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a b s t r a c t

We present a hybridizable discontinuous Galerkin method for the numerical solution of
steady and time-dependent linear convection–diffusion equations. We devise the method
as follows. First, we express the approximate scalar variable and corresponding flux within
each element in terms of an approximate trace of the scalar variable along the element
boundary. We then define a unique value for the approximate trace by enforcing the con-
tinuity of the normal component of the flux across the element boundary; a global equa-
tion system solely in terms of the approximate trace is thus obtained. The high number
of globally coupled degrees of freedom in the discontinuous Galerkin approximation is
therefore significantly reduced. If the problem is time-dependent, we discretize the time
derivative by means of backward difference formulae. This results in efficient schemes
capable of producing high-order accurate solutions in space and time. Indeed, when the
time-marching method is ðpþ 1Þth order accurate and when polynomials of degree
p P 0 are used to represent the scalar variable, the flux and the approximate trace, we
observe that the approximations for the scalar variable, the flux and the trace of the scalar
variable converge with the optimal order of pþ 1 in the L2-norm. Finally, we introduce a
simple element-by-element postprocessing scheme to obtain new approximations of the
flux and the scalar variable. The new approximate flux, which has a continuous inter-ele-
ment normal component, is shown to converge with order pþ 1 in the L2-norm. The new
approximate scalar variable is shown to converge with order pþ 2 in the L2-norm. For the
time-dependent case, the postprocessing does not need to be applied at each time-step but
only at the times for which an enhanced solution is required. Moreover, the postprocessing
procedure is less expensive than the solution procedure, since it is performed at the ele-
ment level. Extensive numerical results are presented to demonstrate the convergence
properties of the method.

Published by Elsevier Inc.
1. Introduction

In this paper, we present a hybridizable discontinuous Galerkin (HDG) method for the solution of steady and time-depen-
dent convection–diffusion equations. The method is an extension to time-dependent convection–diffusion problems of the
class of HDG methods first introduced in [10] for symmetric second-order elliptic problems. This method was then extended
to steady-state convection–diffusion in [8] using a different approximation for the total flux than the one considered here.

As it is typical of HDG methods, to carry out the discretization in space, we proceed in two main steps. First, the approx-
imate scalar variable and flux are expressed in an element-by-element fashion in terms of an approximate trace of the scalar
er Inc.
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variable along the element boundary. Then, a unique value for the trace at inter-element boundaries is obtained by enforcing
flux continuity. This leads to a global equation system in terms of the approximate boundary traces only. This system has a
significantly smaller number of globally coupled degrees of freedom relative to more standard discontinuous Galerkin meth-
ods analyzed in [1]. Moreover, the stiffness matrices are of the same size and structure to those associated with the corre-
sponding hybridized version of the mixed methods; see [10]. It also results in more accurate approximations when the
stabilization parameters are suitably chosen; see [7,11].

It turns out that several well known DG methods, such as some particular cases of the Local Discontinuous Galerkin (LDG)
method [13], as well as some stabilized interior penalty methods [14], can be cast as HDG methods; see [10]. In the case of
those special LDG methods, their hybridized formulation can be interpreted as a re-parametrization of the discrete solution
resulting in a reduced number of globally coupled unknowns. In addition, the method possesses a compact discretization
which eliminates the non-compact nature of the standard LDG method in multi-dimensions [17,20]. Another advantage
of the HDG methods introduced in [10] is that they include a wide family of schemes in which both the approximate scalar
variable and the approximate flux converge at a rate of pþ 1 in L2-norm when polynomials of order p are used to represent
the scalar variable, the flux and the approximate trace. For p P 1, a simple local postprocessing procedure can then be used
to obtain a solution that converges at a rate of pþ 2 in the L2-norm [7,11]. In addition, unlike the standard LDG methods, it is
possible to obtain optimally convergent approximations for elliptic problems even for p ¼ 0.

We consider HDG methods built by using, on each element, LDG methods to express the approximate scalar variable and
the flux in terms of an approximate trace along the element boundary. Our methods are thus LDG-hybridizable, according to
the terminology introduced in [10], but we are going to call them HDG methods for simplicity. (Note that all the standard
LDG schemes which have a zero constant C22 cannot be HDG schemes. To be an HDG scheme, an LDG scheme must have a
positive value for C22 and jC12 � nj ¼ 1

2 [10]; for example, only the LDG method introduced in [5] falls into this category. The
Compact DG scheme introduced in [17] is not an HDG method; it is a modification of an LDG method.) First, we present the
HDG methods and describe their implementation for steady-state convection–diffusion equations. We next derive a weak
formulation that characterizes the numerical solution in terms of the numerical trace only and prove the existence and
uniqueness of the numerical trace. In addition, we propose two different choices of the stabilization parameters which
are shown to provide an accurate and stable solution even in the diffusive and convective limits. We provide numerical
examples indicating that both the approximate scalar variable and the approximate flux converge optimally with order
pþ 1 in the L2-norm even for the special case p ¼ 0.

We then extend our methods to time-dependent convection–diffusion equations by employing backward difference for-
mulaes for the discretization of the time derivative in Section 3.7. The resulting methods are implicit, stable and high-order
accurate and involve significantly less degrees of freedom than standard implicit DG methods [18]. We present numerical
results indicating that the HDG methods developed here exhibit the above-mentioned convergence properties in the
time-dependent case.

Finally, we introduce a simple element-by-element postprocessing scheme to obtain new approximations of the flux
and the scalar variable. The new approximate flux is obtained by employing the projection used in [8]. This projection,
and various variations, have already been used in several different situations; see [3,7,11,12]. Unlike the original
approximate flux, the postprocessed flux has a continuous inter-element normal component. Moreover, it converges
with the optimal order of pþ 1 in the L2-norm, which is the same as the original flux. The new approximate scalar
variable is obtained by using a postprocessing which is an extension of the one introduced in [7], and then used in
[11] for the symmetric second-order elliptic problem. It is shown to converge with order pþ 2 in L2-norm which is
one-order higher than the original approximate scalar variable. Since the local postprocessing is performed at element
level, the new approximations are even less expensive to compute than the approximate solution. Let us stress the fact
that, unlike the cases considered in [7,8,11], the local postprocessing scheme does not involve the original partial dif-
ferential equation. It is thus particularly well-suited for time-dependent problems. Moreover, it does not have to be
applied at each time-step, but only at desired times during the simulation. Therefore, compared with the more estab-
lished DG methods, the proposed approach can be more efficient: the pþ 2 convergent solution can be computed at
the cost of a DG approximation using polynomials of degree p.

The paper is organized as follows: In Section 2, we introduce the steady-state convection–diffusion model equation and
the notation. In Section 3, we describe the HDG-space discretization method and then extend it to the time-dependent case
(see Section 3.7). In Section 4, we introduce the local postprocessing procedure to compute a higher-order accurate solution.
In Section 5, we provide extensive numerical results to assess the convergence and accuracy of the method. Although our
examples are in two dimension, the present method can be applied to problems in one and three dimensions. Finally, we
present some concluding remarks in Section 6.

2. Problem statement and notation

2.1. The convection–diffusion model equation

We consider the following convection–diffusion model problem
r � ðcuÞ � r � ðjruÞ ¼ f ; in X; ð1Þ
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with boundary conditions
u ¼ gD; on CD;

ð�jruþ cuÞ � n ¼ gN; on CN :
ð2Þ
Here X 2 Rd is the physical domain with boundary @X; f 2 L2ðXÞ is a source term, j 2 L1ðXÞ is a positive diffusivity coeffi-
cient, and c 2 ðL1ðXÞÞd is a smooth velocity vector field. As usual, we assume that the ðd� 1Þ-Lebesgue measure of CD is
not zero and that @X ¼ CD [ CN and CD \ CN ¼ ;.

We introduce the auxiliary variable q ¼ �jru and rewrite the above equation as a first-order system of equations
qþ jru ¼ 0; in X;

r � ðcuþ qÞ ¼ f ; in X;
ð3Þ
with boundary conditions
u ¼ gD; on CD;

ðqþ cuÞ � n ¼ gN; on CN :
ð4Þ
Next, we introduce the notation we are going to use to describe the HDG method.

2.2. Mesh and trace operators

Let T h be a collection of disjoint elements that partition X. We denote by @T h the set f@K : K 2 T hg. For an element K
of the collection T h, e ¼ @K \ @X is the boundary face if the d� 1 Lebesgue measure of e is non-zero. For two elements Kþ

and K� of the collection T h, e ¼ @Kþ \ @K� is the interior face between Kþ and K� if the d� 1 Lebesgue measure of e is
non-zero. Let Eo

h and E@h denote the set of interior and boundary faces, respectively. We denote by Eh the union of Eo
h

and E@h.
Let nþ and n� be the outward unit normals of @Kþ and @K�, respectively, and let ðq�;u�Þ be the traces of ðq;uÞ on e from

the interior of K�. Then, we define the mean values ff�gg and jumps s � t as follows. For e 2 Eoh, we set
ffqgg ¼ ðqþ þ q�Þ=2 ffugg ¼ ðuþ þ u�Þ=2;

sq � nt ¼ qþ � nþ þ q� � n� sunt ¼ uþnþ þ u�n�:
For e 2 E@h, the set of boundary edges on which q and u are singled value, we set
ffqgg ¼ q ffugg ¼ u;

sq � nt ¼ q � n sunt ¼ un;
where n is the outward normal to @X. Note that the jump in u is a vector, but the jump in q is a scalar which only involves the
normal component of q. Furthermore, the jump will be zero for a continuous function.

2.3. Approximation spaces

Let PpðDÞ denote the set of polynomials of degree at most p on a domain D. For any element K of the collection T h we
denote WpðKÞ � PpðKÞ and VpðKÞ � ðPpðKÞÞd. We introduce discontinuous finite element spaces
Wp
h ¼ fw 2 L2ðXÞ : wjK 2WpðKÞ 8K 2 T hg;
and
Vp
h ¼ fv 2 ðL

2ðXÞÞd : v jK 2 VpðKÞ 8K 2 T hg:
Here L2ðDÞ is the space of square integrable functions on D. In addition, we introduce a traced finite element space
Mp
h ¼ fl 2 L2ðEhÞ : lje 2 PpðeÞ;8e 2 Ehg:
We also set Mp
hðgDÞ ¼ fl 2 Mp

h : l ¼ PgD on CDg, where P denotes the L2-projection into the space flj@X 8l 2 Mp
hg.

Note that Mp
h consists of functions which are continuous inside the faces (or edges) e 2 Eh and discontinuous at their

borders.
For functions w and v in ðL2ðDÞÞd, we denote ðw; vÞD ¼

R
D w � v. For functions u and v in L2ðDÞ, we denote ðu;vÞD ¼

R
D uv if D

is a domain in Rd and hu;viD ¼
R

D uv if D is a domain in Rd�1. We finally introduce
ðw;vÞT h
¼
X
K2T h

ðw;vÞK ; hf;qi@T h
¼
X
K2T h

hw; vi@K ; hl;giEh
¼
X
e2Eh

hl;gie;
for functions w;v defined on T h; f;q defined on @T h, and l;g defined on Eh.
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3. The hybridizable DG method

3.1. Formulation

We seek an approximation ðqh;uhÞ 2 Vp
h �Wp

h such that for all K 2 T h,
ðj�1qh; vÞK � ðuh;r � vÞK þ hûh; v � ni@K ¼ 0; 8v 2 ðPpðKÞÞd;

� ðcuh þ qh;rwÞK þ hðccuh þ bqhÞ � n;wi@K ¼ ðf ;wÞK ; 8w 2 PpðKÞ:
ð5Þ
Here, the numerical traces ccuh þ bqh and buh are approximations to cu� jru and u over @K , respectively. Next, we express
ðqh;uhÞ in terms of ûh only. To this end, we consider numerical traces ccuh þ bqh of the form
ccuh þ bqh ¼ cbuh þ qh þ sðuh � buhÞn; on @K: ð6Þ
Here, s is the so-called local stabilization parameter; it has an important effect on both the stability and accuracy of the result-
ing scheme. The selection of the value of the parameter s will be described below. Note that both ccuh and cûh are different
approximations to the same quantity cu and that the former is defined in terms of the latter as later shown in Section 3.6.

We next express ûh in terms of the boundary data gD and a new variable kh 2 Mp
hð0Þ as
ûh ¼
PgD; on Eh \ CD;

kh; on Eh n CD:

�

By adding the contributions of (5) over all the elements and enforcing the continuity of the normal component of the numer-
ical flux, we arrive at the following problem: find an approximation ðqh;uh; khÞ 2 Vp

h �Wp
h �Mp

hð0Þ such that
ðj�1qh; vÞT h
� ðuh;r � vÞT h

þ hkh; v � ni@T h
¼ �hgD; v � niCD

; 8v 2 Vp
h;

� ðcuh þ qh;rwÞT h
þ hðccuh þ bqhÞ � n;wi@T h

¼ ðf ;wÞT h
; 8w 2Wp

h;

hsðccuh þ bqhÞ � nt;liEh
¼ hgN;liCN

; 8l 2 Mp
hð0Þ:

ð7Þ
Note that the Dirichlet boundary condition has been enforced by requiring that ûh ¼ PgD on Eh \ CD, whereas the continuity
of the normal component of ccuh þ bqh is enforced explicitly by the last equation. This type of method is sometimes called a
hybrid dual-mixed method. It is called mixed because we seek approximations for both qh and uh. It is called hybrid dual
because the approximate trace, kh, associated to the conservativity condition is an approximation for the trace of uh on
the boundaries of the elements.

We observe that kh is uniquely defined over each edge since kh belongs to Mp
h. Furthermore, if sðccuh þ bqhÞ � nt belongs to

Mp
h, then the last Eq. (7) simply states that sðccuh þ bqhÞ � nt ¼ 0 pointwise over Eh n CN and that ðccuh þ bqhÞ � n ¼ PgN on CN; in

other words, the normal component of the numerical trace ccuh þ bqh is single-valued. Hence, both kh and ccuh þ bqh are con-
servative fluxes according to the definition in [1]. Note that our numerical traces remain conservative even when the diffu-
sion coefficient j is discontinuous at the interior element interface.

Let us point out that the difference between this HDG method and the one considered in [8] is that therein the total flux
cuþ q is approximated by a single variable whereas here we approximate its two components separately. As a result, our
method can deal with the purely convective case, unlike the approach presented in [8]. Finally, we note that, due to the dis-
continuous nature of both Vp

h and Wp
h, the first two equations in (7) can be used to eliminate both qh and uh to obtain a weak

formulation in terms of kh only and thus a global system of equations involving the degrees of freedom of kh, as described
below.

3.2. Implementation

We first insert (6) into (7) and obtain, after some simple manipulations, that ðqh;uh; khÞ 2 Vp
h �Wp

h �Mp
hð0Þ is the solution

of the following weak formulation:
aðqh; vÞ � bðuh; vÞ þ cðkh; vÞ ¼ rðvÞ;

bðw; qhÞ þ dðuh;wÞ þ eðkh;wÞ ¼ f ðwÞ;

cðl; qhÞ þ gðl; uhÞ þ hðl; khÞ ¼ ‘ðlÞ;

ð8Þ
for all ðv;w;lÞ 2 Vp
h �Wp

h �Mp
hð0Þ. Here, the bilinear forms and linear functionals are given by
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aðq; vÞ ¼ ðj�1q; vÞT h
;

bðu; vÞ ¼ ðu;r � vÞT h
;

cðk; vÞ ¼ hk; v � ni@T h
;

dðu;wÞ ¼ �ðcu;rwÞT h
þ hw; sui@T h

;

eðk;wÞ ¼ hw; ðc � n� sÞki@T h
;

gðl; uÞ ¼ hl; sui@T h
;

hðl; kÞ ¼ hl; ðc � n� sÞki@T h
;

f ðwÞ ¼ ðf ;wÞT h
;

rðvÞ ¼ �hgD; v � niCD
;

‘ðlÞ ¼ hgN;liCN
;

ð9Þ
for all ðq;u; kÞ and ðv;w;lÞ in Vp
h �Wp

h �Mp
h.

The discretization of the system of equations (8) gives rise to a matrix equation of the form
A �BT CT

B D E

C G H

264
375 Q

U

K

264
375 ¼ R

F

L

264
375: ð10Þ
Here Q;U, and K represent the vector of degrees of freedom for qh;uh, and kh, respectively. The matrices in (10) correspond to
the bilinear forms in (8) in the order they appear in the equations.

As pointed out above, the first two equations in (7) can be used to eliminate both qh and uh in an element-by-element
fashion. As a consequence, we can write the above system as
Q

U

� �
¼ A �BT

B D

" #�1
R

F

� �
� CT

E

" #
K

 !
; ð11aÞ
and
C Qþ G U þ HK ¼ L: ð11bÞ
Let us stress once again that the above inverse can be computed on each element independently of each other owing to the
discontinuous nature of the approximation spaces Wp

h and Vp
h. Moreover, the inverse matrix is well defined and bock-diag-

onal since the it results from applying the LDG method to solve the original PDE (3) with Dirichlet conditions at each element
[10].

Now, we eliminate both Q and U to obtain a reduced globally coupled matrix equation only for K as
K K ¼ F; ð12aÞ
where
K ¼ � C G½ � A �BT

B D

" #�1
CT

E

" #
þH; ð12bÞ
and
F ¼ L� C G½ � A �BT

B D

" #�1
R
F

� �
: ð12cÞ
Once K is available both Q and U can be obtained from (11a).

3.3. Characterization of the numerical trace kh

Let us now shed light into the nature and structure of the matrix Eq. (12a). To do that, let us introduce the so-called local
solver. Thus, we associate to each function ðm; f Þ 2 Mp

h � L2ðXÞ, the pair ðqm;f
h ;um;f

h Þ on X whose restriction to each element K is
in VpðKÞ �WpðKÞ and satisfies
ðj�1qm;f
h ; vÞK � ðu

m;f
h ;r � vÞK ¼ �hm; v � ni@K ; ð13aÞ

� ðcum;f
h þ qm;f

h ;rwÞK þ hðccum;f
h þ bqm;f

h Þ � n;wi@K ¼ ðf ;wÞK ; ð13bÞ
for all ðv;wÞ 2 Vp �Wp, where
ccum;f
h þ bqm;f

h ¼ cmþ qm;f
h þ sðum;f

h �mÞn: ð13cÞ
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It is now clear, see equations (7), that the approximate solution ðqh;uhÞ 2 Vp
h �Wp

h satisfies
qh ¼ q
kh ;f
h ; uh ¼ ukh ;f

h ; ð14aÞ
where kh 2 Mp
hð0Þ is such that
hsðccukh ;f
h þ bqkh ;f

h Þ � nt;liEh
¼ hgN;liCN

; 8l 2 Mp
hð0Þ: ð14bÞ
We can now see that Eq. (11a) is the matrix equation associated to the weak formulation (14a), and that Eq. (11b) is the
matrix equation associated to the weak formulation (14b). We next show that we can eliminate qh and uh from the above
equations to obtain a weak formulation in terms of kh only.

Let qm;0
h ;um;0

h

� �
(respectively, q0;f

h ;u0;f
h

� �
) solve (13b) when we set f ¼ 0 (respectively, m ¼ 0). If, for all g and l 2 Mp

h, we set
ahðg;lÞ ¼ �hsðccug;0
h þ bqg;0

h Þ � nt;liEh
;

bhðlÞ ¼ hsðccu0;f
h þ bq0;f

h Þ � nt;liEh
;

we have from (14b) and linearity of the problem (13b) that the function kh 2 Mp
hð0Þ is the solution of the variational

formulation
ahðkh;lÞ ¼ bhðlÞ � hgN ;liCN
; 8l 2 Mp

hð0Þ: ð15Þ
Thus, K is the matrix associated with the bilinear form ahð�; �Þ and F the matrix associated with the linear form
bhð�Þ � hgN; �iCN

. Note that since
ahðg;lÞ ¼ �hðccug;0
h þ bqg;0

h Þ � n;li@T h
;

we can easily deduce that if the support of g is the interior face e ¼ @Kþ \ @K�, or the boundary face e ¼ @K \ @X, then
ahðg;lÞ ¼ 0 when the support of l does not intersect @Kþ [ @K�, or @K , respectively. Thus, the matrix K has a block-structure
of blocks of square matrices of order dimPp. In eack block-row or block-column, there are at most five non-zero blocks when
the elements are triangles, and at most seven non-zero blocks in three space dimension.

It remains to prove the well-posedness of the local solver.

Lemma 3.1. Assume that r � c P 0 in X. Then, if the stabilization parameter s satisfies the condition
s > 1
2

c � n on @T h; ð16Þ
we have that the solution qm;f
h ;um;f

h

� �
of the local solver (13b) exists and is unique.

Proof 1. By integration by parts, we can write (13b) as
ðj�1qm;f
h ; vÞK � ðu

m;f
h ;r � vÞK ¼ �hm; v � ni@K ; ð17aÞ

ðr � qm;f
h ;wÞK � ðcum;f

h ;rwÞK þ hsum;f
h ;wi@K ¼ ðf ;wÞK þ hðs� c � nÞm;wi@K ; ð17bÞ
for all ðv;wÞ 2 VpðKÞ �WpðKÞ. Due to the linearity, finite dimensionality, and to the fact that this is a square system, it is suf-
ficient to show that the only solution of (17b) for m ¼ 0 and f ¼ 0 is qm;f

h ¼ 0 and um;f
h ¼ 0. Indeed, taking v ¼ qm;f

h and w ¼ um;f
h

and adding the two equations, we get
ðj�1qm;f
h ; qm;f

h ÞK � ðcum;f
h ;rum;f

h ÞK þ hsum;f
h ;um;f

h iK ¼ 0;
which, after integrating by parts, yields
j�1qm;f
h ; qm;f

h ÞK þ
1
2
ððr � cÞ um;f

h ; um;f
h

� �
K
þ ðs� 1

2
c � nÞum;f

h ;um;f
h

	 

K
¼ 0:
This equation implies that qm;f
h ¼ 0 over the simplex K and that um;f

h ¼ 0 on @K since we assumed r � c P 0 and s > 1
2 c � n. It

thus follows from (17a) that
rum;f
h ; v

� �
K
¼ 0; 8v 2 VpðKÞ:
Since um;f
h 2WpðKÞ the above equation implies rum;f

h is constant over K. As a consequence, um;f
h ¼ 0 over K since

um;f
h ¼ 0 on @K . This completes the proof. h

Therefore, for the uniqueness and thus also stability of the numerical solution we only require s to satisfy the condition
(16) – not necessarily the fully upwinding condition s P c � n; see also [15].
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3.4. A sufficient condition for the existence and uniqueness of kh

Next, we show that Eq. (15) uniquely determines kh and, by (14a) and Lemma 3.1, qh and uh.

Theorem 3.1. Assume that r � c P 0 in X. Then, if the stabilization parameter s satisfies the condition (16) we have that the
solution kh of the variational formulation (15) exists and is unique.

To prove this theorem, we are going to use the following auxiliary result.

Lemma 3.2. We have, for all g;l 2 Mp
h, that
ahðg;lÞ ¼ j�1q
l;0
h ; q

g;0
h

� �
T h

� ðcug;0
h ;rul;0

h ÞT h
þ ul;0

h � l; c � nug;0
h

D E
T h

þ ul;0
h � l; ðs� c � nÞ ðug;0

h � gÞ
D E

T h

;

Proof 2. To prove this result, we rewrite the equations (13b) with f ¼ 0 as follows:
j�1q
l;0
h ; v

� �
T h

� ðul;0
h ;r � vÞT h

¼ �hl; v � ni@T h
; ð18Þ

r � cug;0
h þ q

g;0
h

� �
;w

� �
T h

¼ � w; ðs� c � nÞ ug;0
h � g

� �D E
@T h

; ð19Þ
for all ðv;wÞ 2 Vp
h �Wp

h. The first equation is obtained from the first equation in (13b) by simply replacing f by 0 and summing
over the elements. The second is obtained from the second equation in (13b) by replacing l by g; f by 0, integrating by parts,
summing the resulting equations over all elements and inserting the definition of the numerical trace (13c).

Thus, we have
ahðg;lÞ ¼ � l; sðccug;0
h þ bqg;0

h Þ � nt
D E

Eh

¼ � l; ðccug;0
h þ bqg;0

h Þ � n
D E

@T h

¼ � l; c � ngþ q
g;0
h � n

D E
T h

� l; s ðug;0
h � gÞ

D E
T h

;

by (13c). Rearranging terms, we get
ahðg;lÞ ¼ � l; qg;0
h � n

D E
T h

� l; c � nug;0
h

D E
T h

� l; s� c � nð Þ ug;0
h � g

� �D E
T h

;

and, by (18) with v ¼ qg;0
h ,
ahðg;lÞ ¼ j�1q
l;0
h ; q

g;0
h

� �
T h

� ul;0
h ;r � qg;0

h

� �
T h

� l; c � nug;0
h

D E
T h

� l; s� c � nð Þ ug;0
h � g

� �D E
T h

:

Finally, by (19) with w ¼ ul;0
h ,
ahðg;lÞ ¼ j�1q
l;0
h ; q

g;0
h

� �
T h

þ r � cug;0
h

� �
;ul;0

h

� �
T h

� l; c � nug;0
h

D E
T h

þ ul;0
h � l; ðs� c � nÞ ug;0

h � g
� �D E

T h

;

and the result follows by integration by parts. This completes the proof. h

We are now ready to prove Theorem 3.1.

Proof 3. The existence and uniqueness of kh follows if we show that the only solution g 2 Mp
hð0Þ of the problem
ahðg;lÞ ¼ 0; 8l 2 Mp
hð0Þ;
is g ¼ 0. Taking l ¼ g, by the previous lemma, we then have that
0 ¼ j�1q
g;0
h ; q

g;0
h

� �
T h

� cug;0
h ;rug;0

h

� �
T h

þ ug;0
h � g; c � nug;0

h

D E
T h

þ ug;0
h � g; ðs� c � nÞ ug;0

h � g
� �D E

T h

;

and, by integration by parts,
0 ¼ j�1q
g;0
h ; q

g;0
h

� �
T h

þ 1
2
r � c; ug;0

h

� �2
� �

T h

� 1
2

ug;0
h ; c � nug;0

h

D E
@T h

þ ug;0
h � g; c � nug;0

h

D E
T h

þ ug;0
h � g; ðs� c � nÞ ug;0

h � g
� �D E

@T h

¼ j�1q
g;0
h ; q

g;0
h

� �
T h

þ 1
2
r � c; ug;0

h

� �2
� �

T h

þ 1
2

ug;0
h � g; c � n ug;0

h � g
� �D E

@T h

� 1
2

g; c � ngh i@T h

þ ug;0
h � g; ðs� c � nÞ ug;0

h � g
� �D E

@T h

;

after some simple algebraic manipulations. Finally, since g 2 Mp
hð0Þ, we have that hg; c � ngi@T h

¼ 0 and we get
0 ¼ j�1q
g;0
h ; q

g;0
h

� �
T h

þ 1
2
r � c; ug;0

h

� �2
� �

T h

þ ug;0
h � g; s� 1

2
c � n

� �
ug;0

h � g
� �	 


@T h

:
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As a consequence, we can conclude that q
g;0
h ¼ 0 and ug;0

h ¼ g; since we assumed that r � c P 0 and s > 1
2 c � n.

After a simple integration by parts, Eq. (18), with l replaced by g, now reads
rug;0
h ; v

� �
T h

¼ 0; 8v 2 Vp
h:
This implies that ug;0
h is a constant on X. As a consequence g is also a constant on Eh and, since g 2 Mhð0Þ, we must have that

g ¼ 0 on Eh. This completes the proof of Theorem 3.1. h
3.5. The general form of the numerical traces

In order to derive an explicit expression for the numerical traces in terms of ðuh; qhÞ, we proceed as follows. Since the con-
servativity condition implies sðdcuh þ bqhÞ � nt ¼ 0 pointwise, we have, using expression (6), that
sqh � ntþ sþuþh þ s�u�h � ðsþ þ s�Þkh ¼ 0; on Eo
h:
Solving for kh and inserting the result into the expression for ccuh þ bqh (6), we obtain on Eo
h

kh ¼
sþ

sþ þ s� uþh þ
s�

sþ þ s� u�h þ
1

sþ þ s�

� �
sqh � nt;

ccuh þ bqh ¼ ckh þ
s�

sþ þ s�
qþh þ

sþ

sþ þ s�
q�h þ

sþs�

sþ þ s�

� �
suhnt:

ð20Þ
These expressions for the numerical traces highlight the relationship between the HDG method and the more standard DG
methods, as discussed below.

3.6. The local stabilization parameter s

In order to get some guidance for choosing the stabilization parameter s, we consider the two limiting cases where only
convection or diffusion occur.

3.6.1. Convective limit
In the convective limit we have j ¼ 0 and consequently qh ¼ 0. In this case, the expressions (20) become
kh ¼
sþ

sþ þ s�
uþh þ

s�

sþ þ s�
u�h ;

ccuh � nþ ¼
sþ

sþ þ s�
ðc � nþ þ s�Þuþh þ

s�

sþ þ s�
ðc � nþ � sþÞu�h ;

ð21Þ
where we have multiplied the second equation by nþ to obtain the normal flux. For the flux to be fully upwinded, we want
ccuh � nþ ¼
ðc � nþÞuþh if c � nþ P 0;
ðc � nþÞu�h if c � nþ < 0

�
ð22Þ
or, equivalently,
ccuh � nþ ¼
1
2
ðc � nþ þ jc � nþjÞuþh þ

1
2
ðc � nþ � jc � nþjÞu�h : ð23Þ
Comparing the desired expression (23) with Eq. (21), we observe that two choices for the parameter s are possible. Either,
s� ¼ jc � nj or s� ¼ a�ðjc � nþj � c � nþÞ, where aþ and a� are two positive constants. Note that in both cases, the condition in
Theorem 3.1 on the stabilization parameter s, (16), is satified; so the existence and uniqueness of the approximate solution is
guaranteed.Note also that for the first choice we get the centered trace kh ¼ ffuhgg ¼ ðuþh þ u�h Þ=2 whereas for the second
choice we obtain the upwinded trace, namely, kh ¼ uþh if c � nþ > 0 and kh ¼ u�h otherwise. Note that for the second choice,
the resulting DG method is nothing but the original DG method [19], whereas for the first choice, the resulting HDG scheme
seems to be new.

3.6.2. Diffusive limit
In the diffusive limit c ¼ 0, expressions (20) become
kh ¼
sþ

sþ þ s�
uþh þ

s�

sþ þ s�
u�h þ

1
sþ þ s�

� �
sqh � nt;

bqh ¼
s�

sþ þ s�
qþh þ

sþ

sþ þ s�
q�h þ

sþs�

sþ þ s�

� �
suhnt:

ð24Þ
This case has been originally studied in [5]; see also [7,10,11]. By rearranging terms these expressions can be transformed
into the more standard form considered in [5],
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bqh ¼ ffqhgg þ C11suhntþ C12sqh � nt;

kh ¼ ûh ¼ ffuhgg � C12 � suhntþ C22sqh � nt;
ð25Þ
where
C11 ¼
sþs�

sþ þ s�

� �
; C12 ¼

1
2

ssnt

sþ þ s�

� �
; C22 ¼

1
sþ þ s�

� �
:

Therein, it was shown that the method is well defined provided C11 > 0 and C22 P 0, which is a condition implies by the
condition (16) in Theorem 3.1, namely, s > 0. We point out that in the LDG method, the trace kh is chosen to be independent
of qh, that is C22 ¼ 0. This has the advantage of allowing the degrees of freedom associated with the qh to be locally elimi-
nated and a global system involving only the degrees of freedom associated to uh is thus solved.

It is interesting to note that for some choices of the parameter s� one can obtain schemes that converge at a rate of pþ 1
for both the scalar variable and the flux, and that they display superconvergence properties of the scalar variable; see [7,11]
for symmetric problems and [8] for convection–diffusion-reaction problems. It is also shown [11] that these superconver-
gent schemes require that C22 be non-zero. While this presents a serious inconvenience for LDG methods, for HDG methods
this represents no difficulty. Choosings equal to zero in d faces of the simplex while taking s to be of order one in the remain-
ing face, gives superconvergence; see [7]. It turns out that the simple choice of s� of order unity everywhere also results in a
scheme that possesses the above-mentioned superconvergence properties; see [11].

3.6.3. Some practical choices for s
Guided by the desired values for s in the above limiting cases, we now give two expressions that generalize the above

expressions over the convection–diffusion range. Both of them satisfy the condition (16) in Theorem 3.1. To account for
the diffusion and convection effects our local stabilization parameter s will take the following form:
s ¼ sd þ sc;
where sd and sc are the local stabilization parameters related to the diffusion and convection, respectively. This allows us to
write each component of the numerical trace bqh þccuh as
bqh ¼ qh þ sdðuh � khÞn;ccuh ¼ ckh þ scðuh � khÞn:
The expressions for both sc and sd are given below.
Centered scheme. The first option considered is to take on each edge sþc ¼ s�c ¼ gc and sþd ¼ s�d ¼ gd, where
gc ¼ jc � nj; gd ¼
j
‘
; ð26Þ
where ‘ denotes a representative diffusive length scale. In this case, the expressions for the numerical traces becomes
kh ¼ ffuhgg þ
1

2s
sqh � nt;

ccuh þ bqh ¼ ckh þ ffqhgg þ
s
2

suhnt:
Clearly, our stabilization parameter s is a real-valued function on the element edges since it depends on c and j. Further-
more, it is single-valued since sþ ¼ s�. We note from the above expression that the centered scheme is a Lax–Friedrich type
flux.

Upwinded Scheme. Here, we choose s�c and s�d according to the following expression
s�c ; s
�
d

� �
¼ ðgc;gdÞ

jc � nþj � c � nþ
2jc � nþj ; ð27Þ
where gc and gd are given by Eq. (26). In this case, the numerical fluxes are given by
kh ¼ uþh þ s�1sqh � nt;ccuh þ bqh ¼ ckh þ q�h ;

(
if c � nþ P 0;
and
kh ¼ u�h þ s�1sqh � nt;ccuh þ bqh ¼ ckh þ qþh ;

(
if c � nþ < 0:
Note that unlike the centered scheme, the stabilization parameter s of the upwinded scheme is double-valued since sþ–s�.
As pointed out in [10], the above numerical traces are not those of an LDG methodfor any s 2 ½0;1Þ. The only way to re-

cover an LDG method is to formally set one branch of s equal to infinity for every interior face, while maintaining a fixed
finite value on the other branch of s; see Corollary 3.3 of [10]. However, this comes at the expense of losing the supercon-
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vergence properties of the method. The minimum dissipation LDG method [6] is a special case of the HDG method when we
let sþ go to infinity and set s� to be zero.

3.7. Extension to time-dependent problems

We end this section by extending the hybridizable DG method for time-dependent convection–diffusion problems. We
consider the time-dependent convection–diffusion model written as a system of first-order equations
qþ jru ¼ 0; in X� ð0; T�;
@u
@t
þr � ðcuþ qÞ ¼ f ; in X� ð0; T�;

u ¼ gD; on CD � ð0; T�;
ðqþ cuÞ � n ¼ gN; on CN � ð0; T�;
u ¼ u0; in X for t ¼ 0:

ð28Þ
The HDG method of lines for the above problem seeks an approximation ðqh;uhÞ 2 Vp
h �Wp

h such that for all K 2 T h,
ðj�1qh; vÞK � ðuh;r � vÞK þ hbuh; v � ni@K ¼ 0;
@uh

@t
;w

� �
K
� ðcuh þ qh;rwÞK þ hðccuh þ bqhÞ � n;wi@K ¼ ðf ;wÞK ;

ð29Þ
for all ðv;wÞ 2 ðPpðKÞÞd � PpðKÞ and for all t 2 ð0; T�. Here, the numerical traces ccuh þ bqh and buh are approximations to
cu� jru and u over @K , respectively.

The above HDG formulation (29) can then be discretized in time using an appropriate time-stepping scheme. Here we
consider backward difference formulaes (BDF) for the discretization of the time derivative. For instance, using the Back-
ward–Euler scheme at time-level tk with time-step Dtk we obtain the following system:
j�1qk
h; v

� �
K � uk

h;r � v
� �

K þ hbuk
h; v � ni@K ¼ 0;

1
Dtk

uk
h;w

� �
K � cuk

h þ qk
h;rw

� �
K þ h ccuk

h þ bqk
h

� �
� n;wi@K

¼ ðf ;wÞK þ
1

Dtk
uk�1

h ;w
� �

K ;
for all ðv;wÞ 2 ðPpðKÞÞd � PpðKÞ. Here we denote uk
h ¼ uhðtkÞ and qk

h ¼ qhðtkÞ, and u0
h as the L2 projection of u0 into Wp

h.
The HDG method then seeks an approximation ðqk

h;u
k
h; k

k
hÞ 2 Vp

h �Wp
h �Mp

hð0Þ such that
j�1qk
h; v

� �
T h
� uk

h;r � v
� �

T h
þ hkk

h; v � ni@T h
¼ �hgD; v � niCD

;

1
Dtk

uk
h;w

� �
T h
� cuk

h þ qk
h;rw

� �
T h
þ h ccuk

h þ bqk
h

� �
� n;wi@T h

¼ ðf ;wÞT h
þ 1

Dtk
uk�1

h ;w
� �

T h
;

hs ccuk
h þ bqk

h

� �
� nt;liEh

¼ hgN;liCN

ð30Þ
for all ðv;w;lÞ 2 Vp
h �Wp

h �Mp
hð0Þ. This is done by adding the contributions over all the elements and enforcing continuity of

the numerical fluxes.
Next, as we did for the steady-state case, we express ðqk

h;u
k
hÞ in terms of kk

h only. To this end, we consider numerical tracesccuk
h þ bqk

h of the form
ccuk
h þ bqk

h ¼ c buk
h þ qk

h þ sðuk
h � buk

hÞn; on @K:
Inserting this expression into (30) and after few algebraic manipulations we obtain that ðqk
h;u

k
h; k

k
hÞ 2 Vp

h �Wp
h �Mp

hð0Þ is the
solution of the following weak formulation
a qk
h; v

� �
� b uk

h; v
� �

þ c kk
h; v

� �
¼ rðvÞ;

1
Dtk

m uk
h;w

� �
þ b w; qk

h

� �
þ d uk

h;w
� �

þ e kk
h;w

� �
¼ f ðwÞ þ 1

Dtk
mðuk�1

h ;wÞ;

c l; qk
h

� �
þ g l;uk

h

� �
þ h l; kk

h

� �
¼ ‘ðlÞ;

ð31Þ
for all ðv;w;lÞ 2 Vp
h �Wp

h �Mp
hð0Þ, where mðu;wÞ ¼ ðu;wÞT h

and the other forms are already introduced in (9). This discrete
system has a similar form as the system (8) for the steady case except that the right-hand side contains the information at
the previous time-steps. Hence, we can apply exactly the same solution procedure described earlier for the steady case to the
time-dependent case at every time-step.
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Of course, a similar procedure can be applied to treat any higher-order BDF method such as the widely used second-order
and third-order BDF schemes. The HDG method can also work with other implicit time-stepping methods such as the fully
implicit Runge–Kutta methods and DG methods in time.
4. Local postprocessing

In this section, we propose simple element-by-element postprocessing procedures to obtain new approximations of the
scalar variable and the flux. For the scalar variable, our proposed approach exploits the optimal convergence of qh and the
superconvergence properties of uh of the HDG method. Although we choose to discuss the local postprocessing within the
HDG framework we wish to emphasize that this postprocessing method can be directly applied to other mixed methods such
as the hybridized RT method and the hybridized BDM method [9,8] provided that these methods have similar convergence
properties as the HDG method.

4.1. Postprocessing of the total flux

We first show that we can postprocess the total approximate flux qT
h ¼ qh þ cuh and its numerical trace bqT

h ¼ bqh þccuh with
an element-by-element procedure to obtain an approximation of qþ cu, denoted qT�

h that belongs to Hðdiv;XÞ and also con-
verges in an optimal fashion. We follow the postprocessing proposed in [8], which is a straightforward extension of the post-
processing procedure introduced in [3,12] and later used in [7,11].

On each simplex K 2 T h, we define the new total flux qT�
h as the only element of ðPpðKÞÞd þ xPpðKÞ satisfying, for p P 0,
h qT�
h � bqT

h

� �
� n;lie ¼ 0; 8l 2 PpðeÞ; 8e 2 @K;

qT�
h � qT

h; v
� �

K ¼ 0; 8v 2 ðPp�1ðKÞÞd if p P 1:
ð32Þ
It is clear that the function qT�
h belongs to Hðdiv;XÞ, thanks to the single-valuedness of the normal component of the numer-

ical trace bqh þccuh.
It is shown in [8] that qT�

h converges optimally with the same order as qT
h ¼ qh þ cuh. Numerical experiments presented in

the next section demonstrate that the new approximation qT�
h has smaller L2ðXÞ error than qT

h . It is, however, worth noting
that qT�

h is an Hðdiv;XÞ-conforming function, while qT
h is completely discontinuous over T h.

4.2. Postprocessing of the scalar variable

Next, we consider postprocessing uh; qh, and bqh to obtain the new approximate scalar variable u�h of u. Towards this end,
we introduce Pp� ð@KÞ with p� ¼ pþ 1. We find ðu�h; q�h; k

�
hÞ 2 Pp� ðKÞ � ðPp� ðKÞÞd � ðPp� ðeÞÞdþ1 on the simplex K 2 T h such that
j�1rq�h; v
� �

K � u�h;r � v
� �

K þ hk
�
h; v � ni@K ¼ 0

� q�h þ cu�h;rw
� �

K þ h bq�h þccu�h
� �

� n;wi@K ¼ r � qT�
h ;w

� �
K ;

hðbq�h þccu�hÞ � n;li@K ¼ hqT�
h � n;li@K ;

u�h;1
� �

K ¼ ðuh;1ÞK ;

ð33Þ
for all ðv;w;lÞ 2 ðPp� ðKÞÞd � Pp� ðKÞ � ðPp� ðeÞÞdþ1, where
bq�h þccu�h ¼ q�h þ ck�h þ s u�h � k�h
� �

n:
It is a simple matter to verify that this local postprocessing is well defined, namely, the problem (33) has a unique solution
u�h. This is indeed the case since (i) the problem (33) is linear and finite dimensional and (ii) u�h ¼ 0 is its unique solution when
we set uh and qT�

h to zero. To compute u�h we need only to invert some matrices of size dimðPp� ðKÞÞ, which are the same for all
elements. Since the local postprocessing can also be done in parallel, the new scalar variable is significantly less expensive to
compute than the original approximate scalar variable.

We note that the local postprocessing (33) is the discretization by the HDG method of the following convection–diffusion
Neumann problem:
r � ð�jruþ cuÞ ¼ r � qT�
h ; in K;

ð�jruþ cuÞ � n ¼ qT�
h � n; on @K;

ðu;1ÞK ¼ ðuh;1ÞK ;
ð34Þ
for each simplex K 2 T h, where qT�
h is the postprocessed total flux and uh is the original approximate scalar variable. There-

fore, to be successful, our postprocessing procedure relies on the optimal convergence of qT�
h and its divergencer � qT�

h , and on
the superconvergence of the average of the approximate scalar variable uh. In fact, these properties for the HDG method have
been theoretically analyzed and confirmed by numerical experiments for the steady symmetric diffusion case in [7,11]: both
qT�

h andr � qT�
h converge with order pþ 1, while ðuh;1ÞK superconverges with order pþ 2. Similar results were proven for the

HDG method for steady-state convection–diffusion-reaction developed in [8] in the diffusion-dominated regime. Numerical
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experiments presented in Section 5 show that the HDG method developed here for the convection–diffusion equations
inherits the above-mentioned convergence properties even for the steady and time-dependent convection–diffusion prob-
lems. As a result, we expect that the new approximate scalar variable u�h converges with order pþ 2 in L2-norm and pþ 1
in H1-norm even in the time-dependent case.

The postprocessing method proposed here is an extension of the one introduced in [7] for a particular HDG method, and
then studied in [11] for a wider class of HDG and DG methods, when the symmetric second-order elliptic problem treated
therein does not have a reaction term. We must however emphasize the main differences between the local postprocessing
scheme proposed here and the procedure suggested in [7,11]. First, the latter relies on solving the original PDE at element
level, whereas the former does not; it only exploits the relation between the scalar variable and the flux. Therefore, the new
local postprocessing method is particularly well-suited for the time-dependent problems since it can compute the new
approximations at any time-step without advancing in time. Second, the latter employs the standard CG method to solve
the original PDE at element level, whereas the former uses the HDG method to solve (34). The HDG method is employed here
because it is more stable than the standard CG method for solving convection–diffusion problems such as (34), especially in
the convection-dominated regime.

5. Numerical examples

In this section, we present numerical examples to demonstrate the convergence and accuracy of the proposed HDG meth-
od. The first example serves as validation in the diffusion-dominated regime; the second example, as validation in the
weakly convection-dominated regime; the third example, as validation in the strongly convection-dominated regime; and
the fourth example, as validation in the time-dependent case for a wide range of parabolic and hyperbolic regimes. The
implementation is written in Matlab Version 7.1 and direct Gaussian elimination is used to solve the linear system.

5.1. A steady diffusion-dominated problem

In the first example, we study the performance of the centered and upwinded schemes and the effectiveness of our local
postprocessing procedure for the diffusion-dominated case. We consider a steady convection–diffusion problem (1) and (2)
in which X ¼ ð0;1Þ � ð0;1Þ;j ¼ 1; c ¼ ð1;1Þ, and gD ¼ 0 on @X. The source term f and Dirichlet boundary condition are cho-
sen such that the exact solution is
Table 1
Exampl

Degree

p

0

1

2

3

4

u ¼ expðxþ yÞ sinðpxÞ sinðpyÞ:
e 1: History of convergence for the centered scheme.

Mesh Ratio ku� uhkL2ðXÞ kqT � qT
hkL2ðXÞ kqT � qT�

h kL2ðXÞ ku� u�hkL2ðXÞ

n R Error Order Error Order Error Order Error Order

4 1.65 5.62e�1 – 2.43e�0 – 1.43e�0 – 8.04e�1 –
8 1.72 2.87e�1 0.97 1.14e�0 1.09 7.74e�1 0.88 3.48e�1 1.21

16 1.76 1.46e�1 0.98 5.56e�1 1.04 4.02e�1 0.95 1.60e�1 1.12
32 1.78 7.33e�2 0.99 2.75e�1 1.01 2.05e�1 0.97 7.70e�2 1.06
64 1.79 3.68e�2 0.99 1.37e�1 1.01 1.03e�1 0.99 3.77e�2 1.03

4 1.62 2.08e�1 – 8.81e�1 – 4.2e�1 – 1.88e�2 –
8 1.43 5.47e�2 1.93 2.32e�1 1.93 1.08e�1 1.96 2.51e�3 2.90

16 1.38 1.39e�2 1.98 5.89e�2 1.97 2.71e�2 1.99 3.24e�4 2.96
32 1.36 3.49e�3 1.99 1.48e�2 1.99 6.79e�3 2.00 4.11e�5 2.98
64 1.36 8.74e�4 2.00 3.72e�3 2.00 1.70e�3 2.00 5.17e�6 2.99

4 1.15 1.70e�2 – 6.28e�2 – 4.67e�2 – 1.24e�3 –
8 1.04 2.20e�3 2.95 8.15e�3 2.95 5.95e�3 2.97 7.57e�5 4.04

16 1.00 2.77e�4 2.99 1.03e�3 2.98 7.47e�4 3.00 4.65e�6 4.02
32 1.00 3.48e�5 3.00 1.30e�4 2.99 9.33e�5 3.00 2.88e�7 4.01
64 1.00 4.35e�6 3.00 1.62e�5 3.00 1.17e�5 3.00 1.78e�8 4.01

4 1.11 1.40e�3 – 5.08e�3 – 4.04e�3 – 7.73e�5 –
8 1.04 9.04e�5 3.95 3.29e�4 3.95 2.59e�4 3.96 2.49e�6 4.96

16 1.02 5.71e�6 3.98 2.07e�5 3.99 1.63e�5 3.99 7.82e�8 4.99
32 1.02 3.58e�7 3.99 1.30e�6 4.00 1.02e�6 4.00 2.44e�9 5.00
64 1.02 2.16e�8 4.05 8.07e�8 4.01 6.68e�8 3.93 7.63e�11 5.00

4 1.16 1.04e�4 – 3.94e�4 – 3.21e�4 – 5.91e�6 –
8 1.07 3.34e�6 4.96 1.25e�5 4.98 1.01e�5 4.98 9.32e�8 5.99

16 1.05 1.05e�7 4.99 3.93e�7 4.99 3.17e�7 5.00 1.47e�9 5.99
32 1.05 3.32e�9 4.99 1.24e�8 4.99 9.99e�9 4.99 2.31e�11 5.99
64 1.05 1.04e�10 4.99 3.90e�10 4.99 3.14e�10 4.99 3.64e�13 5.99



Table 2
Example 1: History of convergence for the upwinded scheme.

Degree Mesh Ratio ku� uhkL2ðXÞ kqT � qT
hkL2ðXÞ kqT � qT�

h kL2ðXÞ ku� u�hkL2ðXÞ

p n R Error Order Error Order Error Order Error Order

0 4 1.72 7.04e�1 – 2.55e�0 – 1.49e�0 – 9.43e�1 –
8 1.77 3.59e�1 0.97 1.20e�0 1.09 7.93e�1 0.91 4.20e�1 1.17

16 1.79 1.82e�1 0.98 5.84e�1 1.04 4.07e�1 0.96 1.97e�1 1.09
32 1.80 9.16e�2 0.99 2.89e�1 1.01 2.06e�1 0.98 9.54e�2 1.05
64 1.80 4.60e�2 0.99 1.44e�1 1.01 1.04e�1 0.99 4.69e�2 1.02

1 4 1.60 2.19e�1 – 8.85e�1 – 4.20e�1 – 1.79e�2 –
8 1.42 5.72e�2 1.93 2.32e�1 1.93 1.08e�1 1.95 2.39e�3 2.91

16 1.37 1.45e�2 1.98 5.89e�2 1.98 2.73e�2 1.99 3.06e�4 2.96
32 1.36 3.64e�3 1.99 1.48e�2 1.99 6.86e�3 2.00 3.88e�5 2.98
64 1.36 9.10e�4 2.00 3.71e�3 2.00 1.72e�3 2.00 4.87e�6 2.99

2 4 1.16 1.85e�2 – 6.25e�2 – 4.75e�2 – 1.20e�3 –
8 1.04 2.38e�3 2.96 8.09e�3 2.95 6.07e�3 2.97 7.35e�5 4.03

16 1.00 3.00e�4 2.99 1.02e�3 2.98 7.63e�4 2.99 4.52e�6 4.02
32 1.00 3.76e�5 3.00 1.28e�4 2.99 9.54e�5 3.00 2.80e�7 4.01
64 1.00 4.70e�6 3.00 1.61e�5 3.00 1.19e�5 3.00 1.74e�8 4.01

3 4 1.11 1.54e�3 – 4.99e�3 – 4.12e�3 – 7.53e�5 –
8 1.04 9.92e�5 3.95 3.22e�4 3.95 2.64e�4 3.96 2.42e�6 4.96

16 1.02 6.26e�6 3.99 2.03e�5 3.99 1.66e�5 3.99 7.61e�8 4.99
32 1.02 3.92e�7 4.00 1.27e�6 4.00 1.04e�6 4.00 2.40e�9 4.98
64 1.02 2.45e�8 4.00 7.94e�8 4.00 6.50e�8 4.00 7.60e�11 4.98

4 4 1.16 1.14e�4 – 3.90e�4 – 3.29e�4 – 5.83e�6 –
8 1.07 3.68e�6 4.96 1.24e�5 4.98 1.04e�5 4.99 9.17e�8 5.99

16 1.06 1.16e�7 4.99 3.88e�7 4.99 3.26e�7 5.00 1.43e�9 6.00
32 1.05 3.64e�9 4.99 1.21e�8 5.00 1.02e�8 5.00 2.23e�11 6.00
64 1.05 1.15e�10 4.99 3.78e�10 5.00 3.19e�10 5.00 3.52e�13 5.99
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We consider triangular meshes obtained by splitting a regular n� n Cartesian grid into a total of 2n2 triangles, giving uniform
element sizes of h ¼ 1=n. On these meshes, we consider solutions of polynomial degree p represented using a nodal basis
within each element, with the nodes uniformly distributed.

We present the error and order of convergence in L2-norm in Table 1 for the centered scheme and Table 2 for the upwin-
ded scheme. We see that in both cases the approximate scalar variable uh and the approximate total flux qT

h converge opti-
mally with order pþ 1 for p ¼ 0;1;2;3;4. It is interesting to note that the HDG method results in approximations which
converge optimally for p ¼ 0, while some other DG methods such as the LDG method may fail to deliver optimal convergent
approximations in this case. We further observe that the centered scheme and upwinded scheme yield very similar results as
far as the error and convergence rate are concerned.

We can also see that the postprocessed total flux q�Th converges with the same order as qT
h; however, the former has

slightly smaller error than the latter. Most notably, the postprocessed scalar variable u�h converges with order pþ 2 in L2-
norm for p P 1, which is one order higher than the convergence rate of the original scalar variable uh. For the special case
p ¼ 0, however, u�h converges with order pþ 1 just like uh. This result is consistent with the theoretical analysis and numer-
ical experiments presented in [7,11] for symmetric second-order elliptic problems and in [8] for steady convection–diffusion
problems. It is also worth noting that other DG methods such as the standard LDG method may not be stable for p ¼ 0 and
that p ¼ 0 solution may be useful in certain cases, for example, when one want to construct a multi-grid solver.

Finally, in the third column of Tables 1 and 2, we tabulate the ratio R which is defined as
R ¼ C
n2ðp1:8 þ 1Þ :
Here C is the condition number of the discrete matrix K given by (12b). The condition number is defined as the ratio of the
largest singular value of K to the smallest singular value, which are computed by a singular value decomposition of the ma-
trix K. It can be seen that the condition number C grows at the rate of Oðh�2Þ for all cases and that the condition number are
very similar for the centered scheme and the upwinded scheme. The growth rate of Oðh�2Þ is typical of the DG approximation
for convection–diffusion problems. Furthermore, the condition number appear to grow at the rate of Oðp1:8Þ for p ¼ 2;3;4.

5.2. A steady convection–diffusion problem

We consider a steady convection–diffusion problem (1) and (2) in which X ¼ ð0;1Þ � ð0;1Þ; c ¼ ðcx; cyÞ, and j ¼ 1. The
source term f and Dirichlet boundary conditions are chosen such that we have the exact solution as follows:
uðx; yÞ ¼ xy
ð1� eðx�1Þcx Þð1� eðy�1Þcy Þ
ð1� e�cx Þð1� e�cyÞ :



N.C. Nguyen et al. / Journal of Computational Physics 228 (2009) 3232–3254 3245
The solution develops boundary layers along the boundaries x ¼ 1 and y ¼ 1 for large values of the velocity c. This example
serves to validate the performance of the HDG method and the local postprocessing procedures in the weakly convection-
dominated regime. For this purpose we shall consider c ¼ ð25;25Þ in our numerical experiments.

We present the error and order of convergence in L2-norm in Table 3 for the centered scheme and Table 4 for the upwin-
ded scheme. Note that the errors being computed on the reduced domain ~X ¼ ½0:1;0:9� � ½0:1;0:9� 	 X to exclude the under-
resolved boundary layer. We can see that in both cases the postprocessed scalar variable u�h converges with order pþ 2, while
the original approximate scalar variable uh converges with order pþ 1. Both the postprocessed and original fluxes converge
optimally with order pþ 1; however, the error of the postprocessed total flux is smaller than that of the original flux for p ¼ 1
and p ¼ 2. Moreover, unlike the original total flux, the normal component of the postprocessed total flux is continuous – an
important quality for many practical applications such as in porous media. These results show the effectiveness of the local
postprocessing procedures. It is also interesting to note that the upwinded scheme produces the original and postprocessed
approximations which have slightly smaller errors than those provided by the centered scheme.

Finally, we study the effectiveness of the postprocessing for unstructured and anisotropic meshes. To this end, we con-
sider an unstructured mesh of 56 elements in Fig. 1(a) and an anisotropic mesh of 72 elements in Fig. 1(b). In anticipation
of the boundary layer the two meshes are refined toward the upper right corner of the domain. We present the numerical
results in Fig. 2 for the unstructured mesh and in Fig. 3 for the anisotropic mesh. These results are obtained by using the
centered scheme for p ¼ 2. For both meshes the postprocessed quantity u�h is clearly superior to the original approximation
uh since the errors in the max norm are ku� uhkL1ðXÞ ¼ 1:43� 10�1 and ku� u�hkL1ðXÞ ¼ 5:70� 10�2 for the unstructured case,
and ku� uhkL1ðXÞ ¼ 2:25� 10�2 and ku� u�hkL1ðXÞ ¼ 6:63� 10�3 for the anisotropic case. The results demonstrate the effec-
tiveness of the postprocessing on both unstructured meshes and anisotropic meshes. Similar results are obtained for the
upwinded scheme.
Table 3
Example 2: History of convergence in the L2-norm for c ¼ ð25;25Þ. The results are obtained using the centered scheme.

Degree Mesh ku� uhkL2ð~XÞ kqT � qT
hkL2ð~XÞ kqT � qT�

h kL2ð~XÞ ku� u�hkL2ð~XÞ

p n Error Order Error Order Error Order Error Order

0 10 1.08e�2 – 4.05e�1 – 6.86e�1 – 1.65e�2 –
20 5.96e�3 0.85 2.16e�1 0.91 3.48e�1 0.98 6.58e�3 1.33
40 3.10e�3 0.94 1.11e�1 0.96 1.75e�1 0.99 3.10e�3 1.08
80 1.57e�3 0.98 5.64e�2 0.98 8.80e�2 1.00 1.55e�3 1.00

160 7.87e�4 0.99 2.84e�2 0.99 4.40e�2 1.00 7.80e�4 0.99

1 10 6.04e�3 – 1.31e�1 – 8.64e�2 – 3.09e�3 –
20 1.37e�3 2.14 2.95e�2 2.15 1.64e�2 2.40 3.43e�4 3.17
40 3.28e�4 2.06 7.08e�3 2.06 3.91e�3 2.07 4.26e�5 3.01
80 7.94e�5 2.05 1.71e�3 2.05 9.69e�4 2.01 5.33e�6 3.00

160 1.95e�5 2.03 4.20e�4 2.03 2.42e�4 2.00 6.68e�7 3.00

2 10 4.29e�4 – 1.08e�2 – 1.12e�2 – 1.56e�4 –
20 8.02e�5 2.42 1.87e�3 2.53 1.51e�3 2.89 7.22e�6 4.44
40 1.14e�5 2.82 2.63e�4 2.83 2.04e�4 2.89 5.17e�7 3.80
80 1.49e�6 2.94 3.42e�5 2.94 2.62e�5 2.96 3.52e�8 3.88

160 1.89e�7 2.98 4.33e�6 2.98 3.30e�6 2.99 2.30e�9 3.94

Table 4
Example 2: History of convergence in the L2-norm for c ¼ ð25;25Þ. The results are obtained using the upwinded scheme.

Degree Mesh ku� uhkL2ð~XÞ kqT � qT
hkL2ð~XÞ kqT � qT�

h kL2ð~XÞ ku� u�hkL2ð~XÞ

p n Error Order Error Order Error Order Error Order

0 10 1.53e�2 – 6.19e�1 – 6.22e�1 – 2.01e�2 –
20 7.89e�3 0.95 3.12e�1 0.99 3.16e�1 0.98 8.51e�3 1.24
40 4.02e�3 0.97 1.57e�1 0.99 1.60e�1 0.98 4.07e�3 1.07
80 2.03e�3 0.99 7.89e�2 0.99 8.04e�2 0.99 2.02e�3 1.01

160 1.02e�3 0.99 3.95e�2 1.00 4.03e�2 1.00 1.01e�3 1.00

1 10 5.85e�3 – 1.27e�1 – 8.29e�2 – 2.84e�3 –
20 1.35e�3 2.12 2.92e�2 2.13 1.61e�2 2.36 3.16e�4 3.17
40 3.25e�4 2.05 7.04e�3 2.05 3.89e�3 2.05 3.90e�5 3.02
80 7.92e�5 2.04 1.71e�3 2.04 9.64e�4 2.01 4.88e�6 3.00

160 1.95e�5 2.02 4.20e�4 2.03 2.41e�4 2.00 6.10e�7 3.00

2 10 4.31e�4 – 1.07e�2 – 1.09e�2 – 1.46e�4 –
20 7.95e�5 2.44 1.85e�3 2.53 1.47e�3 2.89 6.99e�6 4.38
40 1.13e�5 2.82 2.59e�4 2.83 1.98e�4 2.89 5.05e�7 3.79
80 1.47e�6 2.94 3.36e�5 2.95 2.54e�5 2.96 3.43e�8 3.88

160 1.86e�7 2.98 4.26e�6 2.98 3.20e�6 2.99 2.24e�9 3.94
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Fig. 1. Example 2: Unstructured and anisotropic meshes used to study the effectiveness of the postprocessing.

Fig. 2. Example 2: Numerical results computed by the centered scheme for p ¼ 2 on the unstructured mesh of Fig. 1(a). Note that the errors in the max
norm are ku� uhkL1ðXÞ ¼ 1:43� 10�1 and ku� u�hkL1ðXÞ ¼ 5:70� 10�2, respectively.
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Fig. 3. Example 2: Numerical results computed by the centered scheme for p ¼ 2 on the anisotropic mesh of Fig. 1(b). Note that the errors in the max norm
are ku� uhkL1ðXÞ ¼ 2:25� 10�2 and ku� u�hkL1ðXÞ ¼ 6:63� 10�3, respectively.
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5.3. A steady convection-dominated problem

We consider the rotating flow problem widely used in the literature [4] as a test case to assess numerical schemes in the
convection-dominated regime. This is a relevant example of the model problem (1) and (2) with variable coefficients and
boundary conditions of mixed type.

The domain is X ¼ ð0;1Þ � ð0;1Þ n C with C ¼ 0; 1
2

� �
� f1

2g. The (divergence-free) convective field c ¼ y� 1
2 ;

1
2� x

� �
so that it

represents a vortex around the midpoint of the unit square in the clockwise direction. Therefore, C represents an inflow
boundary denoted by Cin if we approach C from below; but it also represents an outflow boundary denoted by Cout if we
approach it from above. The boundary conditions are specified as gD ¼ 1� tanhð10ð1� 4xÞÞ at the inflow boundary Cin, as
gD ¼ 0 at the outer boundary @½ð0;1Þ2�, and as gN ¼ 1

2� x
� �

ð1� tanhð10ð1� 4xÞÞÞ (which is equivalent to the homogeneous
Neumann condition ru � n ¼ 0) at the outflow boundary Cout. Furthermore, we set f ¼ 0 and j ¼ 10�7.

In Fig. 4 we present uh and kh computed by the centered scheme for the case p ¼ 4 on a uniform triangulation of 16� 16
subdivisions. We further show in Fig. 5 the numerical approximation compared with the boundary data gD at the outflow
boundary Cout. The results show that the numerical solution is accurate and stable even for the convection-dominated case.

5.4. A time-dependent convection–diffusion problem

This example involves the transport of a two-dimensional rotating Gaussian pulse. The physical domain is
X ¼ ð�0:5;0:5Þ � ð�0:5;0:5Þ; the rotating velocity field and the forcing term are prescribed as c ¼ ð�4y;4xÞ and f ¼ 0,
respectively; and the final time is T ¼ p=4 which is the time period for one-half rotation of the Gaussian pulse. The initial
condition is given by



Fig. 4. Example 3: The approximate scalar variable uh and the numerical trace kh computed by the centered scheme for p ¼ 4 and h ¼ 1=16.
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Fig. 5. Example 3: Comparison between uh and gD (solid line) at the outflow boundary Cout for the centered scheme (circle symbol) and the upwinded
scheme (cross symbol). The figure on the right shows the difference gD � uh .
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u0ðx; yÞ ¼ exp �ðx� xcÞ2 þ ðy� ycÞ
2

2r2

 !
;

where ðxc; ycÞ is the center and r is the standard deviation. The exact solution for the problem (28) with a constant diffusivity
coefficient j is then given by
uðx; yÞ ¼ 2r2

2r2 þ 4jt
exp �ð

�x� xcÞ2 þ ð�y� ycÞ
2

2r2 þ 4jt

 !
;

where �x ¼ x cosð4tÞ þ y sinð4tÞ and �y ¼ �x sinð4tÞ þ y cosð4tÞ. The Dirichlet boundary condition is deduced from the exact
solution.

The physics of this problem is rich in the sense that the convection dominates in most of the domain, while the diffusion
dominates in the region close to the origin. These types of problems often arise in many important applications and are more
difficult to simulate compared with purely convection-dominated or purely diffusion-dominated problems. This problem is
suitable to assess many important properties of a numerical scheme, such as stability, convergence, numerical diffusion, spu-
rious oscillations, and phase errors.

In the numerical experiments, the data are chosen as follows xc ¼ �0:2; yc ¼ 0, and r ¼ 0:1. Furthermore, we consider two
different values of the viscosity constant j ¼ 0:01 and j ¼ 0:001. These values of the viscosity represent a wide range of par-
abolic and hyperbolic regimes in this particular problem. Below we present numerical results.



Table 5
Example 4: History of convergence of the L2-error of uh at the final time computed with p ¼ 3 and BDF3 as a function of time-step Dt for the centered scheme
and upwinded scheme.

Dt Centered scheme Upwinded scheme

j=0.01 j=0.001 j=0.01 j=0.001

Error Order Error Order Error Order Error Order

0.08 2.58e�02 – 1.25e�01 – 2.71e�02 – 1.35e�01 –
0.04 4.53e�03 2.51 2.47e�02 2.34 4.82e�03 2.49 2.81e�02 2.27
0.02 5.57e�04 3.03 3.09e�03 3.00 5.95e�04 3.02 3.42e�03 3.04
0.01 6.77e�05 3.04 3.85e�04 3.01 7.38e�05 3.01 4.21e�04 3.02
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First, we look at the temporal convergence properties of the numerical solution computed by the HDG method when the
third-order backward difference formulae (BDF3) is employed to discretize the time derivative with a fixed time-step Dt. The
numerical solution is computed on a very fine triangulation of size h ¼ 1=64 and polynomials of order p ¼ 3 so that the over-
all error is governed by the temporal error. We show in Table 5 the error and order of convergence as a function of Dt for the
approximate scalar variable uh at the final time. We observe that the accuracy is third-order in time.

We now look at the spatial convergence properties of the HDG method in the time-dependent case. For this purpose we
consider a very small time-step Dt ¼ 5� 10�4 so that the overall error is governed by the spatial error. We present the his-
tory of convergence in Tables 6–9 for both the centered scheme and the upwinded scheme. We see that the approximate
scalar variable uh and total flux qT

h converge optimally with order pþ 1 and that the postprocessed total flux qT�
h also con-

verges with order pþ 1. These results indicate that the numerical solution has optimal convergence rates even for the special
case p ¼ 0. Moreover, the postprocessed scalar variable converges with order pþ 1 for p ¼ 0 and with order pþ 2 for p P 1.
This shows that when polynomials of degree p P 1 are used the HDG method possesses superconvergence properties and
that the local postprocessing procedures are effective even in the time-dependent case. In short, the convergence properties
seen in the previous (steady) examples are also observed in this (time-dependent) example.

5.5. The contaminant transport problem

We consider the transport of the contaminant concentration with kinematic viscosity j in a two-dimensional domain
X ¼ ð�1:25;�1:25Þ � ð0;10Þ driven by a convective velocity field c. Here the velocity field c is taken to be the analytical solu-
tion of the Kovasznay flow [16]
Table 6
Exampl

Degree

p

0

1

2

c ¼ 1� ecx cosð2pyÞ; c
2p

ecx sinð2pyÞ
� �

;

where c ¼ Re
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2

4 þ 4p2
q

and we take Re ¼ 100 for the Reynolds number. Since the Kovasznay solution models laminar flow
behind a two-dimensional grid, this example can be considered as an application of the present method to study the con-
taminant transport behind a two-dimensional grid.

At time t ¼ 0 the initial contaminant concentration is a superposition of three Gaussian distributions
w0 ¼ e�
ðx�1Þ2þy2

0:52 þ e�
ðx�1Þ2þðy�0:5Þ2

0:52 þ e�
ðx�1Þ2þðyþ0:5Þ2

0:52 :
e 4: History of convergence of the approximate solution at the final time for j ¼ 0:01, computed by the centered scheme and the BDF3 scheme.

Mesh ku� uhkL2ðXÞ kqT � qT
hkL2ðXÞ kqT � qT�

h kL2ðXÞ ku� u�hkL2ðXÞ

n Error Order Error Order Error Order Error Order

8 5.24e�2 – 5.55e�2 – 5.11e�2 – 6.53e�2 –
16 3.43e�2 0.61 3.71e�2 0.58 3.66e�2 0.48 3.48e�2 0.91
32 2.07e�2 0.73 2.26e�2 0.72 2.29e�2 0.68 2.05e�2 0.76
64 1.17e�2 0.83 1.27e�2 0.83 1.30e�2 0.81 1.16e�2 0.83

128 6.24e�3 0.90 6.80e�3 0.90 6.98e�3 0.90 6.21e�3 0.90

8 4.48e�3 – 5.83e�3 – 8.86e�3 – 8.52e�3 –
16 1.44e�3 1.64 1.65e�3 1.82 1.79e�3 2.31 1.21e�3 2.81
32 4.41e�4 1.71 4.81e�4 1.78 3.93e�4 2.18 1.61e�4 2.92
64 1.22e�4 1.86 1.31e�4 1.88 9.41e�5 2.06 2.12e�5 2.92

128 3.20e�5 1.93 3.42e�5 1.94 2.33e�5 2.01 2.88e�6 2.88

8 5.58e�4 – 7.27e�4 – 8.63e�4 – 6.64e�4 –
16 7.21e�5 2.95 9.41e�5 2.95 1.03e�4 3.07 4.17e�5 3.99
32 9.50e�6 2.92 1.21e�5 2.95 1.28e�5 3.01 2.48e�6 4.07
64 1.24e�6 2.94 1.55e�6 2.97 1.60e�6 3.00 1.56e�7 3.99

128 1.63e�7 2.93 2.02e�7 2.94 2.05e�7 2.96 9.82e�9 3.99



Table 7
Example 4: History of convergence of the approximate solution at the final time for j ¼ 0:01, computed by the upwinded scheme and the third-order BDF
scheme.

Degree Mesh ku� uhkL2ðXÞ kqT � qT
hkL2ðXÞ kqT � qT�

h kL2ðXÞ ku� u�hkL2ðXÞ

p n Error Order Error Order Error Order Error Order

0 8 4.91e�2 – 5.29e�2 – 4.80e�2 – 6.63e�2 –
16 3.07e�2 0.68 3.39e�2 0.64 3.32e�2 0.53 3.13e�2 1.08
32 1.77e�2 0.79 1.97e�2 0.78 1.99e�2 0.74 1.75e�2 0.84
64 9.55e�3 0.89 1.07e�2 0.88 1.09e�2 0.87 9.47e�3 0.89

128 4.96e�3 0.94 5.57e�3 0.94 5.73e�3 0.93 4.94e�3 0.94

1 8 5.33e�3 – 6.27e�3 – 7.53e�3 – 7.31e�3 –
16 1.66e�3 1.68 1.80e�3 1.80 1.62e�3 2.21 1.01e�3 2.85
32 4.80e�4 1.79 5.08e�4 1.82 3.69e�4 2.14 1.33e�4 2.93
64 1.29e�4 1.90 1.35e�4 1.91 8.90e�5 2.05 1.76e�5 2.91

128 3.33e�5 1.95 3.50e�5 1.95 2.19e�5 2.02 2.47e�6 2.83

2 8 6.79e�4 – 7.71e�4 – 8.21e�4 – 5.70e�4 –
16 8.78e�5 2.95 9.95e�5 2.95 9.91e�5 3.05 3.45e�5 4.05
32 1.11e�5 2.99 1.26e�5 2.98 1.23e�5 3.01 2.11e�6 4.03
64 1.39e�6 2.99 1.59e�6 2.99 1.53e�6 3.01 1.37e�7 3.95

128 1.78e�7 2.97 2.05e�7 2.96 1.96e�7 2.96 8.50e�9 4.01

Table 8
Example 4: History of convergence of the approximate solution at the final time for j ¼ 0:001, computed by the centered scheme and the third-order BDF
scheme.

Degree Mesh ku� uhkL2ðXÞ kqT � qT
hkL2ðXÞ kqT � qT�

h kL2ðXÞ ku� u�hkL2ðXÞ

p n Error Order Error Order Error Order Error Order

0 8 1.12e�1 – 1.02e�1 – 8.69e�2 – 2.17e�1 –
16 8.80e�2 0.49 7.58e�2 0.42 7.20e�2 0.27 1.20e�1 0.85
32 5.33e�2 0.59 5.19e�2 0.55 5.15e�2 0.48 6.64e�2 0.86
64 3.24e�2 0.72 3.21e�2 0.69 3.23e�2 0.67 3.63e�2 0.87

128 1.83e�2 0.83 1.83e�2 0.81 1.85e�2 0.81 1.88e�2 0.95

1 8 1.68e�2 – 1.85e�2 – 3.01e�2 – 9.49e�2 –
16 4.39e�3 1.93 4.40e�3 2.08 6.44e�3 2.22 1.39e�2 2.77
32 1.32e�3 1.73 1.27e�3 1.79 1.25e�3 2.37 1.97e�3 2.82
64 3.83e�4 1.79 3.67e�4 1.79 2.69e�4 2.21 2.82e�4 2.81

128 1.03e�4 1.89 9.92e�5 1.89 6.33e�5 2.09 4.17e�5 2.76

2 8 2.96e�3 – 2.96e�3 – 3.83e�3 – 1.22e�2 –
16 3.99e�4 2.89 4.07e�4 2.87 4.27e�4 3.16 8.09e�3 3.91
32 4.91e�5 3.02 5.15e�5 2.98 5.16e�5 3.05 5.09e�5 3.99
64 5.94e�6 3.05 6.43e�6 3.00 6.3e�6 3.03 3.16e�6 4.01

128 7.61e�7 2.96 8.43e�7 2.93 8.05e�7 2.97 2.00e�7 3.98

Table 9
Example 4: History of convergence of the approximatesolution at the final time for j ¼ 0:001, computed by the upwinded scheme and the third-order BDF
scheme.

Degree Mesh ku� uhkL2ðXÞ kqT � qT
hkL2ðXÞ kqT � qT�

h kL2ðXÞ ku� u�hkL2ðXÞ

p n Error Order Error Order Error Order Error Order

0 8 1.11e�1 – 1.02e�1 – 8.62e�2 – 1.70e�1 –
16 7.84e�2 0.50 7.51e�2 0.44 7.12e�2 0.28 1.08e�1 0.66
32 5.11e�2 0.62 5.01e�2 0.58 4.97e�2 0.52 6.11e�2 0.82
64 3.02e�2 0.76 2.99e�2 0.75 3.01e�2 0.72 3.39e�2 0.85

128 1.64e�2 0.88 1.63e�2 0.88 1.65e�2 0.87 1.69e�2 1.01

1 8 1.73e�2 – 1.77e�2 – 2.65e�2 – 9.54e�2 –
16 4.80e�3 1.85 4.62e�3 1.94 6.11e�3 2.12 1.37e�2 2.80
32 1.42e�3 1.75 1.33e�3 1.80 1.22e�3 2.33 1.87e�3 2.87
64 4.05e�4 1.82 3.79e�4 1.81 2.64e�4 2.21 2.59e�4 2.85

128 1.08e�4 1.91 1.02e�4 1.90 6.15e�5 2.10 3.70e�5 2.81

2 8 3.24e�3 – 3.16e�3 – 3.80e�3 – 1.06e�2 –
16 4.34e�4 2.90 4.22e�4 2.91 4.11e�4 3.21 7.00e�4 3.92
32 5.55e�5 2.97 5.43e�5 2.96 4.98e�5 3.05 4.40e�5 3.99
64 6.91e�6 3.01 6.81e�6 2.99 6.09e�6 3.03 2.75e�6 4.00

128 8.80e�7 2.97 8.82e�7 2.95 7.78e�7 2.97 1.76e�7 3.97
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Every two seconds T ¼ 2 after that the same contaminant concentration w0 is injected into the flow field, while the contam-
inant concentration u is being transported downstream. We consider the contaminant transport over the time horizon of
Tf ¼ 10 s. Therefore, within the jth period ½ðj� 1ÞT; jT� for j ¼ 1; . . . ;5, the physical process is modeled by the time-dependent
convection–diffusion equation
@u
@t
þr � ðcuÞ � jr2u ¼ 0; in X� ððj� 1ÞT; jT�;

u ¼ u0; in X for t ¼ ðj� 1ÞT:
In order to model the injection of the new contaminant concentration w0 into the flow field at the beginning of the jth period,
the initial data is given by
u0 ¼
w0; if j ¼ 1;
w0 þ uððj� 1ÞTÞ; if j > 1:

�

Here uððj� 1ÞTÞ is the contaminant concentration at time t ¼ ðj� 1ÞT obtained from the ðj� 1Þth period.

On the inflow boundary CD, which is defined by x ¼ 0 and �1:25 6 y 6 1:25, the contaminant concentration u satisfies a
homogenous Dirichlet condition
u ¼ 0; on CD:
On the remaining boundary CN ¼ CD n @X, it satisfies a homogenous Neumann condition
ru � n ¼ 0; on CN:
We note that a similar contaminant transport problem has been studied in the model reduction context [2].
We shall consider the case j ¼ 0:01. The reference Peclet number is defined and calculated as
Pe ¼ vmaxD
j
¼ 200;
where vmax ¼ 2 is the maximum velocity magnitude and D ¼ 1 is the distance between the two consecutive cylinders in the
Kovasznay flow. For the spatial discretization we consider triangular meshes obtained by splitting an n� n Cartesian grid
into 2n2 triangles, which yields the aspect ratio of 4=1 for all triangles. For the temporal discretization, we consider the
BDF2 scheme with a constant time-step Dt ¼ 0:025. Below we present the numerical results obtained using the centered
scheme.

We present in Fig. 6 the computed contaminant concentration uh at the end of each period for the grid n ¼ 20 and poly-
nomial degree p ¼ 3. We further show in Fig. 7(a) uh at the spatial point (3.0,0.0) as a function of time t for the grid n ¼ 20
Fig. 6. Example 5: uh at the end of each period for n ¼ 20 and p ¼ 3.
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Fig. 7. Example 5: uh at the spatial point ð3:0; 0:0Þ as a function of time t for: (a) the grid n ¼ 20 for p ¼ 1;2; and 3, and (b) the polynomial degree p ¼ 1 for
n ¼ 20;40, and 80.
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and for p ¼ 1;2; and 3. Fig. 7(b) plots the same quantity for p ¼ 1 for different values of n ¼ 20;40, and 80. The results in
Fig. 7 demonstrates h� p convergence of the approximate solution. To illustrate how the postprocessing can improve the
approximation we present in Fig. 8 uh and u�h for p ¼ 1 on the grid n ¼ 20. Comparing Fig. 8 with Fig. 6, we see that u�h appears
a better approximation than uh. For this highly convective flow the postprocessing procedure is defined as in Section 4 but
excluding the convective contributions in Eqs. (32) and (33). The effectiveness of the postprocessing can be seen more clearly
by plotting in Fig. 9 uh and u�h at the spatial point (3.0,0.0) as a function of t and comparing them with uh for p ¼ 2 on the
same grid.
Fig. 8. Example 5: Comparison of uh and u�h at the final time t ¼ 5 T for n ¼ 20 and p ¼ 1.
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Fig. 9. Example 5: Comparison of uh and u�h at the spatial point (3.0,0.0) as a function t for p ¼ 1 and n ¼ 20. The reference value is uh for p ¼ 2 on the same
grid.
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In summary, the HDG method and postprocessing procedure work well for both the steady and time-dependent problems
in a wide range of elliptic, parabolic and hyperbolic regimes. The proposed approach is thus well-suited for the high-order
accurate and stable solution of convection–diffusion equations.

6. Conclusions

In this paper, we present an implicit high-order hybridizable DG (HDG) method for steady and time-dependent convec-
tion–diffusion equations. The main motivation is the reduction in the number of the globally coupled degrees of freedom of
the DG approximations. The method developed achieves this objective by expressing the approximate scalar variable and
flux in terms of the approximate trace of the scalar variable and enforcing flux continuity in an explicit manner. This allows
us to eliminate both the approximate solution and flux to obtain a matrix equation involving only the numerical trace.

We have shown that the HDG method is a DG method with the special choice of the numerical traces. For steady-state
problems, the HDG method differs from the class of DG methods analyzed in [1] in that the approximate flux qh cannot be
expressed in terms of the approximate scalar variable uh in an element-by-element fashion. This is just a direct consequence
of the choice of the numerical trace kh which depends on both qh and uh. The HDG method is consistent and stable, and
achieves optimal convergence rates even for p ¼ 0. In fact, thanks to the dependence of the numerical trace kh on qh, the
approximate flux qh converges optimally with order pþ 1 in L2 norm, while the average of the approximate scalar variable
superconverges when p P 1. We propose the centered scheme and the upwinded scheme for choosing the stabilization
parameters. These schemes are shown to provide accurate and stable approximations for a wide range of convective–diffu-
sive regimes. We extend the HDG method to treat time-dependent problems. The HDG method also exhibits the above-men-
tioned convergence properties in the time-dependent case.

We have also developed simple local postprocessing procedures that exploit the relation between the scalar variable and
the flux as well as the superconvergence properties of the HDG method to obtain new approximations of the scalar variable
and total flux. The postprocessed total flux converges with the same order as the original total flux; however, the normal
component of the postprocessed total flux is continuous, while that of the original flux is discontinuous. The postprocessed
scalar variable converges with order pþ 2 for p P 1, which is one order higher the original scalar variable. Moreover, the
postprocessing procedures are less expensive than the solution procedure, since they involve operations at element level.
Therefore, compared with the more established DG methods such as the LDG, the proposed approach can be more efficient:
the pþ 2 convergent solution can be computed at the cost of a DG approximation using polynomials of degree p.

Several numerical examples are presented to demonstrate the accuracy and stability of the HDG method for convection–
diffusion equations from diffusion-dominated to convection-dominated regimes. The obtained results appear to confirm the
earlier conclusions.

We end this paper by pointing out that the extension of this work to linear and non-linear hyperbolic systems of conser-
vation laws constitutes the subject of ongoing research.
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