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We introduce a new hybridizable discontinuous Galerkin (HDG) method for the numerical 
solution of the Helmholtz equation over a wide range of wave frequencies. Our approach 
combines the HDG methodology with geometrical optics in a fashion that allows us to take 
advantage of the strengths of these two methodologies. The phase-based HDG method 
is devised as follows. First, we enrich the local approximation spaces with precomputed 
phases which are solutions of the eikonal equation in geometrical optics. Second, we 
propose a novel scheme that combines the HDG method with ray tracing to compute 
multivalued solution of the eikonal equation. Third, we utilize the proper orthogonal 
decomposition to remove redundant modes and obtain locally orthogonal basis functions 
which are then used to construct the global approximation spaces of the phase-based 
HDG method. And fourth, we propose an appropriate choice of the stabilization parameter 
to guarantee stability and accuracy for the proposed method. Numerical experiments 
presented show that optimal orders of convergence are achieved, that the number of 
degrees of freedom to achieve a given accuracy is independent of the wave number, and 
that the number of unknowns required to achieve a given accuracy with the proposed 
method is orders of magnitude smaller than that with the standard finite element method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The numerical solution of wave phenomena in acoustics, elastodynamics and electromagnetics has found important ap-
plications in many areas of engineering and science such as aerospace, geophysics, civil engineering, mechanical engineering, 
telecommunication, medicine, and biology. Examples of applications include noise reduction, stealth technology, seismic and 
earthquake nondestructive testing, antenna design, the detection of hidden targets, radar, satellite, nanophotonic devices, op-
tical fibers, waveguides, and medical imaging. The wide range of applications has led to the development of many numerical 
methods for simulating wave propagation phenomena over a wide frequency spectrum. Direct numerical methods such as 
finite element (FE), finite difference (FD), and boundary element (BE) methods are commonly used to solve problems in 
domains that can span tens or even a few hundred wavelengths. However, these direct numerical methods are rarely used 
to solve problems at high frequencies because the number of grid points required to resolve the waves with these methods 
increases dramatically with the wave number k.

As a consequence, asymptotic numerical methods have been developed to deal with problems at high frequencies [5]. The 
simplest asymptotic method is geometrical optics (GO) that expresses the solution to the wave equations as an exponential 
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function times an infinite series in k−1. This asymptotic expansion is substituted into the wave equations to yield the eikonal 
equation for the phase and a sequence of transport equations for the amplitudes [48]. The main drawbacks of the GO model 
are that it does not account for diffraction effects at boundaries and breaks down at caustics where the predicted amplitude 
is unbounded. More sophisticated models such as the geometrical theory of diffraction (GTD) [5] and uniform theory of 
diffraction (UTD) [35] are needed to bring diffraction phenomena into the GO model. The main advantage of asymptotic 
numerical methods is that their complexity is independent of the wave number k, while their accuracy generally improves 
as k increases. However, because these methods approximate the wave equations at infinite frequency, they tend to be less 
accurate for moderate frequencies and may lead to erroneous results for problems at the low frequency spectrum.

In this paper, we introduce a new hybridizable discontinuous Galerkin (HDG) method for the numerical solution of the 
Helmholtz equation over a wide range of wave frequencies. Our approach combines the HDG methodology [13,19,30,42,
43] with geometrical optics in a fashion that allows us to take advantage of the strengths of these two methodologies. 
The new HDG method is devised as follows. First, we enrich the local approximation spaces with precomputed phases 
which are solutions of the eikonal equation in geometrical optics. Second, we devise a systematic procedure for computing 
multivalued solutions of the eikonal equation. Third, we utilize the proper orthogonal decomposition to remove redundant 
modes and obtain locally orthogonal basis functions which are then used to construct the global approximation spaces of 
the HDG methods. These basis functions allow for a good representation of the solution of the Helmholtz equation because 
they are able to capture the oscillatory part of the solution for a wide range of wave numbers. And fourth, we propose an 
appropriate choice of the stabilization parameter to guarantee stability and accuracy. We present several numerical examples 
to demonstrate the performance of the proposed approach. Numerical results show that optimal orders of convergence are 
achieved and that the number of unknowns required to achieve a given accuracy with the proposed method is orders of 
magnitude less than that with the standard finite element method.

The idea of enriching the approximation spaces with wave-like functions has been applied to both FE methods and 
BE methods. One approach is that a large number of free-space wave solutions are used to construct the basis functions. 
For instance, the basis functions are the products of polynomials and plane waves which are uniformly distributed on the 
unit circle (in 2D) or unit sphere (in 3D). This is the approach pursued by partition of unity [2], ultra weak variational 
formulation [8], discontinuous enrichment methods [25], and plane wave DG method [28,32]. Although these methods can 
reduce the number of grid points necessary to resolve the waves, they suffer from inherent ill-conditioning due to the choice 
of the basis functions. Their advantage compared to standard FE methods is not clear. Another hybrid approach constructs 
the basis functions as the products of polynomials and the oscillatory phase factors, just as we do, instead of plane waves. 
This approach has been applied in both the BE context [6,34] and in the FE context [29]. Because its basis functions capture 
most of the oscillatory part of the solution, it needs significantly less grid points than the previous approach to achieve the 
same accuracy. Like the methods proposed here, they require the computation of multiple solutions of the eikonal equation 
— a challenging problem — that has been extensively investigated by several researchers and solved by using Lagrangian ray 
tracing schemes [1,4] or Eulerian schemes [18,24,26,44]. In contrast with the method proposed here, the methods developed 
in [6,34] are based on integral equations and, as such, are limited e.g. to piecewise constant material properties (precluding, 
for instance, simulations in hydroacoustics). Moreover, our variational formulation avoids the need for singular integration, 
which may be further complicated by highly oscillatory behavior. On the other hand, the formulation of the method [29]
differs with ours only in the type of finite element method: Instead of the continuous Galerkin method, we use the HDG 
method. However, our contribution is unique in a number of aspects including that it is the first successful application to 
smooth non-convex configurations giving rise to multiple scattering; that it uses HDG with all its advantages; and that it 
uses HDG to ascertain the GO solution.

The paper is organized as follows. In Section 2, we present a short overview of the literature to put the contribution 
of this paper in perspective. In Section 3, we introduce our phase-based HDG method. In Section 4, we present several 
numerical examples to demonstrate the performance of the proposed approach. Finally, in Section 5, we end the paper with 
some concluding remarks.

2. Literature overview

2.1. HDG methods

Although the DG methods were proven to be successful for a variety of nonlinear hyperbolic problems [21], their straight-
forward application to diffusion problems was criticized for providing sub-optimally convergent approximations for the flux, 
in contrast with mixed methods, as well as for producing a substantially larger amount of globally-coupled degrees of free-
dom (for the same mesh and polynomial degree of the approximation) in comparison to the standard continuous Galerkin 
method. The HDG methods [13] were introduced to address those criticisms. Indeed, these methods were devised to guaran-
tee that only the degrees of freedom of the approximation of the scalar variable on the interelement boundaries are globally 
coupled. Later, they were proven to provide an optimal order of convergence for the approximate flux and to share with 
the mixed methods their superconvergence properties for the scalar variable [11,15,16]. In this manner, the HDG methods 
retain the advantages typical of DG methods, namely, the ease in handling variable-degree approximations and noncon-
forming meshes, while being as efficiently implementable and accurate as the best mixed methods. This, in turn, motivated 
and fueled the extension of the HDG methods to a variety of steady-state and time-dependent problems of different types: 
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diffusion problems [10,33], convection–diffusion problems [12,38,39], incompressible flow [14,17,20,40,41], continuum me-
chanics [7,36,37,45,50], and, more recently, to time-dependent acoustic and elastic wave propagation in [19,42] and to 
the time-harmonic Maxwell’s equations [43] and the Helmholtz equation in [27,30]. In the setting of wave propagation 
problems, the HDG methods compare with other finite element methods favorably because they achieve optimal orders of 
convergence for both the scalar and vector unknowns and display new superconvergence properties.

We briefly describe HDG methods for a model Helmholtz equation

−�u − k2 u = f in � ⊂ R
d, (1a)

∂nu + i k α u = g on ∂�, (1b)

where � is a Lipschitz domain in Rd (d ≥ 2). In (1b), the coefficient α varies on the boundary ∂� and represents different 
types of boundary conditions. Specifically, the Neumann boundary condition corresponds to α = 0, the Dirichlet boundary 
condition to α = ∞, and the first-order absorbing boundary condition to α = ±1. The first-order absorbing boundary condi-
tion in (1b) is taken solely for the purposes of illustration, as it can be readily replaced by higher-order local or exact global 
(Dirichlet-to-Neumann) conditions or, more simply, by suitable perfectly matched layers (PML).

We next rewrite the Helmholtz equation as a first-order system

q − ∇u = 0, in �, (2a)

−∇ · q − k2 u = f , in �, (2b)

q · n + ikαu = g on ∂�. (2c)

The physical domain � is triangulated into elements K forming a mesh Th satisfying the standard finite element condi-
tions [9] (see p. 38). Then, letting ∂Th := {∂ K : K ∈ Th} and denoting by Fh the set of the faces F of the elements K ∈ Th , 
We seek a vector approximation qh to q, a scalar approximation uh to u, and a scalar approximation ̂uh to the trace of u on 
element boundaries in spaces of the form

V h = {v ∈ L2(�) : v|K ∈ V (K ) ∀K ∈ Th}, (3a)

Wh = {w ∈ L2(�) : w|K ∈ W (K ) ∀K ∈ Th}, (3b)

Mh = {μ ∈ L2(Fh) : μ|F ∈ M(F ) ∀F ∈ Fh}, (3c)

respectively, where V (K ), W (K ), and M(F ) are suitably chosen finite dimensional spaces. For instance, in the standard HDG 
method, we choose equal-degree local spaces

V (K ) := [P p(K )]d, W (K ) := P p(K ), M(F ) := P p(F ), (4)

where P p(D) is a space of complex-valued polynomials of degree at most p on D . We introduce the following inner 
products

(v, w)Th :=
∑

K∈Th

(v, w)K , 〈v, w〉∂Th :=
∑

K∈Th

〈v, w〉∂ K , (5)

where we write (u, v)D := ∫
D uv dx whenever D is a domain of Rd , and 〈u, v〉D := ∫

D uv dx whenever D is a domain of 
R

d−1. For vector-valued functions v and w , the integrals are similarly defined with the integrand being the dot product 
v · w . Note that w denotes the complex conjugate of w .

The HDG approximations (qh, uh, ̂uh) in Wh × V h × Mh are determined by requiring that

(qh, r)Th + (uh,∇ · r)Th − 〈̂uh, r · n〉∂Th = 0, (6a)

(qh,∇w)Th − 〈̂qh · n, w〉∂Th − (k2uh, w)Th = ( f , w)Th , (6b)

〈̂qh · n + ikαûh,μ〉∂Th = 〈g,μ〉∂�, (6c)

q̂h = qh − τ
(
uh − ûh

)
n on ∂Th, (6d)

hold for all (r, w, μ) in V h × Wh × Mh . Here, τ is the so-called stabilization function.
Note that, on any given interior face F ∈ Fh , the numerical trace q̂h given by (6d) is double-valued since the traces on 

F of qh and uh are double-valued. This is the key feature of the HDG method since this property allows us to use the first 
three equations (6) to express, in an elementwise manner, the functions qh, uh and q̂h in terms of the data f and ûh . The 
approximation ûh is then determined by (6c), which actually enforces the single-valuedness of the normal component of 
the ̂qh . This is how the HDG method guarantees that only globally coupled degrees of freedom are those of the approximate 
trace ̂uh . By means of the so-called hybridization technique, the HDG method (6) gives rise to the following linear system

Aû = f. (7)

Here û ∈ C
Ndof is the vector containing the degrees of freedom of ̂uh with

Ndof = N f × Np, (8)



N.C. Nguyen et al. / Journal of Computational Physics 290 (2015) 318–335 321
where N f is the number of faces in the mesh and Np is the number of polynomials per face, which is equal to p + 1 in 
two dimensions or (p + 1)(p + 2)/2 in three dimensions.

In [30] it was shown that, if k h is small enough and if the stabilization function τ is taken to be a uniformly bounded, 
strictly positive function, the approximations qh and uh converge with the optimal order p + 1 whenever they are taken to 
be piecewise polynomials of degree p ≥ 0 (in each component). Moreover, the computations in [30] seem to suggest that 
the condition number of the matrix A might be independent of the wave number k, a point that seems to be corroborated 
by the results obtained in [27]. Indeed, in [27] two DG methods, one of them strongly related to the HDG method under 
consideration, were proven to be well defined independently of the value of the wave number k piecewise linear approxi-
mations. In particular, the L2(�)-norm of the approximate gradient and k times the L2(�)-norm of the scalar approximation 
were both bounded uniformly with respect to the wave number k as k goes to infinity. However, with the choice of the 
local spaces in (4), the global number of unknowns Ndof would increase significantly with the wave number k. As a result, 
the standard HDG method (6) is not computationally efficient for large values of k.

2.2. Asymptotic numerical methods

Asymptotic numerical methods overcome this inability of direct numerical techniques to solve the Helmholtz problem 
(1) at high wave numbers. One of the popular asymptotic approaches is the Luneberg–Kline expansion [5] (see p. 93) which 
expresses the solution of the Helmholtz problem by the following series:

u(x) ∼ eikϕ(x)
∞∑

n=0

An(x)

kn
, (9)

for an unknown phase ϕ and unknown amplitudes An . Let us assume for the sake of simplicity that f = 0 in (1). Substituting 
this expression into (1a) and letting k → ∞ we readily obtain the eikonal equation

|∇ϕ| = 1, in �, (10)

for the phase, while the amplitudes solve a sequence of transport equations. This is the standard geometrical optics approach 
for numerically solving the Helmholtz equation [5].

A major drawback of the above asymptotic expansion is that it can only capture single-phase wave fields. As a result, 
many asymptotic methods consider a more general expansion

u(x) ∼
N∑

n=1

An(x;k)eikϕn(x), (11)

where the phases ϕn are independent of the wave number k and the amplitudes An are mildly dependent on the wave 
number k. Typically, the global expansion (11) breaks down at a small set of points, namely focus points, caustics, dis-
continuities in the wave speed and non-smooth boundary points. Like the phase ϕ of the Luneberg–Kline expansion, the 
phases ϕn in (11) also solve the eikonal equation (10). The asymptotic expansion (11) is the point of departure for advanced 
asymptotic methods such as the geometrical theory of diffraction (GTD) [5] and uniform theory of diffraction (UTD) [35].

In spite of the apparent simplicity of the eikonal equation (10), its nonlinear character and the multi-valuedness of 
its solution, pose significant challenges to its numerical approximation and render this problem a very active area of re-
search in computational science. Clearly a simple procedure to solve the eikonal equation can be based on the “method of 
characteristics” (ray-tracing) [1]. However, ray tracing has a number of issues related to ray divergence and wavefront re-
construction [24]. The consequent limitations have prompted the recent development of new computational methods based 
on (Eulerian) solution of partial differential equations. Early versions of this approach concentrated on the design of up-
wind [52,53], ENO schemes [26], and fast marching algorithms [49] for the direct solution of the eikonal equation (10). This 
(single-valued) solution, however, represents only the wave of first arrival at any given point and it may thus be insufficient 
for certain applications wherein significant effects arise as a consequence of multiple arrivals. For this reason, a number 
of algorithms have more recently been developed to upgrade the viscosity solution to the multi-valued solution. Among 
these we encounter, for instance, the big ray tracing method [4] and the slowness matching method [51]. All of these pro-
cedures are based on domain decomposition and local approximations of viscosity solutions, which are then combined into 
a multi-valued quantity.

On the other hand, an alternative approach to the approximation of multi-valued solutions is based on a “kinetic” for-
mulation that views rays as trajectories of particles following a Hamiltonian dynamics [44]. In this approach, multi-valued 
solutions are naturally “unfolded” through the introduction of conjugate phase variables. This, however, is achieved at the 
expense of doubling the number of independent variables, with the consequent potential for increased computational cost. 
To deal with this problem, two alternative strategies have been developed, leading to “wavefront” and “moment-based” 
methods respectively [24]. In the former, an interface representing a wavefront is evolved following the Liouville formula-
tion, while the latter is based on the derivation of new equations (for the moments of the density) with fewer unknowns. 
A recent scheme [18] sought to combine elements from these two approaches by relying on the evolution of an interface 
(defined in terms of level-set functions [44]) while avoiding the direct discretization of the phase variables. Instead, the 
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procedure is based on suitable (spectral) representations of the unknown field quantities and, as such, it can be related 
to moment methods where the moments are not chosen to be integrals against monomials in phase variables (needing a 
“closure hypothesis”), but rather against basis functions that guarantee accurate representations of general phase variations.

Once the phases have been determined by using the above techniques, one can compute the amplitudes by solving the 
transport equations or using GTD/UTD [5,35]. The most advantageous characteristic of these asymptotic methods is their 
ability to bypass the need to resolve field oscillations on the scale of the wavelength. This is, however, attained at the 
expense of a loss of error-controllability, which follows from the approximation that the theories entail at the level of 
the models (e.g., replacing the Helmholtz or Maxwell model by the eikonal equation and the transport equations). As a 
consequence, these high-frequency methods can incur significant inaccuracies when applied at finite frequencies, leaving a 
sizable gap in the range of frequencies wherein engineering or industrial design can rely on simulation [47].

2.3. Hybrid methods

Hybrid methods involve a combination of direct and asymptotic numerical methods. One simple approach is to take the 
local basis functions as a large number of free-space plane waves:

WPW(K ) = span{exp(ikdn · x),1 ≤ n ≤ N, ∀ x ∈ K }, (12)

where the direction vectors dn, 1 ≤ n ≤ N , are uniformly distributed on the unit circle (in 2D) or unit sphere (in 3D). More 
generally, one can take the local approximation space to consists of the products of plane waves and standard finite element 
polynomials:

WPPW(K ) = span {φm(x)exp(ikdn · x),1 ≤ n ≤ N,1 ≤ m ≤ M, ∀x ∈ K }, (13)

where φm(x), 1 ≤ m ≤ M , are standard finite element shape functions over the element K . This is the approach used by the 
partition of unity [2], ultra weak variational formulation [8], discontinuous enrichment [25], and the plane wave DG [28,32]
methods. More generally, instead of using plane waves one can employ other wave functions (e.g., the Hankel functions 
[46]) provided that the wave functions satisfy the Helmholtz equation. The resulting methods are then called Trefftz-based
methods [46]. Although Trefftz-based methods are more efficient than traditional FE and BE methods, the number of grid 
points necessary to resolve the waves with these methods depends strongly on the wave number k. This is because the 
Trefftz-based wave functions are free-space solutions of the Helmholtz equation which do not take the shape of the domain 
and the inhomogeneity of the medium into account.

A more promising hybrid approach is to take the local approximation space as:

WPE(K ) = span {φm(x)exp(ikϕn(x)),1 ≤ n ≤ N,1 ≤ m ≤ M, ∀x ∈ K }, (14)

where ϕn(x), 1 ≤ n ≤ N , are the phases described in the previous subsection. This approach has been pursued in both the 
FE context [29] and the BE context [6,34]. Since the phases account for the shape of the domain and the inhomogeneity 
of the medium, this approach require significantly less grid points than the previous approach to obtain the same accurate 
solution at high frequencies. However, this approach requires the computation of multi-valued solutions of the eikonal 
equations, which can be done prior to solving the Helmholtz equation. Once the phases have been computed, they can be 
used to solve the Helmholtz equation for any k. The resulting methods shall be called phase-based methods to distinguish 
them from the Trefftz-based methods.

Last but not least, we pay attention to another hybrid approach which uses a direct numerical method for a small part of 
the domain (e.g., corners, cavities, shadow boundaries, caustics), and an asymptotic numerical method on the remaining part 
of the domain. Instances of this approach include hybrid FEM/GTD [3] and BE/GTD [23]. However, this approach requires the 
implementation of both the direct and the asymptotic solvers, as well as a mechanism for handling the coupling between 
the two solvers.

3. Phase-based HDG method

3.1. Construction of the local approximation spaces

We assume that we are given N K phases ϕK
n (x) on every element K ∈ Th and N F phases ϕ F

n (x) on every face F ∈ Eh . 
We might attempt to define the local approximation spaces V (K ), W (K ) and M(F ) as

V (K ) := span{vn(x) eikϕK
n (x), vn ∈ [P p(K )]d, n = 1, . . . , NK }, (15a)

W (K ) := span{wn(x) eikϕK
n (x), wn ∈ P p(K ), n = 1, . . . , NK }, (15b)

M(F ) := span{μn(x) eikϕ F
n (x), μn ∈ P p(F ), n = 1, . . . , N F }. (15c)

Note that we allow the number of phases NK (N F ) to take different values on different elements (faces). Note also that 
if the phases are very similar, the basis functions of these local approximation spaces become almost linearly dependent. 
This in turns results in the degeneracy of the local approximation spaces and thus renders the resulting matrix system 
ill-conditioned and difficult to solve.
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In order to avoid the degeneracy of the local approximation spaces, we orthogonalize their basis functions to obtain the 
corresponding orthogonalized local spaces as follows. Let us denote by ξm(x), 1 ≤ m ≤ MK , the basis functions of W (K ), 
namely,

W (K ) := span{ξm(x), 1 ≤ m ≤ MK }. (16)

We next introduce a symmetric matrix C ∈ C
MK ×Mk with entries

Cij =
∫
K

ξi(x)ξ j(x), i, j = 1, . . . , MK . (17)

We then consider solving the following orthonormal eigenvalue problem

C v = λv, (18)

for the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λMK ≥ 0 and associated eigenvectors v1, v2, . . . , v MK . We then choose the smallest 
integer LK satisfying∑LK

�=1 λ�∑MK
m=1 λm

≥ 1 − ε, (19)

where ε ≥ 0 is a specified tolerance. Finally, we compute the new basis functions

ζ�(x) = 1√
λ�

MK∑
m=1

v� mξm(x), � = 1, . . . , LK , (20)

and define an associated space

W ⊥
ε (K ) := span{ζ�(x), 1 ≤ � ≤ LK }. (21)

It can be easily shown that these new basis functions are orthonormal in the following sense∫
K

ζi(x)ζ j(x) = δi j, i, j = 1, . . . , LK . (22)

This orthogonalization procedure is known as the proper orthogonal decomposition. Since MK is rather small solving the 
eigenvalue problem (18) is inexpensive.

We note that the eigenvalue problem (18) has at least Np positive eigenvalues, where Np is the dimension of the space 
P p(K ). If there is only one phase on the element K then the eigenvalue problem (18) has exactly N p positive eigenvalues 
because the matrix C is symmetric positive-definite. If there are multiple phases and they are nearly linearly dependent 
then some of the eigenvalues can be very small and close to zero. Our orthogonalization procedure rules out the use of 
these eigenvalues and associated eigenvectors (see Eqs. (19) and (20)). Hence, nearly linearly dependent phases do not pose 
any computational difficulty for the solution of the eigenvalue problem.

Similarly, we apply the POD to V (K ) and M(F ) to obtain the corresponding orthogonalized spaces V ⊥
ε (K ) and M⊥

ε (F ), 
respectively. Note that the dimension of these orthogonalized spaces depends on ε . Indeed, as we reduce ε , we will add 
more orthonormal basis functions to these spaces and thus enhance their approximation properties. However, if ε is too 
small, our orthogonalized spaces may contain redundant basis functions which do not contribute to their approximation 
properties and yet make the resulting method more ill-conditioned. Hence, the orthogonalization serves to enhance the 
numerical stability of the resulting method and reduce the degrees of freedom since the redundant ones are eliminated.

3.2. Computation of multivalued solutions of the eikonal equation

For certain problems with a simple geometry, one can solve the eikonal equation exactly to obtain the phases. However, 
for most problems, we need to solve the eikonal equation numerically. As already discussed in Subsection 2.2, there are 
a number of different approaches for computing multiple solutions of the eikonal equation. Here we extend the approach 
pursued in [4] by combining ray tracing with a variation of the HDG method introduced in [39], thereby taking advantage 
of the strengths of both Lagrangian and Eulerian frameworks.

In order to determine the phases ϕK
n , 1 ≤ n ≤ NK , on every element K ∈ Th , we consider the problem of solving the 

eikonal equation with different boundary conditions:

|∇ϕn| = 1, in K , (23a)

ϕn = rn, on ∂ K , (23b)

for all K ∈ Th . Here the boundary data rn, 1 ≤ n ≤ NK , to the eikonal equation are found by using the ray tracing algorithm. 
In practice, since the ray tracing procedure can be computationally expensive, we propose to solve the eikonal equation 
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at the subdomain level instead of solving it at the element level. More specifically, we first decompose the domain � into 
non-overlapping subdomains such that � = ∪S

s=1�
s . We next compute the phases on each of the subdomains by considering 

the eikonal equation∣∣∇ϕs
n

∣∣ = 1, in �s, (24a)

ϕs
n = rs

n, on ∂�s. (24b)

Here the boundary data rs
n, 1 ≤ n ≤ Ns , are obtained by the ray tracing scheme, where Ns is the number of phases on 

subdomain �s .
Finally, we use a variation of the HDG method introduced in [39] to solve the eikonal equation (24) as follows. We 

rewrite the eikonal equation as a first-order system as

ps
n − ∇ϕs

n = 0, in �s, (25a)∣∣ps
n

∣∣ = 1, in �s, (25b)

ϕs
n = rs

n, on ∂�s. (25c)

We then introduce approximation spaces

V s
h = {v ∈ L2(�s) : v|K ∈ [Pp(K )]d, ∀K ∈ T s

h }, (26a)

W s
h = {w ∈ L2(�s) : w|K ∈ Pp(K ), ∀K ∈ T s

h }, (26b)

Ms
h = {μ ∈ L2(F s

h) : μ|F ∈ Pp(F ), ∀F ∈ F s
h}, (26c)

where T s
h is the finite element triangulation of �s and F s

h is the collection of all faces in T s
h . We assume that ∪S

s=1T s
h = Th .

We now seek (ps
n,h, ϕ

s
n,h, ̂ϕ

s
n,h) ∈ V s

h × W s
h × Ms

h such that the following system of equations

(ps
n,h, r)T s

h
+ (ϕs

n,h,∇ · r)T s
h

− 〈ϕ̂s
n,h, r · n〉∂T s

h
= 0, (27a)

(|ps
n,h|, w)T s

h
+ 〈(ϕs

n,h − ϕ̂s
n,h), w〉∂T s

h
= (1, w)T s

h
, (27b)

〈(ϕs
n,h − ϕ̂s

n,h),μ〉∂T s
h \∂�s + 〈ϕ̂s

n,h − rs
n,μ〉∂�s = 0, (27c)

hold for all (r, w, μ) ∈ V s
h × W s

h × Ms
h . In Eq. (27b) the second integral represents the jump across the element interface and 

plays the role of a stabilization mechanism in the HDG method. In Eq. (27c) the first integral weakly enforces the continuity 
of this jump across the element interface, while the second integral weakly imposes the Dirichlet boundary condition. The 
nonlinear system (27) can be solved by using the Newton method. At every Newton iteration, we can locally eliminate the 
degrees of freedom of (ps

n,h, ϕ
s
n,h) to arrive at a global matrix system involving the degrees of freedom of ϕ̂n,h only; see [39]

for a detailed discussion.
Once (ϕs

n,h, ̂ϕs
n,h) has been computed, we obtain ϕK

n and ϕ F
n as follows. For any element K ∈ Th , we identify a subdomain 

�� containing K and set

ϕK
n (x) = ϕ�

n,h(x)|K , n = 1, . . . , N�. (28)

Similarly, for any face F ∈Fh , we identify a skeleton F�
h containing F and set

ϕ F
n (x) = ϕ̂�

n,h(x)|F , n = 1, . . . , N�. (29)

With these phases we construct the locally orthogonal approximation spaces as described in the previous subsection.

3.3. Phase-based HDG approximation of the Helmholtz equation

We are ready to describe our phase-based HDG approximation of the Helmholtz equation. We find (qh, uh, ̂uh) ∈ V ⊥
h,ε ×

W ⊥
h,ε × M⊥

h,ε such that the following equations

(qh, r)Th + (uh,∇ · r)Th − 〈̂uh, r · n〉∂Th = 0, (30a)

(qh,∇w)Th − 〈̂qh · n, w〉∂Th − (k2uh, w)Th = ( f , w)Th , (30b)

〈̂qh · n + ikαûh,μ〉∂Th = 〈g,μ〉∂�, (30c)

q̂h = qh − τ
(
uh − ûh

)
n on ∂Th, (30d)

hold for all (r, w, μ) ∈ V ⊥ × W ⊥ × M⊥ . Here the global approximation spaces are defined as
h,ε h,ε h,ε
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V ⊥
h,ε = {v ∈ L2(�) : v|K ∈ V ⊥

ε (K ), ∀K ∈ Th}, (31a)

W ⊥
h,ε = {w ∈ L2(�) : w|K ∈ W ⊥

ε (K ), ∀K ∈ Th}, (31b)

M⊥
h,ε = {μ ∈ L2(Fh) : μ|F ∈ M⊥

ε (F ), ∀F ∈ Fh}. (31c)

The weak form of the phase-based HDG method (30) is similar to that of the standard HDG method (6) except for the 
approximation spaces. This difference is key because, as we are gong to see, it is the main reason why the phase-based 
HDG method needs significantly less number of elements than the standard HDG method for the same accuracy. This will 
result in a considerable reduction in the CPU time and memory storage with the phase-based HDG method.

Finally, we note that the choice of the stabilization parameter is crucial to ensure the stability and accuracy of the 
phase-based HDG method. We propose to choose the stabilization parameter as

τ = ±ik, (32)

where the sign of τ takes the sign of the coefficient α in the Robin boundary condition (1b). This choice is based on the 
following dimensionality argument. We note from (30d) that the dimensionality of τ must be [1/L], where L is a length 
unit. Hence, the formula (32) guarantees the correct dimensionality of the numerical flux q̂h . Moreover, the stabilization 
parameter (32) is complex and has the same sign as α because we would like it to act as damping to provide stability for 
the resulting scheme.

Note that in [27] (for piecewise linear approximations and for their second method with β = k/2 and δ = 1/(2k)) and in 
[22] (for piecewise polynomials of arbitrary degree), it has been shown that our HDG method is well defined independently 
of the value of the wave number k in the case α = +1 and τ = +i k. Since here we are using α = −1, this means that 
the method is well defined provided we take τ = −i k. It is reasonable to surmise that the same result will hold for the 
choice of basis we are proposing in this paper. Moreover, it has been proven [30] (see also [22]) that the HDG method using 
piecewise polynomial approximations is optimally convergent and superconvergent for τ = +i k (and α = 1) whenever hk
is small. However, none of the above-mentioned error estimates show that the resulting method is free of the so-called 
pollution effect. Although the boundedness of the present method ant its error estimates are a hard, open problem, we 
show here that, with our special choice of bases, this phenomenon can be significantly reduced.

4. Numerical experiments

In this section, we present a variety of numerical examples to demonstrate the performance of the proposed method. The 
first example is devised to study the convergence rate of the method. The other two examples involve sound-hard scattering 
from a circular cylinder and kite-shaped scatterer. They serve to demonstrate the ability of the proposed method for dealing 
with diffraction at convex and concave boundaries, creeping rays, and caustics. In these examples, we will compare the 
phase-based HDG method with the standard finite element method [9] in terms of the global number of unknowns and 
accuracy.

4.1. A test case

We consider solving the Helmholtz equation (1a) in a domain � = (−1/2, 1/2) × (−1/2, 1/2) with a Dirichlet boundary 
condition u = gD on ∂�. Here we choose the source term f and boundary data gD such that the problem has the following 
exact solution

uex = A(x, y)exp(ikϕ(x, y)),

with A(x, y) = exp(x) + exp(y) and ϕ(x, y) = √
2(x + y)/2. Through this test case we will study the convergence of the 

phase-based HDG method. For this purpose, we assume that we are given the exact phase ϕ(x, y).
We consider triangular meshes obtained by splitting a regular n × n Cartesian grid into a total of 2n2 triangles, giving 

uniform element sizes of h = 1/n. Furthermore, we use polynomials of degree p to define the local approximation spaces 
in (15) for all the elements of those meshes. We present in Table 1 the relative error and the order of convergence of the 
approximate solution uh for k = 101, 102, 103, and 104. These results are obtained with the stabilization parameter τ = −ik. 
We observe that the convergence rate of the approximate solution is optimal with order O (hk+1) in the L2-norm for all of 
these values of k. We emphasize that these convergence results are obtained for very coarse meshes and high wavenumbers.

To understand the effect of the stabilization on the accuracy, we consider solving the same problem with the following 
Robin boundary condition (instead of the Dirichlet boundary condition)

∇u · n + ikαu = gR, on ∂�, (33)

for α = −1, where we choose gR so as to have the same exact solution as given above. We display in Fig. 1 the L2 error 
as a function of k for four different choices of τ when we take h = 0.1 and p = 2. We observe that the best results are 
obtained with τ = −ik, whereas the worst results are obtained with τ = +ik. Furthermore, the choice τ = −ik gives very 
similar results for both the Robin boundary condition and the Dirichlet boundary condition. These results justify our choice 
of the stabilization parameter according to (32). We shall thus use it in subsequent numerical experiments.
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Table 1
Relative error and order of convergence of the approximate solution uh for τ = −ik.

Degree
p

Mesh
h

k = 10 k = 100 k = 1000 k = 10 000

Error Order Error Order Error Order Error Order

1 1/2 1.79e−2 – 1.94e−2 – 1.93e−2 – 1.93e−2 –
1/4 3.94e−3 2.19 4.80e−3 2.01 4.76e−3 2.02 4.76e−3 2.02
1/8 9.14e−4 2.11 1.18e−3 2.02 1.18e−3 2.01 1.18e−3 2.01
1/16 2.22e−4 2.04 2.80e−4 2.08 2.94e−4 2.01 2.94e−4 2.01
1/32 5.50e−5 2.01 6.20e−5 2.17 7.34e−5 2.00 7.32e−5 2.00

2 1/2 8.89e−4 – 7.94e−4 – 7.73e−4 – 7.73e−4 –
1/4 7.60e−5 3.55 9.98e−5 2.99 9.51e−5 3.02 9.51e−5 3.02
1/8 8.90e−6 3.10 1.30e−5 2.94 1.18e−5 3.01 1.18e−5 3.01
1/16 1.10e−6 3.01 1.47e−6 3.14 1.47e−6 3.00 1.47e−6 3.01
1/32 1.37e−7 3.00 1.57e−7 3.23 1.87e−7 2.98 1.82e−7 3.01

3 1/2 3.89e−5 – 2.44e−5 – 2.34e−5 – 2.34e−5 –
1/4 1.12e−6 5.12 1.49e−6 4.03 1.45e−6 4.02 1.44e−6 4.02
1/8 6.77e−8 4.04 9.00e−8 4.05 9.03e−8 4.00 8.91e−8 4.01
1/16 4.21e−9 4.01 5.07e−9 4.15 5.62e−9 4.01 5.55e−9 4.00
1/32 2.63e−10 4.00 2.86e−10 4.15 3.51e−10 4.00 3.48e−10 4.00

Fig. 1. The L2 error as a function of k for four different choices of τ with h = 0.1 and p = 2. This result is obtained with the Robin boundary condition (33)
instead of the Dirichlet boundary condition.

4.2. Sound-hard scattering from a circular cylinder

We consider the exterior Helmholtz problem for scattering of an incident plane wave uinc = exp(ikx) by a circle of 
radius a = 1. The geometry and boundary conditions are depicted in Fig. 2(a), while the finite element mesh used in the 
computation is shown in Fig. 2(b). We impose the Neumann condition ∇u · n = −∇uinc · n on the unit circle and the Robin 
condition ∇u · n − iku = g on the outer circle. Here the boundary data is obtained as g = ∇uex · n − ikuex from the exact 
solution

uex(x, y) = − J ′
0(ka)

H1′
0 (ka)

H1
0(kr) − 2

∞∑
n=1

in J ′
n(ka)

H1′
n (ka)

H1
n(kr) cos(nθ), (34)

where (r, θ) are polar coordinates of (x, y), and Jn and H1
n are the Bessel function and the Hankel function of the first kind, 

respectively [31]. Note that the prime denotes the derivative of a function with respect to its argument.
This example serves to illustrate the ability of the phase-based HDG method to deal with diffractions at smooth convex 

boundaries. When an incident field hits a smooth obstacle there will be a shadow region behind it and the GO solution 
is discontinuous along the shadow boundary dividing the shadow part and the illuminated part of the obstacle. At the 
point (or curve in three dimensions) where the incident rays are tangent to the obstacle surface, the incident rays act as a 
source for surface rays, or creeping rays, that propagate along geodesics on the surface. The amplitude of the creeping rays 
is proportional to the amplitude of the incident rays and decays exponentially along the creeping ray’s trajectory. At each 
point on a convex surface the creeping rays emit surface-diffracted rays in the tangential direction, which follow the usual 
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Fig. 2. Problem specification of the unit circle scatterer: (a) geometry and boundary conditions and (b) finite element mesh of 1136 triangular elements.

Fig. 3. An illustration of the ray tracing scheme for phase computation: (a) reflected ray and (b) diffracted ray.

GO laws. To compute the contribution of the creeping rays to the wave field, one thus needs to find these surface-diffracted 
waves.

To obtain the phases, we decompose the domain � such that � = �1 ∪ �2, where �1 = {(x, y) ∈ � : x > 0, |y| < 1}
(shadow region) and �2 = �\�1 (illuminated region). Both subdomains have three phases which are obtained analytically 
as follows. The first phase is formed by the incident rays in �1 and the reflected rays in �2. In the subdomain �1, we know 
that ϕ1(x, y) = x since uinc = exp(ikx). For any point (x, y) ∈ �2, we use the law of reflection to compute ϕ1(x, y) as

ϕ1(x, y) = xA +
√

(x − xA)2 + (y − y A)2, (35)

where, as shown in Fig. 3(a), A = (xA, y A) is a point at which the incident ray hits the circle and generates a reflected ray 
that goes through (x, y). The second phase ϕ2(x, y) corresponds to the creeping rays emanating from O 1 = (0, 1). For any 
point P = (x, y) ∈ � it is computed as

ϕ2(x, y) = θ +
√

(x − xB)2 + (y − yB)2, (36)

where, as shown in Fig. 3(b), θ is the angle measured in radians between O 1 and B , and B is a point at which the vector 
�B P is tangent to the circle at B and directed in the clockwise direction. Note that the second phase ϕ2 is discontinuous 

along the line y = 1 with x ≥ 0 because θ is double-valued, namely θ = 0 and θ = 2π , at the point O 1. The third phase 
ϕ3(x, y) corresponds to the creeping rays emanating from O 2 = (0, −1) and is computed in a similar way as the second 
phase. Fig. 4 depicts the three phases ϕ1, ϕ2, and ϕ3.

Fig. 5 shows the plots of the approximate solution uh for k = 50, 100 and 200 when we take p = 2 and ε = 10−5. 
We observe that the phase-based HDG method is capable of providing full-wave solutions at high frequencies on a very 
coarse mesh of 1136 triangular elements. We present in Fig. 6 the relative error measured in the L2(�) norm and the 
condition number of the matrix system as a function of k. It is interesting to see that the relative error initially increases 
with k and then saturates around 6 × 10−3 for k > 100, while the condition number initially decreases with k and then 
fluctuates around 7 × 105 for k > 120. This is expected because the amplitudes are slowly varying functions in space and 
because the basis functions of the local spaces become rapidly oscillatory as k increases. These results clearly demonstrate 
that the proposed method allows us to achieve a given error tolerance at a cost which is almost independent of the wave 
number.
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Fig. 4. Three phases for the scattering of an incident wave uinc = exp(ikx) by the unit circle: (a) the first phase due to the reflected rays and the incident 
rays, (b) the second phase due to the diffracted rays emanating from (0, 1), and (c) the third phase due to the diffracted rays emanating from (0, −1). Note 
that the diffracted phases are discontinuous along the shadow boundary lines.

Fig. 5. Numerical results for the unit circle scatterer for p = 2: plots of uh for (a) k = 50, (b) k = 100 and (c) k = 200.

Fig. 6. Numerical results for the unit circle scatterer for p = 2: (a) relative error in the L2(�) norm ‖u − uh‖L2(�)/‖u‖L2(�) and (b) condition number of the 
global matrix as a function of k.
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Table 2
Comparison between the phase-based HDG method and the CG-FEM, and the standard HDG method. Here Ne is the number of elements, Ndof is the 
number of global unknowns, and Erel = ‖u − uh‖�/‖u‖� denotes the relative error measured in the L2 norm of the approximate solution.

k Phase-based HDG CG-FEM (p = 2) Standard HDG (p = 2)

Ne Ndof Erel Ne Ndof Erel Ne Ndof Erel

25 1136 8560 1.40E−03 27 270 55 140 2.55E−03 9780 44 550 3.08E−03
50 1136 9872 3.00E−03 109 208 219 616 4.38E−03 39 432 178 524 4.39E−03

100 1136 11 608 4.39E−03 436 176 874 752 8.24E−03 157 948 712 926 7.53E−03
150 1136 12 509 5.92E−03 983 356 1 970 312 1.21E−02 354 588 1 598 886 1.10E−02
200 1136 13 029 6.17E−03 1 751 518 3 507 836 1.61E−02 630 104 2 839 788 1.46E−02

Fig. 7. Problem specification of the kite-shaped scatterer: (a) geometry and domain decomposition and (b) finite element mesh of 3983 triangular elements.

In Table 2 we compare the phase-based HDG method with the continuous Galerkin finite element method (CG-FEM) and 
the standard HDG method in terms of the global unknowns and relative errors for k = 25, 50, 100, 150, and 200. Here all 
the methods use polynomials of degree p = 2 to represent the approximate solution. Again we use a tolerance of ε = 10−5

in the orthogonalization process of the phase-based HDG method. We observe that the global unknowns of the CG-FEM 
and the standard HDG method increase very rapidly with k, while those of the phase-based HDG method grow very slowly 
with k. (Note that because the basis functions in (15) become more rapidly oscillatory as k increases, the orthogonalization 
process removes less redundant degrees of freedom as k increases. As a result, even though the mesh is the same, the 
number of global unknowns of the phase-based HDG method increases with k.) We also see that the phase-based HDG 
method yields smaller relative errors than the CG-FEM and the standard HDG method. Specifically, the phase-based HDG 
method provides a relative error of 6.17 × 10−3 with only 13 029 degrees of freedom for k = 200, while the CG-FEM (the 
standard HDG method) produces a relative error of 1.61 ×10−2 (1.46 ×10−2) with 3 507 836 (2 839 788) degrees of freedom. 
Hence, the phase-based HDG method results in a degree-of-freedom saving of two orders of magnitude relative to both the 
CG-FEM and the standard HDG method. Clearly, this saving is made possible only through the introduction of the GO phases 
into the HDG method.

Finally, we emphasize that the orthogonalization is crucial to ensure not only the efficiency but also the stability of 
the phase-based HDG method. Indeed, since the first phase and the second phase have the same value along the shadow 
boundary line y = 1, x ≥ 0 (and the first phase and the third phase have the same value along the shadow boundary line 
y = −1, x ≥ 0), the phase-based HDG method without orthogonalization becomes ill-conditioned and unstable.

4.3. Sound-hard scattering from a kite-shaped scatterer

We consider the computation of a wave field scattering from a kite-shaped scatterer under an incident plane wave 
uinc = exp(ikx). The kite-shaped scatterer is represented by the following parameterized curve

x = cos(t) + 0.65 cos(2t) − 0.65, y = 1.5 sin(t), t ∈ [0,2π ]. (37)

Fig. 7 shows the computational domain and finite element mesh. The Neumann condition ∇(u + uinc) · n = 0 is imposed on 
the kite boundary, while the Robin condition ∇u · n − iku = 0 on the outer boundary which is the boundary of a rectangular 
domain (−5, 4) × (−4.9851, 4.9851).
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Fig. 8. The fold caustic generated by the reflection of an incident plane wave uinc(x, y) = exp(ikx) from the kite-shaped scatterer and computed by ray 
tracing: (a) the reflected rays in the illuminated region and the incident rays in the shadow region, (b) and the zoom-up view near the cusp singularity at 
(−1.7020, 0).

Fig. 9. The phases correspond to the ray families shown in Fig. 8(a): (a) the first phase ϕ1
1 in �1, (b) the second phase ϕ1

2 in �1, (c) the third phase ϕ1
3 in 

�1, and (d) the phases ϕs
1, s = 2, 3, 4, 5 in the other subdomains.

This example serves to illustrate the ability of the proposed method to deal with caustics due to reflection from smooth 
concave boundaries. Fig. 8(a) depicts the rays reflected by the kite-shaped scatterer in the illuminated region and the 
incident rays in the shadow region. Due to the concavity of the scatterer, multiple families of rays reflect from the kite 
boundary to form a fold caustic with a cusp singularity at the point (−1.7020, 0) as shown in Fig. 8(b). The domain is divided 
into 5 subdomains as shown in Fig. 7: �1 is the caustic region, �2 is the illuminated region close to the caustic region, 
�3 and �4 are the illuminated regions close to the shadow region, and �5 is the shadow region. Unlike the previous 
examples in which the phases are determined analytically, we compute the phases by using ray tracing and solving the 
eikonal equations. In particular, we obtain the three phases in Fig. 9(a), (b), and (c) by numerically solving

|∇ϕ1
n | = 1 in �1, ϕ1

n = r1
n on ∂�1, n = 1,2,3, (38)

where r1
n is the value of the nth phase on ∂�1 and computed by means of ray tracing as shown in Fig. 8(a). Likewise, we 

compute the phase in Fig. 9(d) by numerically solving

|∇ϕs
1| = 1 in �s, ϕs

1 = rs
1 on ∂�s, s = 2,3,4,5, (39)

where the boundary values rs are also computed by means of ray tracing.
1
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Fig. 10. The creeping rays (a) and the associated phases (b) emanate from (−1.3,1.5).

Fig. 11. The creeping rays (a) and the associated phases (b) emanate from (−1.3,−1.5).

Next, we compute the phases due to diffractions at smooth boundaries. The phases in Fig. 10(b) are obtained by numer-
ically solving

|∇ϕ5
2 | = 1 in �5, ϕ5

2 = r5
2 on ∂�5,

|∇ϕ3
2 | = 1 in �3, ϕ3

2 = r3
2 on ∂�3, (40)

where, shown in Fig. 10(a), r5
2 and r3

2 are computed by means of ray tracing. The phases in Fig. 11(b) are obtained by 
numerically solving

|∇ϕ5
3 | = 1 in �5, ϕ5

3 = r5
3 on ∂�5,

|∇ϕ4
2 | = 1 in �4, ϕ4

2 = r4
2 on ∂�4, (41)

where, shown in Fig. 11(a), r5
3 and r4

2 are computed by means of ray tracing.
We present in Fig. 12(a) the contour plot of the phases computed above and summarize in Table 3 (the middle column) 

the number of phases on 5 subdomains. Note that while �1 consists of 3 phases, �2 has only one phase and that there are 
two different phases on the caustic curve �C ≡ �1 ∩�2. This causes a poor approximation of the wave field along the caustic 
curve. To see this issue, we present in Fig. 13(a) the scattered field for k = 30, which is computed by the phase-based HDG 
method with p = 2 and ε = 10−5. We further depict in Fig. 13(b) the difference between this solution and a reference 
solution computed by the standard HDG method on the same mesh with polynomial degree p = 16. We see that the 
difference is quite significant near the caustic curve. This result indicates the solution obtained with the phase-based HDG 
method is inaccurate near the caustic curve. This is because the phase system in Fig. 12(a) is not adequate to resolve the 
wave field in the subdomain �2. As demonstrated next, this issue can be remedied by introducing an additional phase into 
the subdomain �2.
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Table 3
Number of phases on 5 subdomains for the two collections of phases presented in Fig. 12.

Subdomain Original phases in Fig. 12(a) Enhanced phases in Fig. 12(b)

�1 3 phases 3 phases
�2 1 phases 2 phases
�3 2 phases 2 phases
�4 2 phases 2 phases
�5 3 phases 3 phases

Fig. 12. Contour plot of the phases for (a) the original phase structure and (b) the enhanced phase structure.

Fig. 13. Numerical solution of the kite-shaped scatterer for k = 30: the scattered field computed using the phase structure in Fig. 12(a) and the difference 
between this scattered field and a reference solution. Note that the difference is quite significant in the caustic transition region.

In particular, we extend the phase shown in Fig. 9(a) from subdomain �1 into subdomain �2. We note that the extension 
of the phase in Fig. 9(a) into �2 can not be done by means of ray tracing because its rays do not follow the law of reflection. 
However, this phase must still satisfy the eikonal equation in �2 and its value is known on the caustic curve. Therefore, we 
compute the phase by solving the following eikonal problem

|∇ϕ2
2 | = 1 in �2, ϕ2

2 = r2
2 on �C ≡ �1 ∩ �2, (42)

where r2
2 is the value of the phase in Fig. 9(a) on the caustic curve. The resulting phase structure is shown in Fig. 12(b) 

and summarized in the last column of Table 3. Using this new phase structure, we compute the scattered field (for p = 2
and ε = 10−5) and plot the results in Fig. 14. We see that the difference between the resulting solution and the reference 
solution is small in the entire domain. Hence, the additional phase ϕ2

2 is crucial for the treatment of the fold caustic. 
Without it, we would obtain much less accurate solutions as illustrated in Fig. 13.



N.C. Nguyen et al. / Journal of Computational Physics 290 (2015) 318–335 333
Fig. 14. Numerical solution of the kite-shaped scattering problem for k = 30: the scattered field computed using the phase collection in Fig. 12(b) and the 
difference between this scattered field and a reference solution. Note that the difference is now small in the entire domain.

Fig. 15. The scattered field computed using the phase collection in Fig. 12(b) for: (a) k = 10, (b) k = 20, (c) k = 40, and (d) k = 80.

Finally, we present in Fig. 15 the scattered field computed using the collection of phases in Fig. 12(b) for various values 
of k. These results are computed on the same mesh in Fig. 12(b) with p = 2 and ε = 10−5. We see that the phase-based 
HDG method yields well-resolved solutions on the same mesh even though the wavenumber increases rapidly. On the other 
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hand, the standard HDG method requires a finite element mesh of 939 850 elements with p = 2 to obtain a well-resolved 
solution for k = 80. Note that the CG-FEM needs a considerably finer mesh than the standard HDG method in order to 
achieve a similar resolution.

5. Conclusions

In this paper, we introduce a phase-based HDG method for the numerical solution of the Helmholtz equation. The 
method combines the powerful ideas of geometrical optics and HDG methodologies. More precisely, the computational pro-
cedure of the proposed method is decomposed into two stages. In the first stage, we develop a new scheme that combines 
the HDG method with ray tracing to compute multivalued solution of the eikonal equation. In the second stage, we first 
embed these phases with standard polynomials to construct the local approximation spaces that are capable of approxi-
mating highly oscillatory solutions of the Helmholtz equation; we then orthogonalize the original basis functions to obtain 
orthogonal basis functions, thereby increasing the numerical stability and reducing redundant degrees of freedom; and fi-
nally, we implement the phase-based HDG method with an appropriate choice of the stabilization parameter. We present 
numerical results to demonstrate the efficiency of the method and compare its performance with that of the CG-FEM and 
the standard HDG method. Numerical results show that the method is capable of providing well-resolve solutions for a wide 
range of frequencies on the same coarse mesh. Moreover, they also show that the number of unknowns required to achieve 
a desire accuracy with the phase-based HDG method is several orders of magnitude less than those with the CG-FEM and 
the standard HDG method. The phase-based HDG method is ideally suited to applications that require fast frequency sweep 
since the first stage is performed only once.

We conclude the paper by pointing out possible extensions and directions for future research. We would like to extend 
the present method to the time-harmonic Maxwell’s equations as well as the elastic wave equations. The a priori and a pos-
teriori error analysis of the present method constitute subjects on ongoing research, as the method will greatly benefit from 
h/p-mesh adaptivity as corners, edges, caustics, and shadow boundaries which obviously require more mesh resolutions 
than other regions of the domain.
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