

N(µµµ),sN(µµµ)+∆s
N(µµµ)] — as a function of µ1 for µ2 = 2, µ3 = 1

and N = 6.

Figure 4 is not drawn to scale in the vertical direction). From the
engineering point of view, the inverse version of this problem il-
lustrates the application of transient conduction to real-time non-
destructive evaluation — here, crack detection. From the physi-
cal point of view, this problem illustrates (i) the basic time scales
associated with transient conduction, and (ii) the dependence of
temperature field evolution on material and geometric inhomo-
geneities.

The key components are the FRP layer above of depth d̃FRP;
the Concrete slab below (effectively of infinite depth); and the
delamination crack of length 2w̃del — modeled as an insulating
infinitely thin gap — at the interface between the FRP and the
Concrete. The critical physical properties are the density, spe-
cific heat, and conductivity which we shall denote by ρ̃, c̃, and κ̃

respectively; subscripts FRP and C shall refer to the FRP and
the Concrete components, respectively. We shall assume that
ρ̃Cc̃C = ρ̃FRPc̃FRP; hence κ = κ̃FRP/κ̃C, the ratio of the FRP and
Concrete conductivities, is also the ratio of the FRP and Concrete
thermal diffusivities. (We exploit this coincidence/simplification
in our formulation.) We consider P = 3 parameters. Here µ1
and µ2 are geometry parameters: µ1 ≡ w̃del/d̃max

FRP is the nondi-
mensional delamination crack width, and µ2 ≡ d̃FRP/d̃max

FRP is the
nondimensional crack location — the thickness of the FRP layer;
note d̃max

FRP is the maximum FRP layer thickness of interest. The
remaining (always non-dimensional) parameter is µ3 = κ, the
ratio of the FRP and Concrete thermal conductivities (and co-
incidentally, diffusivities). The parameter domain is given by
D = [0.1,1]× [0.1,1]× [0.4,1.8].

The temperature is measured relative to the initial tempera-
ture and non-dimensionalized with respect to q̃d̃max

FRP/κ̃FRP, where
q̃ is the dimensional heat flux imposed at the top boundary; the
spatial coordinate (x̃o1, x̃o2) is nondimensionalized with respect
to d̃max

FRP; and the temporal variable t̃ is nondimensionalized with
ρ̃FRPc̃FRP(d̃max

FRP)2/κ̃FRP. We identify in Figure 5 the nondimen-
sional points, regions Ωk

o, 1≤ k≤ 2, and boundary/interfaces Γo ·
which will serve to define the geometry and physical properties.
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Figure 4. Delamination crack in FRP bonded to Concrete.
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Figure 5. Delamination crack: Parametrized geometry.

The nondimensional temperature uo(t,µµµ) over the (nondi-
mensional) domain Ωo and time interval [0, t f = 2.5] is governed
by the heat (or diffusion) equation. (Note a final time of t f is
sufficient for the surface flux to reach (beyond) the crack.) We
impose continuity of temperature and heat flux at the FRP-C in-
terface; zero temperature at the bottom of the C layer; uniform
but time–dependent heat flux at the FRP surface; and zero flux
conditions on all other boundaries, including the (two) crack sur-
faces.

Mathematically, uo(µµµ) satisfies for t ∈ (0, t f ]

∂uo(µµµ)
∂t

− ∂

∂xoi

([
1 0
0 1

]
︸ ︷︷ ︸

κ1oi j

∂

∂xo j
uo(µµµ)

)
= 0 in Ω

1
o(µµµ),

∂uo(µµµ)
∂t

− ∂

∂xoi

([
µ3 0
0 µ3

]
︸ ︷︷ ︸

κ2
oi j

∂

∂xo j
uo(µµµ)

)
= 0 in Ω

2
o(µµµ),

with initial condition uo(t = 0) = 0. On the FRP-C in-
terfaces, we impose continuity of temperature and heat flux

noiκoi j
∂

∂xo j
uo(µµµ). On boundary Γo1 (the C bottom) we im-

pose homogeneous Dirichlet conditions uo(µµµ) = 0. On bound-
ary Γo10 (the FRP surface) we impose a non-homogeneous Neu-
mann condition, noiκ

2
oi j

∂uo(µµµ)
∂xo j

= g(t) on Γo10, where the con-
trol input g(t) may be any square-integrable function of time t.
Finally, on boundaries Γo2, Γo4, Γo5, Γo6, Γo7, Γo9, Γo11 and
Γo12 we impose homogeneous Neumann conditions (insulation),

noiκoi j
∂

∂xo j
uo(µµµ) = 0.

The output of interest is the integral of the average tem-
perature of the FRP layer over the time interval (0, t f ]: s(µµµ) =

1
3µ2

R t f
0

(
h(t)

R
Ω2

o
uo(t;µµµ)

)
dt, where we recall that the final time

is t f = 2.5. Although h(t) can be any square-integrable function
of t, we consider here h(t) = 1 in our numerical experiments. In
actual practice, we consider more interesting outputs [8] — aver-
age temperatures over small measurement sites as a function of
time — but for simplicity of exposition here we restrict attention
only to a simpe output.

This problem is then mapped to our fixed reference domain
and subsequently discretized by a P1 linear FE approximation
space of N = 1,912 degrees of freedom in space and the Euler-
backward scheme with a constant timestep ∆t = 0.05 in time.
The number of time steps is thus K = 50 for our final time t f =
2.5. We consider the particular case in which g(t) = t for t ≤
1.25 and g(t) = 2.5− t for t > 1.25. Note that g(t) — thanks
to “impulse training” RB space — need be specified only in the
Online stage [4].

We present our results in a fashion similar to the steady case.
We plot in Figure 6 for N = 25 the RB output and RB error
bars — defined as the interval [sN(µµµ)−∆s

N(µµµ),sN(µµµ) + ∆s
N(µµµ)]

in which the truth FE output sN (µµµ) must reside — as a function
of µ1 for µ2 = 0.2 and µ3 = 1. (Here N actually refers to the
number of primal modes and dual modes within our primal–dual
formulation [4, 13, 19].) These results demonstrate the high ac-
curacy of the RB prediction even for modest N; these results also
demonstrate the importance of the error bounds not only in certi-
fying the results but also in ensuring efficiency — permitting us
to safely choose a small value of N without sacrificing accuracy
or certainty. We note that for this unsteady problem we require
larger N — since we must resolve the behavior in time as well,
however the (Online) RB calculation (of both output and output
error bound) is still 60× (for N = 25) faster than the direct truth
evaluation.
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