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A general, multipurpose interpolation procedure: the magic points.

Yvon Maday∗ , Ngoc Cuong Nguyen† Anthony T. Patera‡ and George S. H. Pau§

August 14, 2007

Abstract

Lagrangian interpolation is a classical way to approximate general functions by finite sums of well
chosen, pre-definite, linearly independent generating functions; it is much simpler to implement than
determining the best fits with respect to some Banach (or even Hilbert) norms. In addition, only partial
knowledge is required (here values on some set of points). The problem of defining the best sample of
points is nevertheless rather complex and is in general not solved. In this paper we propose a way to
derive such sets of points. We do not claim that the points resulting from the construction explained
here are optimal in any sense. Nevertheless, the resulting interpolation method is proven to work under
certain hypothesis, the process is very general and simple to implement, and compared to situations
where the best behavior is known, it is relatively competitive.

1 Introduction

The extension of the reduced basis technique [8, 13, 15, 22, 24, 14] to nonlinear partial differential equations
has led us to introduce an “empirical Lagrangian interpolation” method on a finite dimensional vectorial
space spanned by functions that can actually be of any type (see [1, 7]). We refer to [19] for a general
presentation to the reduced basis method. The efficiency of this approach in the reduced basis context, as
outlined in [1, 7], and the simplicity of its implementation have stimulated us to deepen its analysis. The
problem of Lagrangian interpolation is a classical one and, most of the times, it is associated with polynomial
type approximations (algebraic polynomials, Fourier series, spherical harmonics, spline, rational functions,
etc.). Given a finite dimensional space XM in a Banach space X of continuous functions defined over a
domain Ω part of IR, IRd or C| d, and a set of M points in Ω, {xi ∈ Ω, i = 1, . . . ,M}, the interpolant of a
function f in X is the (preferably unique) element fM in XM such that fM (xi) = f(xi), i = 1, . . . ,M .

Among the classical questions raised by the interpolation process are

1. given a set of points, does the interpolant at these points exist;

2. is this interpolant unique;

3. how does the interpolation process compare with other approximations (in particular orthogonal pro-
jections);

4. is there an optimal selection for the interpolation points; and

5. is there a constructive optimal selection for the interpolation points.
∗Université Pierre et Marie Curie-Paris6, UMR 7598, Laboratoire J.-L. Lions, Paris, F-75005 France and Division of Applied
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The theory for polynomial interpolation is the best documented; however, even though it is rather complete
nowadays in one dimension and partially over domains of simple shapes in higher dimensions (e.g. those
obtained through tensor-product operations), the answers to these questions are rather complex and recent
relative to the classical character of the questions.

Our interest is motivated by the broad framework where we have a set U ⊂ X that is supposed to be
approximable by finite expansions involving given generating functions. In order to make this statement
accurate, we can for instance consider that U has small n-width in the sense given by Kolmogorov [11, 20].
Let us remind that the Kolmogorov n-width of U in X is defined by

dn(U , X) = inf
Xn

sup
x∈U

inf
y∈Xn

‖x− y‖X (1)

where Xn is some (unknown) n-dimensional subspace of X. The n-width of U thus measures the extent to
which U may be approximated by some finite dimensional space of dimension n. There are many reasons
why this n-width may go rapidly to zero as n goes to infinity. If U is a set of functions defined over a domain
Ω, we can refer to regularity, or even to analyticity, of these functions with respect to the variable. Indeed,
an upper bound for the asymptotic rate at which it converges to zero is provided by the example in [11]
— dn(B̃(r)

2 ;L2) = O(n−r) where B̃(r)
2 is the unit ball in the Sobolev space of all 2π-periodic real valued,

(r − 1)-times differentiable functions whose first (r − 1) derivative is absolutely continuous and whose rth
derivative belongs to L2. Furthermore, exponential small n-width is achieved when analyticity exists in the
parameter dependency.

Another possibility, that we actually encounter in the reduced basis framework is given by U = {u(µ, ·), µ ∈
D}, where, D is a given (infinite) set of parameters (either in IRp or even in some functional space of contin-
uous functions). Then, the regularity of u in µ can also be a reason for having a small n-width.

Assuming that X is provided with a scalar product, then the best fit of an element u ∈ U in some finite
dimensional space XM that realizes almost the infimum in (1) is given by the orthogonal projection onto XM .
In many cases the evaluation of this projection may be costly and the knowledge of u over the entire domain
Ω is required. Thus, assuming that X ⊂ C0(Ω), so that the elements in U are continuous, the interpolation
is a tool that is often referred to as a inexpensive surrogate to the evaluation of the orthogonal projection.

In one space dimension, the polynomial interpolation is rather well understood : the only condition
for a Lagrangian interpolation operator to exist is that the points are distinct. The location of almost
optimal points is provided by the Chebyshev Gauss nodes. In dimension greater than one, there exist more
intricate conditions in order for a polynomial interpolation to be well defined, and not any set of points would
provide a positive answer to questions (1) and (2). For general functions — as the one we have in mind
for reduced basis approximations (the functions are solutions of parameter dependent partial differential
equations or functional in [4, 7]) — the general conditions for which the interpolation points give an unique
interpolant is an open problem. Our proposed method provides a constructive approach to this general
problem and partially answer the 5 questions raised above. Actually, our algorithm provides also an answer
to an additional question : what are the generating functions we should use for interpolation.

In section 2, we explain the construction of these interpolating functions and the associated points that
we have named “magic points”. We introduce the notion of Lebesgue constant and state some results related
to the analysis of this approximation. In section 3, we compare the quality of this new general approach
to some standard results in classical algebraic polynomial approximations of some typical geometries; we
further demonstrate the versatility of the method with a nonstandard geometry. In section 4, we examine
non-polynomial spaces and spaces spanned by parameter-dependent functions. In Section 5, we propose two
applications of this procedure to approximate solutions of some PDEs, including a brief description of its
application within reduced-basis methods. Lastly, we demonstrate how the a posteriori error estimator can
be exploited in the construction of the approximation space.

We wish to stress that the applicability of the procedure is not limited to examples we have included
in this paper; on the contrary, the procedure may prove advantageous in a variety of applications, for
example image or data compression involving domains of irregular profile, fast rendering and visualization in
animation, the development of computer simulation surrogates or experimental response surface for design
and optimization, and the determination of a good numerical integration scheme for smooth functions on
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irregular domains. Lastly, for another approach to approximating parameterized fields, in particular an
optimization–based approach well-suited to noisy data or constrained systems, see [16].

2 Empirical interpolation

We begin by describing the construction of the empirical interpolation method — a generalization of the
one sketched in [1] and presented in greater details in [7]. The present construction allows us to define
simultaneously the set of generating functions and the associated interpolation points. It is based on a
greedy selection procedure as outlined in [18, 22, 23]. In what follows, we assume that the functions in U
are at least continuous over the domain Ω. With M being some given large number, we assume that the
dimension of the vectorial space spanned by U : span (U) is of dimension ≥M.

To begin, we choose our first generating function u1 as being defined by u1 = arg maxu∈U ‖u( · )‖L∞(Ω)
1.

We then define the first interpolation point as being x1 = arg maxx∈Ω |u1(x)| then set q1 = u1(·)/u1(x1) and
B1

11 = 1. We now construct, by induction, the nested sets of interpolation points TM = {x1, . . . , xM}, 1 ≤
M ≤Mmax, and the nested sets of basis functions {q1, . . . , qM}, where Mmax ≤M is some given upper bound
fixed a priori. For M = 2, . . . ,Mmax, we first solve the interpolation problem for αM−1,j [u], 1 ≤ j ≤ M,
from (assuming that the invertibility of the (M − 1)× (M − 1) matrix of running entry qj(xi))

M−1∑
j=1

qj(xi)αM−1,j [u] = u(xi), i = 1, . . . ,M − 1 , (2)

and compute

IM−1[u(·)] =
M−1∑
j=1

αM−1,j [u]qj , (3)

We then set
εM−1(u) = ‖u− IM−1[u]‖L∞(Ω) , (4)

for all u ∈ U ; we define
uM = arg max

u∈U
εM−1(u) , (5)

and
xM = arg max

x∈Ω
|uM (x)− IM−1[uM ](x)| , (6)

we finally set rM (x) = uM (x) − IM−1[uM (x)], qM = rM/rM (xM ) and BM
ij = qj(xi), 1 ≤ i, j ≤ M . The

Lagrangian functions are used to build the interpolation operator IM in XM = span {ui, 1 ≤ i ≤ M}
= span {qi, 1 ≤ i ≤ M} over the set of points TM = {xi, 1 ≤ i ≤ M}: for any given M , IM [u( · )] =∑M

i=1 u(xi)hM
i ( · ), where hM

i ( · ) =
∑M

j=1 qj( · )[BM ]−1
ji (note indeed that hM

i (xj) = δij).
We now demonstrate that this construction of the interpolation points {xi, 1 ≤ i ≤ M} and the basis

functions {qi, 1 ≤ i ≤M} is well-defined, meaning that the set {qi, 1 ≤ i ≤M} is linearly independent and,
in particular, the matrix BM is invertible. We first prove an intermediate result:

Lemma 1. Assume that XM−1 = span {q1, . . . , qM−1} is of dimension M − 1 and that BM−1 is invertible,
then we have IM−1[v] = v for any v ∈ XM−1; here IM−1[v] is the interpolant of v as given below

IM−1[v] =
M−1∑
j=1

βM−1,jqj , (7)

1In case U is e.g. invariant by multiplication by a scalar, the max in the above formula is = +∞ of course we should then

replace it by e.g. u1 = arg maxu∈U
‖u( · )‖L∞(Ω)

‖u( · )‖X
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where the βM−1,j is the solution of

M−1∑
j=1

qj(xi)βM−1,j = v(xi), i = 1, . . . ,M − 1 . (8)

In other words, the interpolation is exact for all v in XM−1.

Proof. For v ∈ XM−1, which can be expressed as v(x) =
∑M−1

j=1 γM−1,jqj(x), we consider x = xi, 1 ≤ i ≤
M − 1, to arrive at v(xi) =

∑M−1
j=1 qj(xi)γM−1,j , 1 ≤ i ≤ M − 1. It thus follows from the invertibility of

BM−1 that βM−1 = γM−1; and hence IM−1[v] = v.

We use the above result to prove

Theorem 1. Assume that Mmax is chosen such that Mmax < M; then, for any M ≤ Mmax, the space
XM = span{q1, . . . , qM} is of dimension M . In addition, the matrix BM is lower triangular with unity
diagonal (hence it is invertible).

Proof. We shall proceed by induction. Clearly, X1 = span {q1} is of dimension 1 and the matrix B1 = 1
is invertible. Next we assume that XM−1 = span {q1, . . . , qM−1} is of dimension M − 1 and the matrix
BM−1 is invertible; we must then prove (i) XM = span{q1, . . . , qM} is of dimension M and (ii) the matrix
BM is invertible. To prove (i), we note from our “arg max” construction that εM−1(uM ) ≥ ε0, where ε0
— the Kolmogorov Mmax-width of U — is strictly positive since Mmax < M. Hence εM−1(uM ) > 0, now
if dim(XM ) 6= M , we have u( · , µM ) ∈ XM−1 and thus εM−1(µM ) = 0 by Lemma 1, which raises the
contradiction and ends the proof that dim(XM ) = M and rM (xM ) 6= 0. To prove (ii), we just note from the
construction procedure that BM−1

i j = rj(xi)/rj(xj) = 0 for i < j; that BM
i j = rj(xi)/rj(xj) = 1 for i = j;

and that
∣∣BM

i j

∣∣ = |rj(xi)/rj(xj)| ≤ 1 for i > j since xj = arg maxx∈Ω |rj(x)|, 1 ≤ j ≤ M . Hence, BM is
lower triangular with unity diagonal.

The error analysis of the interpolation procedure classically involves the Lebesgue constant ΛM =
supx∈Ω

∑M
i=1 |hM

i (x)|. It has been proven in [7] that an upper-bound for the Lebesgue constant is 2M − 1
(in practice it turns out to be a very pessimistic upper bound, see however appendix A where we prove that
this upper bound can be achieved). We remind also that the Lebesgue constant enters into the bound for
the interpolation error as follows

Lemma 2. For any u ∈ X, the interpolation error satisfies

‖u− IM [u]‖L∞(Ω) ≤ (1 + ΛM ) inf
vM∈span {ui(·),1≤i≤M}

‖u− vM‖L∞(Ω). (9)

The last term in the right hand side of the above inequality is known as the best fit of u by elements in
span {ui, 1 ≤ i ≤M}.

The following result, extends to the interpolation process the proof in [3] for the best approximation. It
makes much more precise the previous lemma, since it allows to state that even though we do not know finite
dimensional spaces — candidates for achieving the minimal distance in the n-width — the greedy process
for the magic points provides spaces that give an upper bound for the right hand side in (9). Indeed, we can
prove that

Theorem 2. Assume that U ⊂ X ⊂ L∞(Ω), and that there exists a sequence of finite dimensional spaces

Z1 ⊂ Z2 ⊂ · · · ⊂ ZM ⊂ · · · ⊂ span U , dim ZM = M (10)

such that there exists c > 0 and α > log(4) with

∀u ∈ U , inf
vM∈ZM

‖u− vM‖X ≤ ce−αM (11)

then,
‖u− IM [u]‖L∞(Ω) ≤ ce−(α−log(4))M . (12)

4



Proof. Refer to Appendix B.

Remark 1. This theorem states that, under the reasonable condition that the reduced space allows an expo-
nential convergence (actually even faster convergence is observed most of the times, as explained in [3]), the
empirical interpolation procedure : (i) proposes a discrete space (spanned by the chosen ui) where the best
fit is good, (ii) provides a set of interpolation points that leads to a convergent interpolant.

Remark 2. If for some reasons, a set of functions ui ∈ U , i ∈ IN were to be given, all linearly independent,
then the procedure of finding the interpolation points through the process ∀i, 1 ≤ i ≤ M − 1, u(xi) =∑M−1

j=1 αi,j [u]uj(xi) and set xM = arg maxx∈Ω |uM (x)−
∑M−1

j=1 αi,j [uM ]uj(x)| is also well defined and leads
to a set of interpolation points that have similar properties as above. The rational for the greedy approach is
that it allows us to get a better sense of the interpolation properties since ∀u,

‖u( · )− IM [u(.)]‖L∞(Ω) ≤ ‖uM+1( · )− IM [uM+1( · )]‖L∞(Ω) = εM (xM+1) (13)

and this last quantity is one of the outputs of the construction process.

Remark 3. In the actual implementation of the method, since the cardinal of U is infinite, we start with a
large enough sample subset Wu in U of cardinal M much larger than the dimension of the discrete spaces
and number of interpolation nodes we plan to use. For example, if U = {u(µ, ·), µ ∈ D}, we choose Wu =
{u(µ), µ ∈ Ξµ ⊂ D}; Ξµ consists of M parameter sample points µ. We assume this sample subset is
representative of the entire set U in the sense that supx∈U infy∈XM ‖x − y‖X is much smaller than the
approximation we envision through the interpolation process. Here XM is the vectorial space spanned by
Wu. We assume that the dimension of XM is M.

We will now subject the empirical interpolation procedure described above to some tests: the abstract
formulation of the problems we are going to solve can be stated as follows: given a space U ⊂ X ⊂ L∞(Ω),
we will construct a space XM ⊂ X and an interpolant IM ∈ XM such that for a given function u ∈ U ,
‖u− IM [u]‖L∞(Ω) → 0 rapidly as M →∞. We can classify the problems into two distinct categories:

1. U ≡ X ≡ Cm and XM spans the same space as a preselected universal approximation space; here we
are interested in constructing a well-conditioned set of basis functions in XM and the corresponding
magic points;

2. U is a set of functions on the parametric manifold, XM is a — a priori not known — finite dimensional
space in X is some well-defined function spaces such as Sobolev spaces.

3 Polynomial Interpolation

We consider the first category of problems. In particular, XM consists of polynomial functions. The purpose
of this section is to (i) test the empirical interpolation process in well-documented situations in order to first
measure where magic points stand with respect to some optimal results, and (ii) understand if the order at
which the basis functions are processed affects the Lebesgue constant.

3.1 One dimension

We consider a domain Ω1d ≡ [−1, 1] and construct XM (Ω1d) and the associated magic points based on:

(a) monomials, WP
n (Ω1d) = {xi, x ∈ Ω1d, 0 ≤ i ≤ n}, 0 ≤ n ≤ nmax; and

(b) Legendre polynomials, WL
n (Ω1d) = {Li(x), x ∈ Ω1d, 0 ≤ i ≤ n}, 0 ≤ n ≤ nmax where Li is the Legendre

polynomial of order i.
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Figure 1: (a) Comparison of the Lebesgue constant, ΛM=n+1 for magic points obtained through different
constructions (case (i) refers to increasing polynomial order and case (ii), greedy algorithms) with that
obtained for Chebyshev points and the uniform grid. (b) cos−1 of the distribution of magic points compared
to Chebyshev points and the uniform grid, for Ω1d.

Note that XM = span {WP
n (Ω1d)} = span {WL

n (Ω1d)} with M = n+1. To examine the effects of ordering on
the resulting approximation, we apply the empirical interpolation procedure based on two variations: (i) the
basis functions are processed in increasing polynomial order; and (ii) the order by which the basis functions
are processed is determined by the greedy algorithm. We discretize the space into 2000 intervals and solve
the system up to nmax = 30. As expected and shown in Figure 1, the choice of the initial approximation
spaces does not affect the magnitude of the Lebesgue constant when the basis functions are processed in
increasing polynomial orders. Greedy algorithm can result in slightly better Lebesgue constant for some n,
although the result is not uniform. In both cases, the Lebesgue constant obtained through our empirical
interpolation procedure is close to the (nearly) optimal values obtained based on the Chebyshev points, as
shown in Figure 1. Lastly, Figure 1 also shows that the distribution of the empirical interpolation points
bears significant resemblance to the Chebyshev points. For comparison, we have also plotted the behavior
for equidistant interpolation points. Finally, it should be noted that the Lebesgue constant for the magic
point construction is not monotonic as a function of the number of points.

3.2 Triangle

We consider a triangle Ωtri ≡ {(x, y) : x ≥ −1, y ≥ −1, x + y ≤ 0}. We define the initial sample set
as WP

n (Ωtri) ≡ {xiyj , (x, y) ∈ Ωtri, i + j ≤ n}, 0 ≤ n ≤ nmax. Then XM (Ωtri) = span {WP
n (Ωtri)} and

M = 1
2 (n + 1)(n + 2). Since the greedy algorithm leads to smaller Lebesgue constants in most cases, we

will apply the greedy algorithm to WP
n (Ωtri) (and to all subsequent examples) when determining the magic

points. We further discretize the domain such that the smallest division in each direction is 0.01. Figure
2 shows the growth of the Lebesgue constant with n up to nmax = 12. Compared to the optimal points
obtained in [10] and [5], the Lebesgue constants for our empirical interpolation points are not too far off, as
shown in Table 1. In addition, these points are obtained through a simple procedure, in the absence of any
sophisticated optimization process. Lastly, we observe that the distribution of the empirical interpolation
points again bears strong resemblance to those reported in [10], as shown in Figure 2 for n = 12.
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Figure 2: (a) Variation of Lebesgue constant, ΛM with n where M = 1
2 (n+ 1)(n+ 2), and (b) distribution

of magic points compared to [10] for Ωtri.

n Magic Points [10] [5]
6 9.16 3.67 3.79
9 17.70 5.58 5.92
12 24.86 7.12 10.08

Table 1: Comparing the Lebesgue constants for magic points, with that from literature, for Ωtri.

3.3 Hexagon

We define Ωhex as a hexagon inscribed in a circle of radius 1 and an initial sample set given by WP
n (Ωhex) ≡

{xiyj , (x, y) ∈ Ωhex, i + j ≤ n}, 0 ≤ n ≤ nmax. Then, XM (Ωhex) = span {WP
n (Ωhex)} with M = 1

2 (n +
1)(n + 2). The growth of the Lebesgue constants with n, and the distribution of the magic points (for the
case with increasing n) are shown in Figure 3. We have not found any analysis for the best position of the
interpolation points over such a simple domain, the good behavior of the Lebesgue constant associated with
the magic points is one of the interests of the method.

3.4 Lunar Croissant

We consider now a non-convex domain of “lunar croissant” shape, Ωcro ≡ Ω1
cir\Ω2

cir, where Ω1
cir and Ω2

cir

are two unit circles centered at (0,−0.5) and (0, 0.5), respectively. We define an initial sample set as
WP

n (Ωcro) ≡ {xiyj , (x, y) ∈ Ωcro, i + j ≤ n}, 0 ≤ n ≤ nmax, and XM (Ωtri) = span {WP
n (Ωtri)} with

M = (n+ 1)2. We show in Figure 4 the Lebesgue constant Λn as a function of n and the distribution of the
magic points for n = 12. We observe that the growth of the Lebesgue constant with n is quite similar to
those in the triangle and hexagon cases. We know of neither exact nor computed values for the optimal (or
even near optimal) point set over the domain Ωcro.

3.5 Tetrahedron

We define Ωtet as a three-dimensional simplex in IR3 with vertices at (0, 0, 0), (0, 0, 1), (0, 1, 0) and (1, 0, 0)
and an initial sample set given by WP

n (Ωtet) ≡ {xiyjzk, (x, y, z) ∈ Ωtet, i + j + k ≤ n}, 0 ≤ n ≤ nmax.
Then, XM (Ωtet) = span {WP

n (Ωtet)} with M = 1
6 (n + 1)(n + 2)(n + 3). The application of the empirical

interpolation procedure yields Lebesgue constants shown in Table 2 for n ≤ nmax = 9. It is compared to
results from [12] and [6] obtained through optimization procedures. Again, in comparison to the best known
approximation, the empirical interpolation procedure performs reasonably well.
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Figure 4: Results for a “lunar croissant” domain Ωcro: (a) variation of the Lebesgue constant Λn with n,
and (b) distribution of magic points for n = 12.

n Magic Points [12] [6]
2 2.0 2.0 2.0
3 3.80 2.93 2.93
4 8.70 4.07 4.11
5 9.77 5.38 5.62
6 15.27 7.53 7.36
7 31.04 10.17 9.37
8 34.31 14.63 12.31
9 62.99 20.46 15.69

Table 2: Comparing the Lebesgue constants for magic points with that from literature, for Ωtet.
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4 Different types of approximations

4.1 Spherical harmonics on the surface of a sphere

We consider the surface of the sphere Ωsph ≡ {|x| = 1,x ∈ S2 ⊂ IR3} and define an initial sample set
given by WS

n (Ωsph) ≡ {Ylm(x),x ∈ Ωsph, 0 ≤ l ≤ n, |m| ≤ l}, 0 ≤ n ≤ nmax, where {Ylm(x)} is an
orthonormal set of spherical harmonics. Then, XM (Ωsph) = span {WS

n (Ωsph)} with M = (n + 1)2. The
application of the empirical interpolation procedure yields Lebesgue constant that grows as shown in Figure
5 for n ≤ nmax = 20; this is compared to the improved rate of n+1 obtained in [25] through an optimization
procedure. The deviation here is sensibly larger with respect to the best fit, though still acceptable if we
compare it to the other earlier results quoted before [25] where a O(n2) is documented.

Remark 4. An important remark is now in order. The magic points in TM are defined recursively, which is
not at all the case for other approaches, in particular the points proposed in [25]. Starting from a maximal
space Xmax, the associated approximation spaces XM are hierarchical, i.e. X1 ⊂ X2 ⊂ . . . ⊂ XM ⊂ Xmax.
In order to illustrate this distinction, we first look at the problem of choosing M/2 points from the M points
proposed by Sloan [25] for a given n that gives the minimum Lebesgue constant when approximating using the
first M/2 basis functions in WS

n . Clearly, as the number of possible combinations increases exponentially fast
as n increases. Considerable effort is required to find a good combination. On the contrary, with empirical
interpolation procedure, determining a good combination of M/2 points out of the M number of magic points
is simple — we simply choose the first M/2 points.
To demonstrate how good these magic points are, we randomly choose 1000 combinations of M/2 points from
the M Sloan points and search through these sets of points for the minimum Lebesgue constant. We compare
the resulting Lebesgue constants with that obtained using the first M/2 magic points. For n = 4, Sloan points
gives 6.44 vs 4.93 for magic points. For n = 10, Sloan points gives 138.56 vs 20.25 for magic points. Here
the Lebesgue constants for the magic points are obtained without using the greedy algorithm, i.e. the basis
functions are processed in the order given in WS

n .

Remark 5. Another remark is the versatility of this approach with respect to the domain. We have considered
the domain on the sphere delimited by reducing the angle to [π/3, 5π/6]× [2π/3, 4π/3], so it is more or less
a curve surface. Over a very fine grid of 600× 600 the best Lebesgue constant that we could get for n = 10 is
36 as shown in figure 6. There is also signficicant resemblance between the magic points and the tensorized
Chebyshev points, as shown in Figure 6. Here again no reference could be found for interpolating with
spherical harmonics over a portion of a sphere.
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4.2 Parameter-dependent functions

We now examine the second category of problems outlined in Section 2. Here, we are interested in approx-
imating parameter-dependent transcendental functions f(x, µ). In particular, we have in mind functions
that are complicated to evaluate but have a smooth dependency on some parameters such as eg(x,µ), con-
voluted functions, smooth empirical data varying smoothly in time or space etc. To illustrate the potential
computational savings resulting from the use of empirical interpolation procedure, we examine the following
convoluted function

f(x, µ) =
∫

Ω

l(x′, µ)g(x,x′)dx′. (14)

For every new µ, a full evaluation of f will require, for each x point the computation of an integral (in x′)
which may be done by numerical integration based on a large enough set of points (say N points) Assume,
for the sake of simplicity, that we want to compute f at any of these N points, this will required O(N 2)
operations. However, if for a given Ξµ, we construct an approximation space of dimension M and the
associated magic points for f( · , µ), we will only required 2(MN ) +M2 operations — we only evaluate the
integral at M magic points (which gives MN operations), solve for the coefficients by inverting a M ×M
triangular matrix, then require another MN to get an approximation of f at every N points .

As an example, we consider a domain Ωrec = [−0.5, 0.5] × [−0.5, 0.5], µ ∈ [1, 10], x ≡ (x, y), l(x, µ) =
sin(2πµ|x|), and g(x) = 50

π exp(−50|x|2). We construct our approximation based on the sample setW f (Ωrec) =
{f( · , µ), µ ∈ Ξµ ⊂ [1, 10]}. Table 3 shows that the error ‖f( · , µ) − IM [f( · , µ)]‖L∞(Ωrec) decreases expo-
nentially and the Lebesgue constants are generally small for all M . Thus, the approximation leads to fast
evaluation of f with minimal loss of accuracy. This may have applications in areas such as animation where
µ represent temporal variables, the regeneration of 3D tomographic data sets where µ represent spatial
variables, or the reduced basis methods, as will be illustrated in the section.
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M ‖f( · , µ)− IM [f( · , µ)]‖L∞(Ωrec) ΛM

2 8.60E – 1 1.51
3 4.19E – 1 1.69
4 2.74E – 1 1.98
5 1.24E – 1 2.43
6 9.80E – 2 3.16
7 6.59E – 2 5.14
8 6.00E – 2 3.89
9 9.10E – 3 2.48
10 3.88E – 3 3.28
11 1.74E – 3 4.38
12 6.44E – 4 4.56
13 2.82E – 4 4.24
14 6.35E – 5 5.94
15 6.09E – 6 5.23

Table 3: Actual error between f(·, µ) of Section 4.2 and its iterpolation together with the associated Lebesgue
constant.

5 Two applications for the approximation of the solutions to some
PDEs

5.1 Reduced basis method

This is the frame actually for which the magic points have been constructed... We consider a weak formulation
of µ-parametrized nonlinear elliptic PDEs of the form

µa0(u(µ), v) +
∫

Ω

g(u(µ))v = f(v), ∀v ∈ H1
0 (Ω). (15)

A particular instantiation considered here is as follows

a0(w, v) =
∫

Ω

∇w · ∇v, f(v) =
∫

Ω

v, g(w) = |w|2/3w, (16)

where Ω =]0, 1[∈ IR, w and v ∈ H1
0 (Ω), and µ ∈ D ≡ [0.01, 1]; note the solution u(µ) develops a boundary

layer at x = 0 and x = 1 for µ close to 0.01.
We now introduce the nested samples, Su

N = {µu
1 ∈ D, . . . , µu

N ∈ D}, 1 ≤ N ≤ Nmax, and associated
nested Lagrangian [21] reduced-basis spaces Wu

N = span{u(µu
n), 1 ≤ n ≤ N} = span {ζn, 1 ≤ n ≤ N}, 1 ≤

N ≤ Nmax, where u(µu
n) is the solution of (15) at µ = µu

n and ζn, 1 ≤ n ≤ N are the orthonormalized bases
of u(µu

n), 1 ≤ n ≤ N with respect to (·, ·)X (obtained through a Gram-Schmidt process). The classical
reduced-basis approximation [13, 15, 22, 24, 8] is then obtained by a standard Galerkin projection: given
µ ∈ D, uN (µ) ∈Wu

N satisfies

µa0(uN (µ), v) +
∫

Ω

g(uN (µ)) v = f(v), ∀v ∈Wu
N . (17)

Unfortunately, the presence of strong nonlinearity in g does not allow an efficient offline-online procedure
outlined in [23, 18]. As a result, although the dimension of the system (17) is small, solving it is actually
expensive [4, 7].

To obtain an inexpensive reduced-oder model of the nonlinear problem (15), we apply the empirical
interpolation procedure on {g(u(µ)), µ ∈ Ξµ} of size M = 51 to develop a collateral reduced-basis expansion

11



g
uN,M

M (x;µ) for the nonlinear term g(uN (µ)) as

g
uN,M

M (x;µ) =
M∑

m=1

ϕM m(µ)qm(x) , (18)

We next replace g(uN (µ)) — as required in our reduced-basis projection for uN (µ) — with guN,M

M (x;µ). Our
reduced-basis approximation is thus: given µ ∈ D, uN,M (µ) ∈Wu

N satisfies

µa0(uN,M (µ), v) +
∫

Ω

g
uN,M

M (x;µ)v = f(v), ∀ v ∈Wu
N . (19)

Inserting uN,M (µ) =
∑N

j=1 uN,M j(µ)ζj and (18) into (19) yields

µ
N∑

j=1

AN
i juN,M j(µ) +

M∑
m=1

CN,M
i m ϕM m(µ) = FN i, 1 ≤ i ≤ N ; (20)

where AN ∈ IRN×N , CN,M ∈ IRN×M , FN ∈ IRN are given by AN
i j = a0(ζj , ζi), 1 ≤ i, j ≤ N , CN,M

i m =∫
Ω
qmζi, 1 ≤ i ≤ N, 1 ≤ m ≤M , and FN i = f(ζi), 1 ≤ i ≤ N , respectively.
Furthermore, we note that ϕM (µ) ∈ IRM is given by

M∑
k=1

BM
m kϕM k(µ) = g(uN,M (xi, µ)) = g

( N∑
n=1

uN,M n(µ)ζn(xm)
)
, 1 ≤ m ≤M . (21)

We then substitute ϕM (µ) from (21) into (20) and let DN,M = CN,M (BM )−1 to obtain the following
nonlinear algebraic system

µ

N∑
j=1

AN
i juN,M j(µ) +

M∑
m=1

DN,M
i m g

( N∑
n=1

ζn(xm)uN,M n(µ)
)

= FN i, 1 ≤ i ≤ N , (22)

which can be solved efficiently by using a Newton method [4, 7] to yield uN,M j(µ), 1 ≤ j ≤ N, for any
parameter value µ in D.

In a similar manner, to get a comparison of this approach with a more classical one, we also develop
a reduced-order model based on a coefficient-function approximation of the nonlinear term g(uN (µ)) using
polynomials xm, 0 ≤ m ≤M−1, and associated Chebyshev points xche

m = (cos((2m+1)π/(2M+2))+1)/2, 0 ≤
m ≤ M − 1. We denote by uche

N,M (µ) the reduced-basis approximation using the polynomial approach with
Chebyshev points.

We now present numerical results obtained for this particular example. For this purpose, we introduce
a parameter sample Ξt ⊂ D of size 100; we then define εgM = maxµ∈Ξt

‖g(u(µ)) − gu
M (x;µ)‖L∞(Ω), ε

g,che
M =

maxµ∈Ξt
‖g(u(µ))− gu,che

M (x;µ)‖L∞(Ω), εuN,M = maxµ∈Ξt
‖u(µ)− uN,M (µ)‖L∞(Ω), ε

u,che
N,M = maxµ∈Ξt

‖u(µ)−
uche

N,M (µ)‖L∞(Ω); here gu
M (x;µ) and gu,che

M (x;µ) are the approximations of g(u(µ)) obtained using the magic
points approach and polynomial approach, respectively. We present in Table 4 εgM and εg,che

M for different
values of M . We see that εgM converges exponentially with M and significantly faster than εg,che

M . We also
tabulate in Table 5 εuN,M and εu,che

N,M as a function of N for M = 8. Not surprising, we observe the same
convergence behavior in terms of the reduced-basis dimension N : while the reduced-basis error εuN,M decays
exponentially fast with N , the error εu,che

N,M decreases with N for N ≤ 5 and then maintains a fixed value of
3.80E – 03 for N > 5 due to poor approximation of the nonlinearity as observed in Table 4.

5.2 One-dimensional quantum harmonic oscillator

We now look at another example of a model reduction method, the modal expansion technique [2]. For
linear partial differential equations, the projection onto the eigenmodes of the operator leads to a set of
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M εgM εg,che
M

1 2.43E – 01 9.94E – 01
2 1.62E – 02 7.35E – 01
3 1.86E – 03 1.73E – 01
4 1.28E – 04 1.63E – 01
5 4.21E – 06 1.10E – 01
6 2.18E – 07 8.84E – 02
7 1.15E – 08 6.75E – 02
8 9.22E – 10 4.57E – 02

Table 4: Results for the approximation of g(u(µ)): εgM and εg,che
M as a function of M .

N M εuN,M εu,che
N,M

1 8 2.82E – 01 2.82E – 01
2 8 1.50E – 02 1.50E – 02
3 8 5.55E – 04 8.84E – 03
4 8 4.78E – 05 3.96E – 03
5 8 5.71E – 07 3.92E – 03
6 8 4.59E – 08 3.80E – 03
7 8 1.23E – 09 3.80E – 03
8 8 1.93E – 10 3.80E – 03

Table 5: Results for the reduced-basis approximation: εuN,M and εu,che
N,M as a function of N for M = 8.

decoupled differential equations. This is particularly advantageous in dynamic response analysis due to order
of reductions in problem size. However, the initial projection of the initial condition onto the eigenspace is
usually required, leading to an operation count which depends on N , the discretization of the underlying
computational domain. We will demonstrate how empirical interpolation technique provides a inexpensive
surrogate to this projection step. As an example, we consider a time-dependent Schrödinger equation for a
harmonic oscillator:

i
∂

∂t
ψ(x, t) = −1

2
∂2

∂x2
ψ(x, t) +

1
2
ω2

0x
2ψ(x, t), (23)

where x ∈ Ω1d,SHO ≡ [−15, 15]. Given an initial solution ψ(x, 0), the solution can be approximated by

ψ(x, t) =
n∑

i=0

ciφi(x)e−iEit, (24)

where n + 1 is the number of basis functions considered; φi(x) and Ei are solution to the following static
harmonic oscillator equation

Eiφi(x) = −1
2
∂2

∂x2
φi(x) +

1
2
ω2

0x
2φi(x); (25)

and ci is given by

ci =
∫ ∞

−∞
φ∗i (x)ψ(x, 0)dx. (26)

Note that the analytical solutions to φi(x) and Ei exist but evaluation of ci based on (26) can be tedious and
expensive, especially if the problem is multidimensional. For example, evaluation of ci for all i = 0, . . . , n
based on the Newton-Cotes Formulae using N nodes would require O((n + 1)N ) operations. Our goal
is to approximate ci based on the empirical interpolation procedure. Therefore, given Wφ

n = {φi(x), x ∈

13
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Ω1d,SHO, 0 ≤ i ≤ n}, we can construct XM and the associated set of magic points TM = {xi, 0 ≤ i ≤ n}
and the interpolation matrix B based on the empirical interpolation procedure. Here, M = n+ 1. Then we
approximate ci by c̃i, where

∑n
j=0Bij c̃j = ψ(xi, 0), 0 ≤ i ≤ n. The operations count is only O((n + 1)2).

We achieve an operation count that is independent of N . The growth of the Lebesgue constant ΛM with M
is shown in Figure 7 — they are in general small.

We now consider a particular example where ψ(x, 0) =
(

ω
π

)1/4
e

1
2 ω(x−x0)

2
(with ω = 2). For this initial

condition, analytical solution, ψa(x, t) is available [9]. We first define Ξx ∈ [−15, 15] of size 1000 and
Ξt ∈ [0, 5] of size 1000. We then define εM = maxt∈Ξt

maxx∈Ξx
|ψa(x, t)− ψ(x, t)|. Figure 8 shows that the

error εM decreases very rapidly with M . (The initial increase in the error is simply because φ0(x) is close
to ψ(x, 0), of course it would not be the case if a pure Galerkin method based on XM was used??).

6 An a posteriori analysis

In this section, we propose an a posteriori error estimator for our approximation. In [7], it was proven
that if the function we are approximating, say ϕ, is in XM+1, then εM ≡ ‖ϕ − IM [ϕ]‖L∞(Ω) = ε̂M where
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n M |ϕ1d(xM+1)− IM [ϕ1d(xM+1)]| ‖ϕ1d − IMϕ1d‖L∞ ηM

2 3 7.27E – 2 7.79E – 2 1.07
4 5 7.47E – 3 7.52E – 3 1.01
6 7 6.18E – 4 6.70E – 4 1.08
8 9 3.84E – 5 3.84E – 5 1.00
10 11 1.69E – 6 1.72E – 6 1.02
12 13 3.08E – 8 4.02E – 8 1.30
14 15 1.65E – 9 1.65E – 9 1.00
16 17 6.33E – 11 6.73E – 11 1.06
18 19 1.39E – 12 1.39E – 12 1.00
20 21 2.50E – 14 2.51E – 14 1.00

Table 6: Comparison between the error estimate and the actual error, for ϕ1d.

n M |ϕ2d(xM+1)− IM [ϕ2d(xM+1)]| ‖ϕ2d − IMϕ2d‖L∞ ηM

2 9 1.13E – 1 6.32E – 1 5.59
4 25 1.43E – 1 1.66E – 1 1.16
6 49 2.03E – 2 2.24E – 2 1.10
8 81 7.23E – 4 1.46E – 3 2.02
10 121 5.36E – 5 1.06E – 4 1.98
12 169 2.76E – 6 2.78E – 6 1.01
14 225 1.04E – 8 1.31E – 7 12.60
16 289 2.67E – 9 4.88E – 9 1.83
18 361 4.98E – 11 1.16E – 10 2.33
20 441 2.57E – 12 2.78E – 12 1.08

Table 7: Comparison between the error estimate and the actual error, for ϕ2d.

ε̂M = |ϕ(xM+1)−IM [ϕ(xM+1)]|. However, in general ϕ /∈ XM+1 and hence ‖ϕ−IM [ϕ]‖L∞(Ω) ≥ ε̂M , and ε̂M

is thus a lower bound. However, if ‖ϕ− IMϕ‖L∞(Ω) → 0 very fast, we expect the effectivity, ηM = εM/ε̂M

to be good. In addition, determination of xM+1 is very inexpensive — we only need to do an additional
iteration of the empirical interpolation procedure.

As an example, we choose to approximate through polynomial interpolation on magic points a gaussian
function, ϕ1d(x) = e−x2

in one dimension (on a segment), and ϕ2d(x, y) = e−(x2+y2) in two dimensions (over
a triangle). Table 6 and 7 show that results are good — ηM is in general very small. In the one dimensional
case, a good estimator is obtained for IM at all M ≤ Mmax. However, in the two dimensional case, a good
estimator is only obtained for IM when M = 1

2 (n+1)(n+2). This is because the polynomial approximation
of the gaussian function is good only if all monomials of order ≤ n is included. Thus, good effectivity is
always obtained for the one dimensional case, and 1

2 (n + 1)(n + 2) for the two dimensional case. For a
non-regular function, we obtain similar results: in Table 8, we show the error estimate and the actual error
resulting from a polynomial approximation of ϕirr = |x3y3| on the triangle. Again, the effectivities is good
when the complete set of monomials of degree ≤ n is included, but due to discontinuity in higher derivative,
we have a much lower convergence rate.

7 Conclusions

We have presented a general multipurpose interpolation method for selecting interpolation points which we
dub “magic points”. For the problems in which the interpolating functions are not given, our method also
provides the construction of such functions. The proposed method is very simple to implement and extremely
efficient, since unlike many other methods it does not require optimization procedures. We illustrate many of
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n M |ϕirr(xM+1)− IM [ϕirr(xM+1)]| ‖ϕirr − IMϕirr‖L∞ ηM

2 9 7.95E – 2 1.59E – 1 2.00
4 25 3.88E – 2 1.47E – 1 3.79
6 49 2.44E – 3 1.95E – 2 8.00
8 81 4.26E – 3 2.42E – 2 5.68
10 121 1.37E – 3 3.74E – 3 2.73
12 169 3.75E – 3 5.66E – 3 1.51
14 225 2.96E – 4 5.69E – 4 1.92
16 289 5.01E – 5 5.80E – 4 11.58
18 361 1.29E – 4 3.00E – 4 2.33
20 441 3.09E – 4 5.72E – 4 1.85

Table 8: Comparison between the error estimate and the actual error, for ϕirr.

its attractive features through several numerical examples in polynomial interpolation, parameter-dependent
functions, and the approximation of solutions of parametrized PDEs. In the case of polynomal interpolation,
results show that the distribution of magic points is quite similar to that of optimal interpolation points
and that the Lebesgue constant is close to the optimal values reported in the open literature. We further
demonstrate the versality of the method with non-standard domains whereby we are not aware of any op-
timal (or even near optimal) point settings. In approximating parameter-dependent functions, the method
is superior to classical polynomial interpolation methods (e.g., Chebyshev points with polynomial approx-
imation) thanks to its good choice of both interpolating function and point sets that are adaptive to the
parameter dependence. In approximating the solution of parametrized PDE, the method helps to establish
an efficient reduced order model by constructing a coefficient-function approximation of the nonlinear terms,
which results in significant computational savings relative to standard discretization methods.

Lastly, we wish to emphasize that the method can be applicable and may prove advantageous in a variety
of applications involving image and pattern recognition, data compression, field reconstruction, fast rendering
and visualization in animation, numerical integration of smooth functions on irregular domains. (See [17, 16]
for application of a similar method to face recoginition and optimal sensor placement for field reconstruction.)
The good performance and the simplicity of the present method warrant further investigations for these
applications.

A An example of a bad Lebesgue constant

Let us consider two sequences of interlaced and increasing real numbers a0 < b0 < a1 < b1 < · · · < ai < bi <
ai+1 < . . . and let χi be equal to 1 over ]ai, bi[ and 0 elsewhere.

For i ≥ 1, we denote by ϕi the L∞ function given by

ϕi = χ0 + χi −
∞∑

j=i+1

χj (27)

Then it is an easy matter to realize that the empirical interpolation procedure may actually rank the
interpolating function as they are (i.e. leave them in the same order) and choose the interpolation points
xi = ai+bi

2 . (Actually, there are multiple choices here for the points that realize the arg maxx∈IR |ϕi|; we
could avoid by multiplying the ϕi by a suitable slowly decreasing function.)

Then, for any given M , the Lagrangian functions hM
i are defined by hM

M = ϕM and, for any i, 1 ≤ i < M

hM
i = ϕi +

M∑
j=i+1

hM
j (28)
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so that, by induction, hM
i (x0) = 2M−i, which is the L∞ norm of hM

i . The Lebesgue constant, being the sum
of these L∞ norms, then gives 2M − 1.

B Proper sampling procedure of the empirical interpolation ap-
proach

We adapt to our interpolation greedy construction, the analysis presented in [3] where the best fit approxi-
mation is analyzed. Let us denote by rM the difference between u and its interpolation over the points xi,
i = 1, . . . ,M , i.e.

rM (x;u) = u(x)−
M−1∑
j=1

αM,j(u)
rj(x)
rj(xj)

. (29)

where the coefficients αM,j(u) satisfy

∀i, i = 1, . . . ,M
M∑

j=1

αM,j(u)qj(xi) = u(xi)

taking into account the triangular structure (with only 1 on the diagonal) we get

αM,i(u) = u(xi)−
i−1∑
j=1

αM,j(u)qj(xi)

or again (noticing that αM,j(u) is actually independent of M

αM,i(u)
ri(xi)

=
ri(xi;u)
ri(xi)

which is, in absolute value, smaller than 1 from the argmax definition of ui.
It is then an easy matter to realize by induction, that for ` < M

r`(x) ≡ r`(x, u`) = u`(x) +
`−1∑
j=1

γ`
j(u)uj(x), (30)

with |γ`
i | ≤ 2`−i−1. From the hypothesis stated in theorem 2, we derive that there exists vj in ZM−1 such

that ‖uj(x)− vj‖Y ≤ ce−αM so that, by setting v` = vµ`
+

∑`−1
j=1 γ

`
jvµj

we get

‖r` − v`‖X ≤ c2`−1e−αM . (31)

Since dim XM−1 = M − 1, there exists coefficients βi 1 ≤ i ≤M , with ‖β‖`∞ = 1 such that
∑M

i=1 βivi = 0.
Then

‖
M∑
i=1

βiri‖X = ‖
M∑
i=1

βi(ri − vi)‖X ≤
√
M2M−1e−αM , (32)

and due to the imbedding of Y into L∞(Ω),

‖
M∑
i=1

βiri‖L∞(Ω) ≤ c
√
M2M−1e−αM . (33)

From the definition of the points xi, and using the fact that rj(xi) = 0 if j > i, we get first that |β1||r1(x1)| ≤
c
√
M2M−1e−αM . Then

|β2||r2(x2)| ≤ c
√
M2M−1e−αM + |β1||r1(x2)|, (34)
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again from the definition of x1

|β2||r2(x2)| ≤ c
√
M2M−1e−αM + |β1||r1(x1)| ≤ 2c

√
M2M−1e−αM , (35)

and recursively, for any m ≤M

|βm||rm(xm)| ≤ 2m−1c
√
M2M−1e−αM . (36)

Since there exists one j such that βj = 1, we deduce, for any m ≥ j

|rm(xm)| ≤ |rj(xj)| ≤ 2j−1c
√
M2M−1e−αM , (37)

from which we can further deduce that, by the maximization definition of xm,

‖rm‖L∞(Ω) ≤ c
√
M2M+m−2e−αM . (38)

Hence by the maximization definition of µm, for any µ ∈ D,

‖u( · , µ)− Im[u( · , µ)]‖L∞(Ω) ≤ ‖rm‖L∞ ≤ c
√
M2M+m−2e−αM . (39)

Besides, it is an easy matter to check that, for any continuous functions ϕ,

‖ϕ− Im[ϕ]‖L∞(Ω) ≤ ‖ϕ− Im−1[ϕ]− Im[ϕ− Im−1[ϕ]]‖L∞(Ω) (40)

since Im[Im−1ϕ] = Im−1ϕ. Then,

‖ϕ− Im[ϕ]‖L∞(Ω) ≤ c‖ϕ− Im−1[ϕ]‖L∞(Ω) + ‖Im[ϕ]− Im−1[ϕ]‖L∞(Ω). (41)

We note now that Im[ϕ] − Im−1[ϕ] is an element of span {u( · , µi), 1 ≤ i ≤ m} that vanishes at any xk;
1 ≤ k ≤ m − 1 so that it is proportional to rm, from which we deduce it is maximum at xm. Since
Im[ϕ]− Im−1[ϕ] attains its maximum at point xm for which Imϕ coincides with ϕ, we then have

‖Im[ϕ]−Im−1[ϕ]‖L∞(Ω) = |ϕ(xm)−Im−1[ϕ](xm)| ≤ max
x∈Ω

|ϕ(x)−Im−1[ϕ](x)| ≡ ‖ϕ−Im−1[ϕ]‖L∞(Ω). (42)

This leads to the estimate, ∀m, 1 ≤ m ≤M

‖ϕ− Im[ϕ]‖L∞(Ω) ≤ 2‖ϕ− Im−1[ϕ]‖L∞(Ω). (43)

We finally derive

‖u( · , µ)− IM [u( · , µ)]‖L∞(Ω) ≤ 2M−j‖rj‖L∞(Ω) ≤ c22M
√
Me−αM , (44)

and the result is proven thanks to the conditions over α.
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