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SUMMARY

We present a high-order hybridizable discontinuous Galerkin method for solving elliptic interface problems
in which the solution and gradient are nonsmooth because of jump conditions across the interface. The
hybridizable discontinuous Galerkin method is endowed with several distinct characteristics. First, they
reduce the globally coupled unknowns to the approximate trace of the solution on element boundaries,
thereby leading to a significant reduction in the global degrees of freedom. Second, they provide, for elliptic
problems with polygonal interfaces, approximations of all the variables that converge with the optimal order
of kC1 in the L2.�/-norm where k denotes the polynomial order of the approximation spaces. Third, they
possess some superconvergence properties that allow the use of an inexpensive element-by-element
postprocessing to compute a new approximate solution that converges with order kC2. However, for elliptic
problems with finite jumps in the solution across the curvilinear interface, the approximate solution and
gradient do not converge optimally if the elements at the interface are isoparametric. The discrepancy
between the exact geometry and the approximate triangulation near the curved interfaces results in lower
order convergence. To recover the optimal convergence for the approximate solution and gradient, we
propose to use superparametric elements at the interface. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Partial differential equations with discontinuous coefficients and/or discontinuous solutions are
often encountered in fluid dynamics and solid mechanics. For instance, many problems in
engineering and science involve multiple distinct materials or fluids with different densities,
diffusions, conductivities, Young’s modulus, or Poisson ratio. Such problems include multiphase
flows, composite structures, and heat transfer in porous media. Another class of problems of
engineering interest involves solutions having a finite jump across an interface. This class of
problems arises when there is a singular force applied on the interface [1–3] and is more difficult to
deal with than problems with discontinuous coefficients.

For PDEs with interface jump conditions, the smoothness of the solution and the curvature of
the interface may have some important implications. The solution of the interface problem might
be smooth in individual regions occupied by different materials or fluids, but the global solution
distribution might be nonsmooth because of jump conditions across the interface. The shape and
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the curvature of the interface can add an extra difficulty for numerical methods used to solve the
interface problem as we shall point it out later in the paper. The discontinuity in the solution and the
high curvature of the interface are a considerable challenge for any numerical method to compute
solution with high-order accuracy.

Several methods are available in the literature for solving interface problems. They include
immersed interface method [1], fitted finite element method [4], unfitted finite element method [5],
and embedded finite element method [6]. Although these methods can treat both stationary and
moving interfaces through the use of fitted or unfitted grids, they are only second-order accurate.
Moreover, it is not clear that these methods can achieve second-order accuracy for problems with
discontinuous solutions on general curved interfaces.

Recently, in [7], the local discontinuous Galerkin (LDG) method has been extended to solve
elliptic interface problems. The LDG method possesses some advantages over other continuous
Galerkin finite element methods (CG-FEMs) for solving interface problems. First, the resulting
stiffness matrix is the same as the matrix obtained by using the standard LDG method for elliptic
problems without jump conditions because all the discontinuity terms appear on the right-hand
side. Second, the LDG method can provide high-order accurate solutions for problems in which
the domain, boundary data, interface, and jumps are smooth enough. However, the stiffness matrix
of the LDG method is considerably larger than that of CG-FEMs because the LDG solution has
nodal duplications along element boundaries. Therefore, the LDG method is more computationally
expensive than CG-FEMs. Moreover, the previous work [7] does not deal with general curved
interfaces effectively.

In this paper, we present a high-order hybridizable discontinuous Galerkin (HDG) method for
numerically solving elliptic interface problems. The method developed here is an extension of the
HDG method introduced in [8] and analyzed in [9–11] for elliptic problems without jump condi-
tions. The essential ingredients of the method are: (1) a local Galerkin projection of the underlying
PDE at the element level onto spaces of polynomials of degree k to capture the jump in the solution
and parametrize the numerical solution in terms of the numerical trace; (2) a judicious choice of
the numerical flux to provide stability and consistency; and (3) a global Galerkin projection that
weakly enforces the continuity of the numerical flux and weakly imposes boundary conditions and
jump conditions in the flux. Although only elliptic interface problems are considered in this paper,
the method can be extended to convection–diffusion, Stokes, and incompressible Navier–Stokes
problems with jump conditions [12, 13] by combining the present idea with the HDG methods
for incompressible flows introduced in [14–19] and the interface stabilized finite element method
introduced in [20, 21].

The HDG method possesses all the advantages of the LDG method and offers additional
distinct features. First, they reduce the globally coupled unknowns to the approximate trace of the
solution on element boundaries, thereby leading to a significant reduction in the global degrees
of freedom. Second, they provide, for elliptic problems with polygonal interfaces, approxima-
tions of all the variables that converge with the optimal order of k C 1 in the L2.�/-norm.
And third, they possess some superconvergence properties that allow us, by means of local post-
processing, to obtain a new approximate solution that converges with order k C 2. However,
for elliptic problems with general curvilinear interfaces, the approximate solution and gradient
do not converge optimally if the elements at the interface are isoparametric. The discrepancy
between the exact geometry and the approximate triangulation near the curved interfaces results
in lower order convergence [7]. To recover the optimal convergence of order k C 1 for the
approximate solution and gradient, we propose to use superparametric elements at the inter-
face. We present numerical results to demonstrate the convergence properties and accuracy of the
HDG method.

The paper is organized as follows. In Section 2, we introduce the problem statement and notation
used throughout the paper. In Section 3, we describe the HDG method for solving elliptic inter-
face problems. In Section 4, we discuss the effect of curved interfaces on accuracy and provide
an effective treatment by utilizing superparametric elements near the interface. In Section 5, we
provide numerical examples to demonstrate the proposed method. Finally, we present some
concluding remarks in Section 6.
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DOI: 10.1002/nme



HDG METHOD FOR ELLIPTIC INTERFACE PROBLEMS 185

2. PROBLEM STATEMENT AND NOTATION

2.1. Elliptic interface problem

Let � be a bounded domain in Rd with Lipschitz boundary @�. Let @�D and @�N be two disjoint
portions of @�. Let � be an interior interface that splits� into two disjoint subdomains�1 and�2.
We define

�1 �
®
x � �n1 W x 2 � and �! 0

¯
,

�2 �
®
x � �n2 W x 2 � and �! 0

¯
,

where n1 (respectively, n2) is the normal unit vector that points outward the subdomain �1

(respectively, �2). Note that �1 and �2 are considered as the interior boundary of �1 and �2,
respectively. Figure 1 shows the geometric setting of the problem.

We consider solving the following elliptic problem

r � .��ru/D f , in �, (1)

with boundary conditions

uD gD , on @�D,

��2ru � nD gN , on @�N,
(2)

and jump conditions on the interface

uj�1 � uj�2 D sD , on � ,

�
�
�1ruj�1 � n

1C �2ruj�2 � n
2
�
D sN , on � .

(3)

The governing equation (1) and its conditions can be rewritten as

q �ruD 0, in �,

r � .��q/D f , in �,

uD gD , on @�D,

��q � nD gN , on @�N,

uj�1 � uj�2 D sD , on � ,

�
�
�1qj�1 � n

1C �2qj�2 � n
2
�
D sN , on � .

(4)

Here, f is a source term, gD and gN are boundary data, and sD and sN are interfacial jumps. We
assume that these functions are given and smooth.

Figure 1. A circular interface � is immersed inside �. Material coefficients �1 and �2 are not the same in
�1 (inside the circle) and �2 (outside the circle).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:183–200
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In general, the aforementioned elliptic problem results in nonsmooth solution because of the jump
conditions (3) on the interface. In particular, when both sD and sN are nonzero, the solution u does
not belong to the Hilbert space H 1.�/ but to the Lebesgue space L2.�/. These spaces are defined
as follows:

L2.�/D

²
v W

Z
�

jvj2 <1

³
, (5)

H 1.�/D

²
v W

Z
�

jvj2 <1,
Z
�

jrvj2 <1

³
. (6)

The curved interface and the nonsmooth solution of the problem represent a considerable challenge
for any numerical method to compute solution with high-order accuracy. Our objective in this paper
is to develop an HDG method with high-order of accuracy for the approximate solution and gradient.
To describe the HDG method, we need to introduce some notation.

2.2. Finite element mesh

We denote by T j
h

(j D 1, 2) a collection of disjoint elements K that partition �j . We assume that
T 1
h
\ T 2

h
D ; and that Th D�, where Th denotes the union of T 1

h
and T 2

h
. We then set

@Th WD ¹@K W K 2 Thº, (7)

where @K denotes the boundary of the element K. We also introduce

Ah WD
�
�1 \ T 2h

�
[
�
�2 \ T 1h

�
. (8)

Note that Ah is an empty region only if T j
h
D �j , j D 1, 2, that is, if our finite element mesh

represents the interface � exactly. However, in general, we may have T j
h
¤ �j , j D 1, 2. In such

case, the region Ah is nonempty. For example, Figure 2(a) shows the approximation of a circular
interface inside a square using linear isoparametric elements. We observe that �2 \ T 1

h
D 0 and

�1\T 2
h
¤ 0. Sum of the curved strips in between the red segments and the blue circle in Figure 2(a)

is Ah. The convergence rate of the L2-norm error inside Ah will be discussed in Section 4.
For an elementK 2 Th, F D @K\@� is the boundary face if the d �1 measure of F is nonzero.

We denote by E@
h

the union of all boundary faces. For two elements KC and K� of the collection
Th, F D @KC\@K� is the interior face betweenKC andK� if the d �1 measure of F is nonzero.
Those interior faces whose vertices lie on � shall be called interfacial faces. The remaining interior
faces shall be called interelement faces. We denote by �h the union of all interfacial faces and by
Eo
h

the union of all interelement faces.

(a) (b)

Figure 2. Mesh generation of a circular interface inside a square. (a) Isoparametric elements with k D 1 and
(b) superparametric elements with k� D 2.
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Finally, we denote by Eh the set of all boundary faces, interelement faces, and interfacial
faces, namely,

Eh WD E@h [ Eoh [ �h. (9)

We also introduce a switch function ı�h that is defined on @Th and satisfies

ı�h D

²
1, if @K \ �h ¤ ; and K 2 T 1

h

0, otherwise.
(10)

In words, ı�h is equal to 1 on the intersection @K \ �h only if .i/ K 2 T 1
h

and .i i/ the intersection
is nonempty. This function is introduced to capture the discontinuity in the solution across
the interface.

2.3. Approximation spaces

Let Pk.D/ denote the space of polynomials of degree at most k on a domain D. We introduce the
following discontinuous approximation spaces

Wk
h D

°
w 2 L2.Th/ W wjK 2 Pk.K/, 8K 2 Th

±
,

Vkh D
°
v 2 ŒL2.Th/�d W vjK 2 ŒPk.K/�d , 8K 2 Th

±
.

In addition, we introduce a finite element approximation space for the approximate trace of
the solution

Mk
h D

°
� 2 L2.Eh/ W �jF 2 Pk.F /, 8 F 2 Eh

±
.

Note that Mk
h

consists of functions that are continuous inside the facets and discontinuous at their
borders.

Finally, we define various inner products for our finite element spaces. For functions a and b in
L2.D/, we denote .a, b/D D

R
D ab if D is a domain in Rd and ha, biD D

R
D ab if D is a domain

in Rd�1. For functions a and b in ŒL2.D/�d , we denote .a,b/D D
R
D
a � b if D is a domain in Rd

and ha,biD D
R
D a � b if D is a domain in Rd�1. We define the volume inner products as

.a, b/Th D
X
K2Th

.a, b/K , .a,b/Th D
X
K2Th

.a,b/K ,

and boundary inner products as

ha, bi@Th D
X
K2Th

ha, bi@K , ha,bi@Th D
X
K2Th

ha,bi@K .

We are now ready to describe the HDG method for solving the system (4).

3. HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD

3.1. Formulation

In the HDG method, we aim to solve a global matrix system involving the degrees of freedom of
an approximate tracebuh 2Mh, which is an approximation to the exact solution u on Eh. We note,
however, that u is double-valued on � , whereasbuh is single-valued on any given face F 2 �h. To
resolve this issue, we let the value ofbuh on �h,buhj�h , be an approximation to uj�2 . We then takebuhj�h C sD to be an approximation to uj�1 as derived from (3).

We next consider the governing equations (4) on one element K of Th, multiply with test
functions v and w, respectively, and integrate the resulting equations by parts to obtain an
approximation .qh,uh/ 2 Vkh �Wk

h
that satisfies

.qh, v/K C .uh,r � v/K � heuh, v � ni@K D 0, (11a)

.�qh,rw/K � h�bqh � n,wi@K D .f ,w/K , (11b)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:183–200
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for all .v,w/ 2 ŒPk.K/�d �Pk.K/, where the numerical flux �bqh is defined as

�bqh D �qh � �.uh �euh/n. (12)

The stabilization parameter � is defined in (19). Here, to capture the jump condition in the solution
across the interface, the functioneuh is defined in terms ofbuh as

euh D ² buhC sD , if @K \ �h ¤ ; and K 2 T 1
hbuh, otherwise.

(13)

Note that euh incorporates the jump condition in the solution across the interface. In fact, it is an
approximation to u on Eh and on both sides of the interface �h.

By using the definition of ı�h in (10), we can rewrite (11)–(13) as

.qh, v/K C .uh,r � v/K �
˝buhC ı�hsD , v � n

˛
@K
D 0, (14a)

.�qh,rw/K � h�bqh � n,wi@K D .f ,w/K , (14b)

where

�bqh D �qh � �.uh �buh � ı�hsD/n. (15)

We note that ifbuh is available, then we can substitute (15) into (14) and solve the resulting system
for .qh,uh/ in an element-by-element fashion. Hence, (14) defines a local problem that determines
.qh,uh/ as a function ofbuh.

To determine buh, we enforce weakly the jump condition in the flux across interior faces and
impose weakly the boundary conditions. In particular, we require thatbuh 2Mk

h
satisfies

h�bqh � n,�i@Thn.@�D[@�N / � hsN ,�i�h C hbuh � gD ,�i@�D C h�bqh � n� gN ,�i@�N D 0,

for all � 2Mk
h

. The earlier equation can be written asbuh 2Mk
h

satisfies

h�qh � n� �.uh �buh/,�i@Thn@�D C hbuh,�i@�D DhgD ,�i@�D C hgN ,�i@�N
C hsN � �sD ,�i�h ,

(16)

for all � 2 Mk
h

. This equation can be considered as a global weak formulation in terms of buh
because .qh,uh/ as defined by (14)–(15) is in fact a function ofbuh.

Finally, by substituting (15) into (14), adding the resulting equations over all elements and
rearranging some terms, we obtain the HDG formulation: find .qh,uh,buh/ 2 Vkh �Wk

h
�Mk

h
such that

.qh, v/Th C .uh,r � v/Th � hbuh, v � ni@Th D
˝
ı�hsD , v � n

˛
@Th

, (17a)

.�qh,rw/Th � h�qh � n� �.uh �buh/,wi@Th D .f ,w/Th C
˝
�ı�hsD ,w

˛
@Th

, (17b)

h�qh � n� �.uh �buh/,�i@Thn@�D C hbuh,�i@�D D hgD ,�i@�D C hgN ,�i@�N (17c)

C hsN � �sD ,�i�h ,

for all .v,w,�/ 2 Vkh �Wk
h
�Mk

h
. This system completely defines the HDG method.

3.2. Relation to the hybridizable discontinuous Galerkin method for standard elliptic problems

We recall from [8–10] that the HDG method for standard elliptic problems without interface
conditions is defined as follows: find .qh,uh,buh/ 2 Vkh �Wk

h
�Mk

h
such that

.qh, v/Th C .uh,r � v/Th � hbuh, v � ni@Th D 0, (18a)

.�qh,rw/Th � h�qh � n� �.uh �buh/,wi@Th D .f ,w/Th , (18b)

h�qh � n� �.uh �buh/,�i@Thn@�D C hbuh,�i@�D D hgD ,�i@�D C hgN ,�i@�N , (18c)

for all .v,w,�/ 2 Vkh �Wk
h
�Mk

h
.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:183–200
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Several remarks are in order. First, the present method (17) is a natural extension of the method
(18) to elliptic interface problems. Indeed, the formulation (18) is a particular case of the more
general formulation (17) for sD D 0 and sN D 0. As a result, the latter inherits all the convergence
properties of the former. In particular, for regular interface problems in which the data and geometry
are sufficiently smooth, both the approximate solution and gradient converge with the optimal order
kC1 in the L2.�/-norm; see [9,10]. Second, the HDG method provides an elegant treatment of the
interface conditions so that all the discontinuity terms appear as extra terms on the right-hand side.
Therefore, the global stiffness matrix does not change, and the matrix is symmetric positive-definite.
Finally, we note that the stabilization parameter is chosen as

� D
�

`
, (19)

where ` is a characteristic length scale. The optimal value of � turns out to be a unit length [18].

3.3. Expression of the numerical traces

We now derive an explicit expression forbuh andbqh in terms of uh and qh that can shed light on the
nature of the HDG method. It is clear from (16) thatbuh D gD , on @�D , (20)

�2qh � nC �.uh �buh/D gN , on @�N . (21)

The latter equation yields

buh D 1

�
.�2qh � n� gN /C uh, on @�N . (22)

Furthermore, on any interelement face F 2 Eo
h

shared by two elementsK� andKC, we obtain from
(15) and (16) that

�CqC
h
� nCC �

�
uC
h
�buh�C ��q�h � n�C � �u�h �buh�D 0, (23)

which gives

buh D 1

2

�
uC
h
C u�h

�
C

1

2�

�
�CqC

h
� ��q�h

�
� nC, on Eoh , (24)

where �˙ D �jK˙ , u˙
h
D uhjK˙ , and q˙

h
D qhjK˙ . Similarly, we have

buh D 1

2

�
uC
h
C u�h � sD

�
C

1

2�

��
�CqC

h
� ��q�h

�
� nC � sN

�
, on �h. (25)

Therefore, we obtain the following formula forbuh as

buh D
8̂̂̂<̂
ˆ̂:
gD , on @�D ,
1
�
.�2qh � n� gN /C uh, on @�N ,
1
2

�
uC
h
C u�

h

�
C 1

2�

�
�CqC

h
� ��q�

h

�
� nC, on Eo

h
,

1
2

�
uC
h
C u�

h
� sD

�
C 1

2�

��
�CqC

h
� ��q�

h

�
� nC � sN

�
, on �h.

(26)

We next substitute the earlier expression into (15) to obtain

�bqh D
8̂̂̂̂
<̂
ˆ̂̂:
�2qhC �.uh � gD/n, on @�D ,

gNn, on @�N ,
1
2

�
�CqC

h
C ��q�

h

�
C �

2

�
uC
h
� u�

h

�
nC, on Eo

h
,

1
2

�
�CqC

h
C ��q�

h
C sNn

C
�
C �

2

�
uC
h
� u�

h
C sD

�
nC, on �h.

(27)

These expressions reveal the relationship between the HDG method and several DG methods ana-
lyzed in [22]. In particular, the HDG method can be viewed as a DG method defined by (14) with
the aforementioned choice of the numerical traces.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:183–200
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3.4. Implementation

There are two different strategies for implementing the HDG method. We briefly describe the direct
implementation in this paper and refer the readers to [23] for details of the second strategy. We begin
by noting that the HDG formulation (17) yields a linear system of the form24 A �BT �CT

B D ET

C E F

3524 q
ubu
35D

24 g
f
h

35 . (28)

Here, q, u, andbu represent the vector of degrees of freedom for qh, uh, and buh, respectively. We
next eliminate q and u to obtain a reduced globally coupled matrix equation only forbu as

KbuD r, (29a)

where

KD�
�

C E
� � A �BT

B D

��1 �
�CT

E

�
C F, (29b)

and

rD h�
�

C E
� � A �BT

B D

��1 � g
f

�
. (29c)

Because of the discontinuous nature of the approximation space Vkh�Wk
h

, the matrix ŒA �BT IB D�
is block-diagonal and inverted in an element-by-element fashion to yield a block-diagonal inverse.
Therefore, the stiffness matrix K and vector r can be formed efficiently.

3.5. Local postprocessing

We use a local postprocessing proposed in [24] to improve the accuracy of the numerical solution.
On every elementK 2 Th, we define a new approximate solution u�

h
2 PkC1.K/ such that it satisfies�

ru�h,rw
�
K
D .qh,rw/K , 8w 2 PkC1.K/,�

u�h, 1
�
K
D .uh, 1/K .

(30)

The new approximation u�
h

will converge with order k C 2 whenever the approximate gradient qh
converges with the optimal order k C 1 and the average of the original approximation supercon-
verges with order k C 2 [9, 10]. We note, however, that this local postprocessing is not effective
for the LDG method [7] because the approximate gradient of the LDG method converges with the
suboptimal order k.

4. SUPERPARAMETRIC TREATMENT OF CURVED INTERFACES

4.1. Definition of the numerical error

We measure the numerical error using the L2.�/-norm as follows:

ku� uhk� WD

�Z
�

.u� uh/
2

	1=2
D

�Z
�nAh

.u� uh/
2C

Z
Ah

.u� uh/
2

	1=2
. (31)

We recall that Ah is the region in which our approximate solution uh is not an accurate approxima-
tion to the exact solution u if the amount of the jump sD is nonzero and finite. In particular, in the
region Ah, the absolute value ju � uhj is in the order of jsDj regardless of h and k. The mismatch
between the numerical solution and exact one may have a negative effect on accuracy as discussed in
the succeeding paragraphs. This problem also appears in the L2.�/-error norm of the approximate
flux, kq�qhk�, which is defined in the same fashion as the error norm of the approximate solution.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:183–200
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4.2. Effect of the curved interface on accuracy

In this paper, we are interested in elliptic interface problems in which the interface � is curved and
the amount of the jump is finite. It turns out for such problems that the geometric representation of
the interface � has a great influence on the accuracy. In particular, we shall show that the use of
isoparametric elements may reduce the optimal convergence rate of the approximate solution. The
optimal convergence rate can be retained by using superparametric elements.

For simplicity of exposition, we assume that sD D 1 and that ju � uhj D sD D 1 in the region
Ah. In such case, the L2.�/-error norm is given by

ku� uhk� D

�Z
�nAh

.u� uh/
2C volume.Ah/

	1=2
. (32)

To estimate the volume of Ah, we assume that polynomials of degree n are used to represent all the
elements K 2 Th near the interface � . It is also reasonable to assume that the number of elements
near the interface isO.1=hd�1/. Now, considering any given elementK whose faceF lies on �h, let
E be a straight face (edge in two dimensions or triangle in three dimensions) formed by the vertices
of F . Furthermore, we denote by s D .s1, : : : , sd�1/ a Cartesian coordinate system attached to E.
We further assume that the interface � is exactly represented by a function g.s/ 2 C nC1.E/. Then,
the face F can be considered as an interpolating polynomial pn.s/ of degree n, which approximates
g.s/ on E. It follows from the standard interpolation theory [25] that

jg.s/� pn.s/j 'O
�
hnC1E

�
, (33)

where hE DO.h/ denotes the length of E in two dimensions or the length of the longest edge of E
in three dimensions. We thus haveZ

E

jg.s/� pn.s/j 'O


hnCd

�
, (34)

because m.E/ ' O.hd�1/, where m.E/ denotes the measure of E. Because we assume that there
are O.1=hd�1/ elements near the interface � , we obtain

volume.Ah/'O
�
hnC1

�
. (35)

We see that the volume of Ah converges with order nC 1 in general.
Furthermore, because uh converges optimally to u in the region �nAh, we haveZ

�nAh

.u� uh/
2 'O



h2.kC1/

�
. (36)

As a result, for general curved interface problems with O.1/ jump magnitude, we obtain the
following convergence rate

ku� uhk� 'O


hmin.kC1,.nC1/=2/

�
. (37)

This implies that uh will converge with order .k C 1/=2 if isoparametric elements are used to
represent the interface provided that the solution is not smooth across the interface. (Of course,
if either the volume of Ah is zero or the amount of the jump sD is zero, then the approximate
solution uh will converge with the optimal order k C 1 for isoparametric elements.) To recover the
optimal convergence rate of kC 1 for uh, we need to use polynomials of degree 2kC 1 to represent
(superparametric) elements near the interface.

5. NUMERICAL EXAMPLES

In this section, we present several numerical examples to demonstrate the performance of the
proposed method. We use the same quadrature rules for both superparametric and isoparamet-
ric elements. More specifically, we need to use the number of quadrature points that yields an
accuracy of at least order O.hkC2/. Hence, in practice, we choose 2k C 2 integration points to
achieve this goal.
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5.1. Linear interface

We solve the Poisson equation (1) with � D 1, and � is a star-shaped interface as shown in Figure 3.
The jump conditions across the interface are given as

uj�1 � uj�2 D 1, on � ,

�
�
ruj�1 � n

1Cruj�2 � n
2
�
D 0, on � .

Homogeneous Dirichlet-type boundary condition is imposed on @�. The source term is chosen such
that the problem has the following analytical solution

uD

´
sin.	x/ sin.	y/C 1 if x 2�1,

sin.	x/ sin.	y/ if x 2�2.

To study the convergence of the HDG method, we compute the numerical solution on a sequence
of refined meshes. The initial mesh is shown in Figure 3. Each refinement is obtained by subdividing
each triangle into four smaller triangles. We say that the mesh has level Nref. It is obtained from the
initial mesh by Nref of these refinements. On these meshes, we consider polynomials of degree k to
represent all the approximate variables using a nodal basis within each element [26]. We note that
the interface is exactly represented by our finite element meshes.

Figure 3 shows the computed solution on the initial mesh. We further present in Table I the order
of convergence and error in the approximate solution uh, approximate gradient qh, and postpro-
cessed solution u�

h
. We observe that the approximate solution and gradient converge optimally with

(a) (b)

Figure 3. (a) Numerical solution uh and (b) numerical tracebuh computed on the initial mesh in Example
5.1 of the linear interface.

Table I. Convergence history of the numerical approximations for Example 5.1 of the linear interface. The
initial mesh is refined by Nref D 0, 1, 2 times.

k Nref k u� uh k� Order k q � qh k� Order k u� u�
h
k� Order

1 0 7.27� 10�02 � 1.29� 10�01 � 3.99� 10�03 �

1 1.84� 10�02 1.98 3.26� 10�02 1.98 4.89� 10�04 3.03
2 4.63� 10�04 1.99 8.19� 10�03 1.99 6.02� 10�05 3.02

2 0 5.63� 10�03 � 1.15� 10�02 � 2.76� 10�04 �

1 7.20� 10�04 2.97 1.44� 10�03 3.00 1.70� 10�05 4.02
2 9.06� 10�05 2.99 1.81� 10�04 2.99 1.05� 10�06 4.02

3 0 3.75� 10�04 � 7.19� 10�04 � 1.35� 10�05 �

1 2.37� 10�05 3.98 4.54� 10�05 3.99 4.21� 10�07 5.00
2 1.48� 10�06 4.00 2.84� 10�06 4.00 1.31� 10�08 5.01
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order k C 1. Moreover, the postprocessed solution converges with order k C 2 that is one-order
higher than the convergence rate of the original solution. This is one important advantage of the
HDG method for interface problems.

5.2. Crossing of the interface and the boundary

In this example, we consider a Poisson problem with a straight interface cutting the boundary as
shown in Figure 4(a). The interface divides the entire square domain �D Œ0, 1�� Œ0, 1� into �1 and
�2. The level set function of the interface is 
 D x � 0.75. Dirichlet and Neumann conditions on
the boundary are given as follows.

uD 0, on @�D,

��ru � nD�2	 sin.2	x/� 2x, on @�N1 ,

��ru � nD�2	 sin.2	x/, on @�N2 ,

��ru � nD�2	 sin.2	y/, on @�N3 ,

where the material property � D 1. The jump conditions on the interface are given as follows.

uj�1 � uj�2 D 2xy, on � ,

�
�
ruj�1 � n

1Cruj�2 � n
2
�
D 2y, on � .

The numerical solution, as shown in the figure, will be compared with the following expression

uD

´
sin.2	x/ sin.2	y/C 2xy if x 2�1,

sin.2	x/ sin.2	y/ if x 2�2.

Similar to Example 5.1, the convergence of the HDG method is estimated via a sequence of the
refined meshes. Figures 4(b) and 5 plot the approximate solution uh and the approximate gradient
qh, respectively. Table II shows the optimal convergence rates for uh and qh and the superconver-
gence rate for u�

h
. The complexity at the intersection area between the interface and the boundary is

resolved by the proposed approach without any extra modificiation.
We note that the solution across the interface is nonsmooth in Examples 5.1 and 5.2. However,

the use of superparametric elements at the interface is not compulsary to maintain the optimal
convergence properties of the HDG method because the interface is made of straight lines.

(a) (b)

Figure 4. (a) Geometry arrangement and (b) the solution uh computed on the initial mesh h D 0.125 with
k D 3 in Example 5.2.
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(a) (b)

Figure 5. The approximate flux qh computed on the initial mesh hD 0.125 with k D 3 in Example 5.2. (a)
@uh = @x and (b) @uh = @y.

Table II. Convergence history of the numerical approximations for Example 5.2. The initial mesh is refined
by Nref D 0, 1, 2 times.

k Nref k u� uh k� Order k q � qh k� Order k u� u�
h
k� Order

1 0 9.21� 10�02 � 1.96� 10�01 � 3.10� 10�03 �

1 2.38� 10�02 1.95 4.96� 10�02 1.98 3.75� 10�04 3.05
2 6.01� 10�03 1.99 1.24� 10�02 2.00 4.59� 10�05 3.03

2 0 9.45� 10�03 � 2.17� 10�02 � 2.61� 10�04 �

1 1.21� 10�03 2.97 2.74� 10�03 2.99 1.63� 10�05 4.00
2 1.53� 10�04 2.98 3.44� 10�04 2.99 1.02� 10�06 4.00

3 0 7.92� 10�04 � 1.88� 10�03 � 1.64� 10�05 �

1 5.07� 10�05 3.97 1.19� 10�04 3.98 5.08� 10�07 5.01
2 3.19� 10�06 3.99 7.46� 10�06 4.00 1.58� 10�08 5.01

5.3. Dual thermal conductivity problem

In this example, we simulate the heat distribution at steady state over a plate made of two types of
materials with different thermal conductivities. The governing equation reads

�r � .�ru/D s, x 2 Œ�1, 1�� Œ�1, 1�, � D

´
1 if x 2�1

100 if x 2�2
, (38)

where the source term s is given by

s D�10
�
x21 C x

2
2

�3=2
� 15x21

�
x21 C x

2
2

�1=2
� 15x22

�
x21 C x

2
2

�1=2
, in �.

The circular interface � of radius R D 0.5 divides the entire domain � D Œ�1, 1� � Œ�1, 1� into
two separate regions�1 and�2 as shown in Figure 6. The numerical solution is compared with the
following analytical solution

uD

8<:
1
�1

�
x21 C x

2
2

�5=2
if x 2�1,

1
�2

�
x21 C x

2
2

�5=2
C


1
�1
� 1
�2

�
R5 if x 2�2,

(39)

where �1 D 1 and �2 D 100. Dirichlet boundary condition on the outer boundary @� is derived
from (39). The jump in the solution as well as the jump in the flux are prescribed as follows

uj�1 � uj�2 D 0, on � ,

�
�
�1ruj�1 � n

1C �2ruj�2 � n
2
�
D 0, on � .
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(a) Entire mesh (b) Elements near the interface

Figure 6. The initial mesh uses superparametric elements near the interface and isoparametric elements
away from the interface in Example 5.3 of the dual thermal conductivities.

(a) (b)

Figure 7. The original (a) uh and the postprocessed solutions (b) u�
h

computed on the initial mesh for k D 2
in Example 5.3 of the dual thermal conductivities.

We compute the numerical solution on a sequence of refined meshes that is similar to Example 5.1.
The initial mesh is shown in Figure 6(a). On these meshes, we consider polynomials of degree k to
represent all the approximate variables using a nodal basis within each element [26]. However,
we use polynomials of degree 2k C 1 to represent the elements near the interface as shown
in Figure 6.

Figure 7 plots the solution uh and the postprocessed solution u�
h

on the initial mesh for k D 2.
The solution is continuous but nonsmooth across the circular interface because of different values
of �. We see that u�

h
is significantly superior to uh as depicted in Figure 7. This demonstrates the

effectiveness of the local postprocessing for interface problems. We further present in Table III
the order of convergence and error in the approximate solution uh, approximate gradient qh, and
postprocessed solution u�

h
. We observe again that the approximate solution and gradient converge

optimally with order kC 1 and that the postprocessed solution converges with order kC 2.

5.4. Circular interface with non-zero jump conditions

We consider solving a Poisson equation .� D 1/ with a circular interface of radius R D 0.5
immersed inside � that is a square Œ�1, 1� � Œ�1, 1�. Jump boundary conditions across � are
given as
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Table III. Convergence history of the numerical approximations for Example 5.3 of the dual thermal
conductivities. Superparametric elements with the order of .2kC 1/ are used to approximate the interface.

k Nref ku� uhk� Order kq � qhk� Order ku�
h
� uk� Order

1 0 1.44� 10�01 � 1.62� 10�02 � 6.31� 10�04 �

1 3.65� 10�02 1.98 4.65� 10�03 1.80 8.95� 10�05 2.82
2 9.16� 10�03 2.00 1.22� 10�03 1.93 1.18� 10�05 2.92

2 0 8.63� 10�03 � 2.22� 10�03 � 6.17� 10�05 �

1 1.08� 10�03 3.00 3.04� 10�04 2.86 4.33� 10�06 3.83
2 1.35� 10�04 3.00 3.88� 10�05 2.97 2.77� 10�07 3.97

3 0 2.42� 10�04 � 1.62� 10�04 � 3.82� 10�06 �

1 1.48� 10�05 4.03 1.06� 10�05 3.93 1.26� 10�07 4.92
2 9.14� 10�07 4.02 6.67� 10�07 4.00 3.98� 10�09 4.99

Table IV. Convergence history of the numerical approximations for Example
5.4 of the circular interface with k D 1 for the isoparametric k� D 1 and the

superparametric cases k� D 2.

Nref k u� uh k� Order k q � qh k� Order

Isoparametric case
0 3.51� 10�01 � 8.23� 10�01 �

1 1.68� 10�01 1.06 3.91� 10�01 1.07
2 7.40� 10�02 1.18 1.75� 10�01 1.16

Superparametric case
0 1.50� 10�01 � 2.77� 10�01 �

1 3.89� 10�02 1.95 6.77� 10�02 2.03
2 9.80� 10�03 1.99 1.66� 10�02 2.03

uj�1 � uj�2 D sin.	x/ sin.	y/� ex cosy,

�
�
ruj�1 � n

1Cruj�2 � n
2
�
D 2x.	 cos.	x/ sin.	y/

� ex cos y/C 2y.	 sin.	x/ cos.	y/� ex siny/.

Dirichlet boundary conditions along the outside rectangular domain @� and the source term are
derived from the following analytical expression

uD

´
ex cos y if x 2�1,

sin.	x/ sin.	y/ if x 2�2.

With this example, we aim to demonstrate the benefit of using superparametric elements for
curved interfaces.

We present in Table IV the convergence rate and error for the numerical approximations computed
using k D 1 for both isoparametric k� D 1 and superparametric elements k� D 2 for the interface
approximation. We see that when isoparametric elements are applied along the circular interface,
both uh and qh converge suboptimally with order one, whereas they converge optimally with order
k C 1 when superparametric elements are used along the interface. Note that using k� D 2 suffices
to guarantee optimal convergence because the interface is circular. Figure 8 depicts the approxi-
mate solution uh in both cases. Note that the black-dashed line in Figure 8(a) represents the exact
circular interface. Because of the effect of the jump in the solution, using isoparametric elements
leads to suboptimal convergence rates. By using superparametric elements, we can recover optimal
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(a) Iso-parametric elements      = 1 (b) Super-parametric elements      = 2

Figure 8. The approximate solution uh computed using (a) isoparametric and (b) superparametric elements
for elements near the circular interface in Example 5.4. These solutions are obtained on the initial mesh

shown herein.

(a) (b)

Figure 9. The approximate flux qh computed using superparametric elements for elements near the circular
interface in Example 5.4. (a) @uh = @x and (b) @uh = @y.

Table V. Convergence history of the numerical approximations for Example 5.4 of the circular interface on
using superparametric elements k�DkC1. The original mesh size hD0.3 is reduced byNref D 0, 1, 2 times.

k Nref k u� uh k� Order k q � qh k� Order ku�
h
� uk� Order

1 0 1.50� 10�01 � 2.77� 10�01 � 1.50� 10�02 �

1 3.89� 10�02 1.95 6.77� 10�02 2.03 1.64� 10�03 3.19
2 9.80� 10�03 1.99 1.66� 10�02 2.03 1.92� 10�04 3.09

2 0 1.89� 10�02 � 3.60� 10�02 � 1.03� 10�03 �

1 2.29� 10�03 3.04 4.24� 10�03 3.09 5.89� 10�05 4.13
2 2.83� 10�04 3.02 5.16� 10�04 3.04 3.52� 10�06 4.06

3 0 1.73� 10�03 � 4.02� 10�03 � 8.73� 10�05 �

1 1.12� 10�04 3.95 2.28� 10�04 4.14 2.40� 10�06 5.18
2 6.95� 10�06 4.01 1.33� 10�05 4.10 6.93� 10�08 5.11

convergence rates for both the approximate solution and gradient. Figure 9 illustrates the approxi-
mate flux qh obtained using superparametric elements. Table V shows optimal convergence rates of
uh and qh for higher order elements with k D ¹1, 2, 3º.
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5.5. Kidney-shaped interface

In the last example, we consider a kidney-shaped interface governed by the following level set
function


 D
�
3
�
.xC 0.5/2C y2

�
� x � 0.5

�2
�
�
.xC 0.5/2C y2

�
C 0.1.

The Dirichlet boundary data and source term are derived from the following exact solution

uD

´
sin.2x2C y2C 2/C x if x 2�1,
1
�2

cos.1� x2 � y2/ if x 2�2.

Note that the diffusion coefficient � is equal to �1 D 1 in �1 and equal to �2 D 10 in �2. Here,
�D Œ�1, 1�2 ��1[�2, where the subdomain�1 is the region closed by the aforementioned level
set function.

Table VI. Convergence history of the numerical approximations for Example
5.5 of the kidney-shaped interface on using isoparametric elements.

k Nref k u� uh k� Order k q � qh k� Order

1 0 4.05� 10�02 � 2.41� 10�01 �

1 2.36� 10�02 0.78 1.30� 10�01 0.89
2 1.19� 10�02 0.99 6.66� 10�02 0.96

Table VII. Convergence history of the numerical approximations for Example 5.5 of the kidney-shaped
interface on using superparametric elements k� D kC 1.

k Nref k u� uh k� Order k q � qh k� Order ku�
h
� uk� Order

1 0 1.66� 10�02 � 1.17� 10�02 � 2.80� 10�04 �

1 4.06� 10�03 2.03 2.68� 10�03 2.13 3.36� 10�05 3.06
2 1.00� 10�03 2.02 6.20� 10�04 2.11 4.11� 10�06 3.03

2 0 8.54� 10�04 � 1.87� 10�03 � 2.41� 10�05 �

1 1.08� 10�04 2.98 1.88� 10�04 3.31 1.56� 10�06 3.95
2 1.22� 10�05 3.15 1.88� 10�05 3.32 9.42� 10�08 4.05

3 0 1.50� 10�04 � 3.30� 10�04 � 5.24� 10�06 �

1 8.54� 10�06 4.13 2.24� 10�05 3.88 1.90� 10�07 4.79
2 4.18� 10�07 4.35 1.16� 10�06 4.27 4.57� 10�09 5.38

(a) Iso-parametric elements      = 1 (b) Super-parametric elements      = 2

Figure 10. The approximate solution uh computed using (a)isoparametric and (b) superparametric elements
for elements near the kidney-shaped interface in Example 5.5. These solutions are obtained on the initial

mesh shown herein.
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(a) (b)

Figure 11. The approximate flux qh computed using superparametric elements for elements near the
kidney-shaped interface in Example 5.5. (a) @uh = @x and (b) @uh = @y.

We present numerical results in Table VI for the case where isoparametric elements k� D k are
used along the interface and in Table VII for the case where superparametric elements k� D kC1 are
used along the interface. The results are similar to those presented in the previous example. Figure 10
shows the approximate solution uh in both cases, whereas Figure 11 illustrates the approximate flux
qh obtained using superparametric elements.

6. CONCLUSION

We have developed an HDG method for numerically solving elliptic interface problems. All the
discontinuous terms appear on the right-hand side vector of the global matrix system, and thus, the
positive definite properties of the stiffness matrix are preserved. The use of superparametric elements
is essential to remedy the numerical errors arising from the inexact approximation of the interface
geometry and the nonsmoothness of the solution across the interface. The order k� D 2k C 1 of
superparametric elements is recommended for elliptic problems with the finite jump in the solution
across the high curvature interface. Numerical results have shown that the method provides optimal
convergence of order k C 1 for both the approximate solution and gradient. Furthermore, the post-
processed solution converges with order k C 2. The extension of this work to the incompressible
Stokes and Navier–Stokes equations constitutes the subject of ongoing research.
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