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a b s t r a c t

We present a technique for solving parametrized elliptic partial differential equations with
multiple scales. The technique is based on the combination of the reduced basis method
[C. Prud’homme, D. Rovas, K. Veroy, Y. Maday, A.T. Patera, G. Turinici, Reliable real-time
solution of parametrized partial differential equations: reduced-basis output bound meth-
ods, Journal of Fluids Engineering 124 (1) (2002) 70–80] and the multiscale finite element
method [T.Y. Hou, X.H. Wu, A multiscale finite element method for elliptic problems in
composite materials and porous media, Journal of Computational Physics 134 (1) (1997)
169–189] to treat problems in which the differential coefficient is characterized by a large
number of independent parameters. For the multiscale finite element method, a large num-
ber of cell problems has to be solved at the fine local mesh for each new configuration of
the differential coefficient. In order to improve the computational efficiency of this method,
we construct reduced basis spaces that are adapted to the local parameter dependence of
the differential operator. The approximate solutions of the cell problems are computed
accurately and efficiently via performing Galekin projection onto the reduced basis spaces
and implementing the offline–online computational procedure. Therefore, a large number
of similar computations at the fine local mesh can be carried out with lower computational
cost for each new configuration of the differential coefficient. Numerical results are pro-
vided to demonstrate the accuracy and efficiency of the proposed approach.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Many real problems of fundamental and practical importance are multiscale, possessing several macroscopic phases or
dissimilar constituents. Typically, for two-scale problems, the microscopic component is dispersed as particles or inclusions
in a continuous matrix of the macroscopic component. Representative multiscale systems in mechanics are composite mate-
rials, porous media, sedimenting suspensions and fluidized beds, and turbulent phenomena in high Reynolds number flows.
Composite materials are used in a variety of applications such as aircraft industry, wind turbine blades, thermal insulators or
conductors. Fibrous porous media are encountered in groundwater transport [11], manufacturing applications [12], environ-
mental and filtration system [10], and biological processes [18].

We consider here multiscale problems that are modeled by elliptic partial differential equations (PDE) which have the
differential coefficients depending not only on the spatial coordinates but also on a large number of parameters. Such prob-
lems often arise in multiscale modeling and analysis in porous media and composite materials, where we would like to per-
form analysis of the porous flows for different permeability configurations or optimization/design of the composite
materials. These problems typically require repetitive simulations of the underlying PDEs for many different configurations
. All rights reserved.
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of the differential coefficient as a function of the parameters. It is therefore of considerable interest to develop a dedicated
method for such applications.

The complete analysis of multiscale systems is an extremely difficult task. Direct numerical solutions of flow and trans-
port in porous media have been reported in the literature [2,7,32]. These results reveal detailed information of the physical
processes at all scales. Unfortunately, due to the enormous amount of CPU time and computer memory required to accom-
modate the scale of computation, direct numerical methods are not suitable for repeated simulations. From an engineering
perspective, the prediction of the macroscopic properties of the multiscale systems, such as thermal conductivity, elastic
moduli, and permeability, generally suffices. Therefore, many researchers focus on the development of techniques that cap-
ture the small scale effect on the large scales without resolving all the small scale features.

In [9], Cruz and Patera propose a parallel Monte-Carlo finite element (FE) procedure for the analysis of multiscale random
media. The original multiscale problem is recast as a sequence of three scale-decoupled subproblems in which the compu-
tationally intensive mesoscale subproblem is repeatedly solved by parallel nested Monte-Carlo and finite-element methods.
The multiscale FE method introduced by Hou et al. [15,16] has been successfully applied to multiscale elliptic problems. The
main idea is to construct FE basis functions which capture the small scale information within each element. The small scale
information is then transferred to the large scales through the coupling of the global stiffness matrix. Hence, the effect of
small scales on the large scales is correctly captured. The multiscale FE methods have the ability to solve multiscale problems
with accuracy comparable to the direct numerical simulation at the fine grid, while reducing the storage requirements quite
significantly. The multiscale FE methods are extremely efficient for solving problems for different source terms and boundary
conditions. However, when applied to solve problems for different media, the multiscale FE methods have the operation
count comparable to the direct FE methods. Other methods such as the multiscale finite volume method [17] and the mixed
multiscale FE method [8] suffer from a similar drawback.

In this paper, we introduce a multiscale reduced-basis method for solving a class of parametrized elliptic problems with
multiple scales. Our approach is based on the combination of the RB method [4,13,25,24,27,29,30] for parametrized (mono-
scale) elliptic PDEs and the multiscale FE method [15,16] for multiscale elliptic PDEs. The main idea of the RB method is to
represent the solution of parametrized PDEs by a small set of basis functions which is referred as reduced basis. The reduced
basis is constructed from a larger set of snapshots which are typically pre-computed solutions of the underlying PDE at se-
lected parameter points. The reduced basis is thus adapted to the local parameter dependence of the differential operator. As
a consequence, the size of the original problem can be significantly reduced since only a small number of basis functions is
typically required. We apply this RB recipe to treat the cell problem: first, we construct the reduced basis by using an adap-
tive sampling procedure introduced in [24]; we then perform a Galekin projection of the cell problem onto the reduced basis
space to obtain a reduced order model; finally, in order to efficiently evaluate the reduced order model, we implement the
offline–online procedure which splits the computational process into offline and online stages. The offline stage – performed
only once for generating the reduced order model – is typically expensive. However, the operation count of the online stage –
performed many times for simulating the reduced order model – depends only on the dimension of the reduced basis and the
parametric complexity of the cell problem.

When applied to multiscale parametrized elliptic PDEs, the RB method offers several attractive features. First, the method
results in a reduced model that may have significantly less degrees of freedom than the corresponding FE model for solving
the cell problems. As a result, the computational time for repeated solution of the parametrized elliptic PDEs with multiple
scales can be substantially reduced. Second, the method allows for a high resolution of the microscopic scale to achieve high-
er accuracy without increasing the online computational cost. Third, the method needs the same computer memory as the
multiscale FE methods. And fourth, like the multiscale FE methods, the multiscale RB method is highly parallelizable since
the computation on each cell problem is carried out independently. However, as mentioned earlier, its major drawback is
due to the computationally intensive offline stage. Fortunately, for certain problems in which the differential coefficients
have a similar parametrized form on each element, the computational cost of the offline stage is relatively small. The mul-
tiscale RB method is well-suited for such problems.

The remainder of the paper is organized as follows. In Section 2, we formulate the continuous problem and describe two
popular solution approaches, namely the homogenization methods and the multiscale methods. In Section 3, we describe the
RB method for rapid solution of parametrized elliptic PDEs with multiple scales. In Section 4, we discuss the results obtained
for a single phase flow through random porous media. Finally, in Section 5, we present concluding remarks.
2. Problem formulation and numerical methods

2.1. Parametrized elliptic PDEs with multiple scales

We consider parametrized second-order elliptic problems of the form
�r � gðx; lÞruð Þ ¼ f ðxÞ in X; ð1Þ
where X is a bounded domain in Rd¼2 with Lipschitz boundary oX, f is a source term; and g is a nonnegative scalar coefficient
which depends on x ¼ ðx; yÞ 2 X and l. Here l is a large set of parameters which take random values in some range. For heat
conduction in composite materials, u and g represent temperature and thermal conductivity, respectively. For single phase
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flows in porous media, u is the pressure and g ¼ p=m is the ratio of the permeability p and the fluid viscosity m. In many cases,
g may be random or highly oscillatory in x, but vary quite smoothly in l. Thus the solution of (1) displays a multiple scale
structure, but in general well behaves with respect to variation in l. For simplicity of presentation, we consider scalar dif-
ferential coefficients, although tensorial coefficients can be treated in a similar way.

We introduce some notation. First we denote by L2ðXÞ the space of square integrable functions defined in X with inner
product
ðw; vÞ0 ¼
Z

X
wvdX ð2Þ
and induced norm kvk0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv; vÞ0

p
. Then H1ðXÞ ¼ fv 2 L2ðXÞ jrv 2 ðL2ðXÞÞ2g is the Hilbert space with inner product
ðw; vÞ1 ¼
Z

X
wvþrw � rvdX ð3Þ
and induced norm kvk1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv; vÞ1

p
. H1

0ðXÞ consists of functions in H1ðXÞ that vanish on oX.
For simplicity of exposition, we assume that u ¼ 0 on oX. The variational formulation is to seek u 2 H1

0ðXÞ such that
aðu; v; lÞ ¼ ‘ðvÞ; 8v 2 H1
0ðXÞ; ð4Þ
where
aðw; v; lÞ ¼
Z

X
gðx; lÞrw � rvdX; ‘ðvÞ ¼

Z
X

f ðxÞvdX: ð5Þ
A FE approximation uh 2 Xh to u is then found as

aðuh; v; lÞ ¼ ‘ðvÞ; 8v 2 Xh; ð6Þ
where Xh 2 H1
0ðXÞ is a FE approximation space of dimension N . The accuracy of the approximate solution uh depends cru-

cially on the basis set fu1; . . . ;uN g and the dimension N of Xh. For example, in the standard Galerkin FE method, basis func-
tions are piecewise polynomials. For such polynomial basis functions, an attempt of directly solving (6) would require N
extremely large in order to resolve the smallest scale � of the problem. The computational demands become prohibitive
as �! 0.

The deficiency of direct numerical simulation leads to the development of homogenization methods and multiscale meth-
ods which we briefly describe below. For notational simplification, we shall drop the dependence of g on l in the remainder
of this section.

2.2. Homogenization methods

To resolve the small scales, homogenization methods construct coarse-scale computational models in which small scale
variations in the coefficients of the governing PDEs are homogenized and upscaled to the macroscopic scale. This process is
often realized by making certain assumptions on the problem. In periodic homogenization, one assumes gðyÞ to be periodic
and smooth in the unit cubic Y ¼ ½0;1�d, where y ¼ x=� is the fast variable.

The homogenization theory [5] then states that the solution of (1) has an asymptotic expansion:
u � uHðxÞ þ �
Xd

i¼1

viðx=�Þ
ouHðxÞ

oxi
� �~u1ðxÞ þ Oð�2Þ; ð7Þ
where the periodic functions viðyÞ;1 6 i 6 d; satisfy
�ry � gðyÞryviðyÞ ¼ ry � gðyÞei; in Y; ð8Þ
and zero mean constraint for uniqueness
Z
Y
vjðyÞdy ¼ 0: ð9Þ
Here uH is the solution of the homogenized problem
�r � gHruH ¼ f ; in X; uH ¼ 0 on oX; ð10Þ
where the constant effective tensor gH is given by
gH

ij ¼
Z

Y
gðyÞ½ei þryvjðyÞ� � ejdy: ð11Þ
Note ei;1 6 i 6 d; are the unit vectors. To account for the boundary condition ujoX ¼ 0, the first order correction term ~u1 is
found such that
�r � gðx=�Þr~u1 ¼ 0; in X; ~u1 ¼
Xd

i¼1

viðx=�Þ
ouHðxÞ

oxi
on oX: ð12Þ
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The detailed analysis of the asymptotic expansion (7) is given in [5,23]. Point-wise convergence of uH to u as �! 0 is ob-
tained under certain smoothness conditions. For L2ðXÞ convergence, the conditions can be weakened.

Numerical homogenization strategies prove very attractive for periodic structures. Unfortunately, in the non-periodic
case, although there still exist an homogenized problem and asymptotic expansion similar to (7), the effective tensor gH

is unknown a priori. Therefore, one cannot replace the original problem (1) with the homogenized problem (10).
Recently, Allaire and Brizzi introduce a multiscale FE method [3] for numerical homogenization of non-periodic elliptic

problems. Instead of assuming a constant value on the whole domain X, Allaire and Brizzi [3] suggest that the effective ten-
sor gH is constant in each cell and determined by solving a large number of cell problems. The RB approach has also been
successfully developed to compute the averaged coefficients for the homogenization of elliptic PDEs [6]. The basic idea is
to parametrize the cell problem and develop its reduced order model. Boyaval demonstrates in his paper [6] that the RB ap-
proach significantly reduces the computational time in comparison with the FE method, albeit at locally periodic settings
with piecewise affine oscillating coefficients.

2.3. Multiscale methods

Several multiscale methods such as the multiscale FE method [15,16], multiscale finite volume method [17], mixed mul-
tiscale FE method [8], and multiscale discontinuous Galerkin method [1] have been proposed for multiscale modeling and
analysis. In these methods, one does not alter the differential coefficients, but instead one constructs coarse-scale approxi-
mation spaces that reflect subgrid structures in a way consistent with the local property of the differential operator. More
precisely, the basis functions are computed as solutions of (a large number of) cell problems. This is in sharp contrast to the
standard FE methods which employ piecewise polynomials. Typically, the multiscale methods result in more accurate solu-
tion than the standard FE methods for the same number of degrees of freedom thanks to the more adaptive basis functions.
We briefly describe the multiscale FE method of Hou and Wu [15] to which we shall evaluate the performance of the mul-
tiscale RB method.

Let Q be a collection of elements Xk;1 6 k 6 K; with diameter 6 h such that X ¼
S

Xk2QX
k and Xk \X‘ ¼ ; for k–‘. Here K

denotes the number of elements. In each element Xk, we introduce a set of nodal basis f/ki; i ¼ 1; . . . ;neg with ne being the
number of nodes of the element, where /ki satisfies
�r � gðxÞr/ki ¼ 0; in Xk; /ki ¼ rki on oXk: ð13Þ
Here the functions rki, 1 6 i 6 ne, defined on oXk play the role of Dirichlet boundary conditions. To ensure the continuity of
the basis functions, we require that rki ¼ r‘i, 1 6 i 6 ne, across all non-degenerate interfaces Ck‘ ¼ oXk \ oX‘. We then intro-
duce the FE approximation space
Yh ¼ spanf/ki
H : 1 6 k 6 K;1 6 i 6 neg; ð14Þ
where /ki
H is a FE approximation to /ki. The multiscale FE method now seeks uY

h 2 Yh such that
aðuY
h ; vÞ ¼ ‘ðvÞ; 8v 2 Yh: ð15Þ
Since the basis functions are obtained by solving Kne cell problems (13), the approximation quality depends on the choice of
boundary data rki. The simplest choice is to let rki vary linearly along oXk. Another more appealing choice which often leads
to an improved accuracy is to assign rki as the solution of reduced elliptic problems on each side of oXk.

In [15,16], using the homogenization theory discussed earlier, it was shown that
ku� uY
hk1 6 C1hkfk1 þ C2ð�=hÞ

1
2 ð� < hÞ ð16Þ
and
ku� uY
hk0 ¼ Oðh2 þ �=hÞ ð� < hÞ: ð17Þ
The results imply that uY
h converges to the correct homogenized solution in the limit as �! 0 in both H1ðXÞ and L2ðXÞ norms.

However, they also reveal the resonance effect between the grid scale h and the small scale � of the problem, i.e., the multiscale
FE method attains a large resonance error in both H1ðXÞ and L2ðXÞ norms when h and � are of the same order. To reduce the
resonance effect caused by the boundary layer thickness of order Oð�Þ, Hou and Wu [15] introduce an over-sampling technique
which constructs the basis functions on a sampling element of size greater than hþ �. For a detailed discussion of the multi-
scale FE method, we refer the reader to [15,16].

2.4. Computational cost

We comment on the computational cost of the multiscale FE method (MsFEM) by Hou et al. [15,16] in comparison with
the standard FE method using linear basis functions (LFEM). Our remark also applies to other methods such as the multiscale
FE method of Allaire and Brizzi [3] and the multiscale finite volume method [17], since these methods have a similar cost as
MsFEM.
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To facilitate the discussion, we assume that X ¼ ½0;1�d¼2 and that the domain is decomposed into linear rectangular ele-
ments. We denote by L the number of intervals in the x- and y-directions. The total number of elements at the coarse grid
level is thus K ¼ L� L. To compute the basis functions, each element Xk is divided into M �M subcell elements. Thus, the
mesh size is h ¼ 1=L for the global problem (15) and is H ¼ h=M for the cell problems (13). The total number of elements
at the fine grid level is LM � LM. Note that the number of degrees of freedom is in the same order as the number of elements.

To make a fair assessment, we consider two distinct cases: (i) solving the original problem (1) for ns different source terms
and boundary conditions, and (ii) solving the problem (1) for nm different media. We show the computational cost of LFEM
and MsFEM in terms of both memory requirement and CPU time in Table 1 for Case (i) and in Table 2 for Case (ii). It is as-
sumed that the computational cost of both methods scales linearly with ns and nm. The exact value of the constant c depends
on the solver used and on the sparsity of the stiffness matrix. For instance, in the case of LFEM, sparse–matrix iterative solv-
ers typically incur OðN Þ cost per iteration, and the number of iterations itself depend on the condition number of the matrix.

It is clear that MsFEM significantly reduces computer memory in both cases. Hence, MsFEM can solve much larger prob-
lems than LFEM. As regards the CPU time, in Case (i), the operation count is OððLMÞcdÞ for LFEM and OðneLdMcd þ nsLcdÞ for
MsFEM. Note that MsFEM requires OðneLdMcdÞ for pre-computing the bases and the stiffness matrix, then all the subsequent
calculations take only OðnsLcdÞ since we no longer need to compute the bases and the stiffness matrix. Therefore, MsFEM
proves quite efficient for problems with multiple source terms and boundary conditions and the efficiency gain increases
with ns. However, in Case (ii), MsFEM is as computationally expensive as LFEM, because the bases and stiffness matrix have
to be constructed anyway for each new medium.

3. Multiscale reduced-basis method

In this section, we consider solving parametrized elliptic PDEs with multiple scales by means of model reduction. First we
continue Section 2.3 to introduce the multiscale FE approximation upon which our multiscale reduced basis approximation
is built. We then discuss the development of the multiscale reduced basis method (MsRBM) and associated a prior conver-
gence analysis. Finally, we describe the detailed implementation and analyze the computational cost.

3.1. Multiscale finite element approximation

Let uki 2 H1ðXkÞ be functions satisfying the boundary conditions in (13). The solutions of the cell problems (13) can be
found as
Table 1
Compar

Cost

Memor
CPU tim

Table 2
Compar

Cost

Memor
CPU tim
/kiðlÞ ¼ wkiðlÞ þuki; 1 6 k 6 K;1 6 i 6 ne; ð18Þ
where wkiðlÞ 2 H1
0ðX

kÞ is the solution of
akðwkiðlÞ; v; lÞ ¼ f kiðv; lÞ; 8v 2 H1
0ðX

kÞ: ð19Þ
Here the forms are given by
akðw; v; lÞ ¼
Z

Xk
gðx; lÞrw � rvdx; 1 6 k 6 K;

f kiðv; lÞ ¼ �
Z

Xk
gðx; lÞruki � rvdx; 1 6 k 6 K;1 6 i 6 ne:

ð20Þ
Note that the bilinear forms ak;1 6 k 6 K; are symmetric positive-definite.
In each element Xk, we consider a triangulation, T k, which consists of non-overlapping elements with diameter 6 H such

that Xk ¼
S

T2T k
T . We introduce the FE approximation spaces
ison between LFEM and MsFEM: memory requirement and CPU time for solving the problem (1) for different source terms and boundary conditions

LFEM MsFEM

y OðLdMdÞ OðLd þMdÞ
e OðnsðLMÞcdÞ OðneLdMcd þ nsLcdÞ

ison between LFEM and MsFEM: memory requirement and CPU time for solving the problem (1) for different media

LFEM MsFEM

y OððLMÞdÞ OðLd þMdÞ
e OðnmðLMÞcdÞ OðnmðLcd þ neLdMcdÞÞ
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Wk
H ¼ fv 2 H1

0ðX
kÞjvjT 2 P1ðTÞ; 8T 2 T kg; 1 6 k 6 K; ð21Þ
where P1ðTÞ denotes the space of linear polynomials over T. The FE approximation wki
HðlÞ 2Wk

H is then found as
akðwki
HðlÞ; v; lÞ ¼ f kiðv; lÞ; 8v 2Wk

H: ð22Þ
We define an associated FE approximation space as
YhðlÞ ¼ spanf/ki
HðlÞ : 1 6 k 6 K;1 6 i 6 neg: ð23Þ
Here /ki
HðlÞ ¼ wki

HðlÞ þuki
H , where uki

H 2Wk
H is just the L2ðXÞ projection of uki onto Wk

H .
Finally, the multiscale FE method seeks uY

h 2 YhðlÞ such that
aðuY
hðlÞ; v; lÞ ¼ ‘ðvÞ; 8v 2 YhðlÞ: ð24Þ
The convergence properties of uY
h have been discussed in Section 2.3. In the next section, we describe the multiscale reduced

basis method.

3.2. Multiscale reduced-basis approximation

As the point of departure for our development of MsRBM we assume that we are given K samples Sk
J ¼ flkj 2 D;1 6 j 6 Jg;

1 6 k 6 K of J parameter values and associated snapshot sets fwki
HðlkjÞ;1 6 i 6 negJ

j¼1, 1 6 k 6 K , where wki
HðlkjÞ is the solution

of (22) for l ¼ lkj. Next, for each k, we apply the proper orthogonal decomposition (POD) [19,31] to compute the basis set
ffk

n;1 6 n 6 Nmaxg from the snapshot set fwki
HðlkjÞ;1 6 i 6 ne;1 6 j 6 Jg, where we note that Nmax ¼ neJ. The POD method is

well known and given in Appendix for reference. We then define our nested RB spaces as
Wk
N ¼ spanffk

n;1 6 n 6 Ng; 1 6 N 6 Nmax: ð25Þ
In general, the construction of our nested RB spaces Wk
N , amounts to compute NmaxK solutions of (22) at the fine local mesh.

However, for certain problems in which the parametrized function gðx; lÞ has a similar form on all elements Xk, we need only
to compute Nmax solutions. We shall return to this point when we discuss the computational cost in Section 3.4 and the
numerical results in Section 4.

In order to solve the parametrized multiscale elliptic problem (1) for any given l, we proceed as follows. First, we deter-
mine the RB approximations wki

N ðlÞ 2Wk
N to wki

h ðlÞ 2Wk
H from
akðwki
N ðlÞ; v; lÞ ¼ f kiðv; lÞ; 8v 2Wk

N ;1 6 k 6 K;1 6 i 6 ne: ð26Þ
This is essentially a Galerkin projection of (19) onto the RB space Wk
N . We then define our global FE approximation space as
ZhðlÞ ¼ spanfwki
N ðlÞ þuki

H : 1 6 k 6 K;1 6 i 6 neg: ð27Þ
Of course, ZhðlÞ has the same dimension as YhðlÞ. Finally, the multiscale RB method seeks uZ
hðlÞ 2 ZhðlÞ such that
aðuZ
hðlÞ; v; lÞ ¼ ‘ðv; lÞ; 8v 2 ZhðlÞ: ð28Þ
Clearly, uZ
hðlÞ is an approximation to uY

hðlÞ since wki
N ðlÞ is nothing but the RB approximation of wki

HðlÞ.
Some remarks about MsRBM are in order. First, the main difference between MsRBM and MsFEM lies in the approxima-

tion spaces used for the cell problems. Here the RB spaces span pre-computed solutions of the underlying equation at some
parameter points. Owing to this property, wki

N ðlÞ converge rapidly to wki
HðlÞ as the RB dimension N increases. In fact, exponen-

tial convergence of the RB error with respect to N can be proven for a simple one-parameter case [20]. As a result, N is typ-
ically chosen very small to achieve the desired accuracy. Second, as demonstrated in [26,29], the RB convergence rate does
not depend on the dimension of the FE space Wk

H . This means that we can choose this dimension ‘‘arbitrarily” large to in-
crease the accuracy at no detriment to (online) performance. Third, suppose that the space ZhðloldÞ is already constructed
for some lold and that later we want to solve the problem for l ¼ lnew whereby gðx; loldÞ and gðx; lnewÞ only differ in Xk, then
we solve (26) for this particular element to update ZhðlnewÞ. Of course, MsFEM can also update YhðlnewÞ in the same way. This
renders both MsRBM and MsFEM efficient for problems whereby the differential coefficient varies only in a local small region
of the physical domain, since in this case we only need to recompute the reduced basis for the cell problems in the local
region.

Fourth, and finally, as it is well known for coercive elliptic problems [25,30] that we can develop a posteriori error esti-
mator Dki

N ðlÞ such that
kwki
N ðlÞ � wki

HðlÞkWk
H
6 Dki

N ðlÞ; 8l 2 D: ð29Þ
where
Dki
N ðlÞ ¼

1
âkðlÞ sup

v2Wk
H

rkiðv; lÞ
kvkWk

H

: ð30Þ
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Here âkðlÞ is the lower bound of the coercivity constant akðlÞ defined as
akðlÞ ¼ inf
v2Wk

H

akðv; v; lÞ
kvk2

Wk
H

; bkðlÞ ¼ sup
v2Wk

H

akðv; v; lÞ
kvk2

Wk
H

; ð31Þ
and rkiðv; lÞ is the residual given by
rkiðv; lÞ ¼ f kiðv; lÞ � akðwki
N ðlÞ; v; lÞ; 8v 2Wk

H: ð32Þ
It can be easily shown that
1 6
Dki

N ðlÞ
kwki

N ðlÞ � wki
HðlÞkWk

H

6

ffiffiffiffiffiffiffiffiffiffiffiffi
bkðlÞ
âkðlÞ

s
; 8N P 1; 8l 2 D: ð33Þ
Hence, the error estimator is sharp and rigorous for the true error, and thus important for certification of the RB
approximation.

Moreover, the error bound can also play an important role in adaptive sampling procedures to optimally select the sample
points Sk

J ¼ flkj 2 D;1 6 j 6 Jg as we briefly describe: given a (random or deterministic) parameter point Sk
1 ¼ flk1g, we com-

pute Wk
N ¼ spanfwki

Hðlk1Þ;1 6 i 6 neg; for j ¼ 2; . . . ; J, we find lkj ¼ arg maxl2Dmax16i6ne D
ki
N�1ðlÞ, set Sk

j ¼ Sk
j�1 [ lkj, and update

Wk
N ¼Wk

N�1 þ spanfwki
HðlkjÞ;1 6 i 6 neg. In essence, we find and include the parameter points which maximize the error

bounds. The well-selected sample set will in turn ensure rapidly convergent and well-conditioned RB systems. Note that
in the course of pursuing the greedy sampling procedure, we work with the hierarchical Lagrange basis and only apply
POD on the Lagrange basis to obtain the POD basis at the end of the procedure. The justification for using the POD basis
is that most energy/information of the Lagrange basis is captured in a number of leading POD basis functions, which may
then lead to an improved reduced order model. Further details on the a posteriori error estimation and adaptive sampling
procedure can be found in [24].

3.3. A priori convergence and error estimates

The a priori convergence of Galerkin approximations for coercive elliptic equations is classical. In fact, it is standard to
demonstrate optimality of wki

N ðlÞ in the sense that
kwki
H ðlÞ � wki

N ðlÞkWk
H
6

ffiffiffiffiffiffiffiffiffiffiffiffi
bkðlÞ
akðlÞ

s
inf

vN2Wki
N

kwki
HðlÞ � vNkWk

H
: ð34Þ
This statement demonstrates the convergence of wki
N ðlÞ ! wki

HðlÞ in the limit Wk
N !Wk

H . It follows that for any e > 0, there
exists an integer NðeÞ such that
kwki
H ðlÞ � wki

N ðlÞkWk
H
6 e; 8N P NðeÞ; 8l 2 D: ð35Þ
In practice, as mentioned earlier, wki
N ðlÞ converges very rapidly to wki

HðlÞwith N. Exponential convergence can be theoretically
shown for one-parameter model problem [20] and typically observed for multi-parameter problems [29].

The rapid convergence of RB approximations is important since it allows us to obtain the a priori error estimates for the RB
solution uZ

h as obtained for the multiscale FE solution uY
h . Let us formally put the result in the following lemma:

Lemma 1. Let uðlÞ be the solution of (1) and uZ
hðlÞ be its approximation computed by using MsRBM. Assuming that

kwki
N ðlÞ � wki

HðlÞkWk
H
! 0 for all l 2 D for 1 6 k 6 K and 1 6 i 6 ne. Then there exist positive constants C1 and C2, independent of �

and h, such that
kuðlÞ � uZ
hðlÞk1 6 C1hkfk0 þ C2ð�=hÞ

1
2 ð� < hÞ; ð36Þ
and, moreover,
kuðlÞ � uZ
hðlÞk0 ¼ Oðh2 þ �=hÞ ð� < hÞ: ð37Þ
3.4. Numerical implementation

In this section, we develop the offline–online computational procedure [25,27,30] that allows us to efficiently compute
uZ

hðlÞ. We consider here elliptic problems with affine parameter dependence. Let gkðx; lÞ be the restriction of gðx; lÞ on the
element Xk. We suppose that for some finite (preferably small) integer Qk, gk may be expressed as
gkðx; lÞ ¼
XQk

q¼1

Hk
qðlÞG

k
qðxÞ; ð38Þ
where for q ¼ 1; . . . ;Q k, Hk
qðlÞ depends only on l and Gk

qðxÞ depends only on x. Then the bilinear forms and linear functionals
defined in (20) can be written as
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akðw; v; lÞ ¼
XQk

q¼1

Hk
qðlÞak

qðw; vÞ; 1 6 k 6 K;

f kiðv; lÞ ¼
XQk

q¼1

Hk
qðlÞf ki

q ðvÞ; 1 6 k 6 K;1 6 i 6 ne;

ð39Þ
where
ak
qðw; vÞ ¼

Z
Xk

Gk
qðxÞrw � rvdx; 1 6 q 6 Q k;

f ki
q ðvÞ ¼ �

Z
Xk

Gk
qðxÞruki � rvdx; 1 6 r 6 Q k:

ð40Þ
It is important to note that the ak
q and f ki

q are independent of l. The MsRBM method can be easily extended to treat nonaffine
parameter dependence; see [4,24] for a detailed discussion.

We now describe the computational procedure. Since wki
N ðlÞ 2Wk

N ¼ spanffk
n;1 6 n 6 Ng, we expand it as
wki
N ðlÞ ¼

XN

n¼1

cki
n ðlÞf

k
n; ð41Þ
where cki
n ðlÞ, 1 6 n 6 N, are RB coefficients which must be determined. We then choose for test functions v ¼ fk

m;1 6 m 6 N;
and insert (41) into (26) to arrive at the desired linear system for ckiðlÞ ¼ ½cki

1 ðlÞ; cki
2 ðlÞ; . . . ; cki

N ðlÞ�
T 2 RN as
AkðlÞckiðlÞ ¼ FkiðlÞ: ð42Þ
Here AkðlÞ 2 RN�N is a SPD matrix with entries Ak
mnðlÞ ¼ akðfk

n; f
k
m; lÞ, 1 6 n;m 6 N, and FkiðlÞ 2 RN is the vector with entries

Fki
n ðlÞ ¼ f kiðfk

n; lÞ, 1 6 n 6 N. Since AkðlÞ is full, inverting it will take OðN3Þ operations and the multiplication of the inverse of
AkðlÞ with FkiðlÞ;1 6 i 6 ne; takes OðneN2Þ. Therefore, the computation of ckiðlÞ;1 6 i 6 ne, takes OðN3 þ neN2Þ operations.

Next, we invoke the affine decomposition (39) and (40) to write
AkðlÞ ¼
XQk

q¼1

Hk
qðlÞAk

q;

FkiðlÞ ¼
XQk

q¼1

Hk
qðlÞFki

q ;

ð43Þ
where Ak
q 2 RN�N , 1 6 q 6 Q k, and Fki

q 2 RN , 1 6 q 6 Qk, are given by
Ak
q mn ¼ ak

qðf
k
n; f

k
mÞ; 1 6 n;m 6 N;

Fki
q n ¼ f ki

q ðf
k
nÞ; 1 6 n 6 N:

ð44Þ
We note that these quantities do not depend on l and can therefore be pre-computed offline.
It remains to assemble the global stiffness matrix and right hand side for (28). To this end, we note that on each element

Xk the elemental matrix EkðlÞ 2 Rne�ne and vector ekðlÞ 2 Rne have entries
Ek
ijðlÞ ¼

Z
Xk

gkðx; lÞr wki
N ðlÞ þuki

H

� �
� r wkj

N ðlÞ þukj
H

� �
dx; ek

i ðlÞ ¼
Z

Xk
f ðxÞ wki

N ðlÞ þuki
H

� �
dx; ð45Þ
for 1 6 i; j 6 ne. Inserting (38) and (41) into (45) and noting from (40), we obtain
Ek
ijðlÞ ¼

XQk

q¼1

Hk
qðlÞ ckiðlÞT Ak

qckjðlÞ þ 2ckiðlÞT Bkj
q þ Ckij

q

� �
; ek

i ðlÞ ¼ ckiðlÞT Lk þ Dki; ð46Þ
where for 1 6 k 6 K , 1 6 i; j 6 ne, 1 6 q 6 Qk, Bki
q 2 RN , Lk 2 RN , Ckij

q 2 R, and Dki 2 R have entries
Bki
qn ¼

Z
Xk

Gk
qðxÞrfk

n � ruki
H dx; 1 6 n 6 N;

Lk
n ¼

Z
Xk

f ðxÞfk
ndx; 1 6 n 6 N;

Ckij
q ¼

Z
Xk

Gk
qðxÞruki

H � rukj
H dx;

Dki ¼
Z

Xk
f ðxÞuki

H dx:

ð47Þ
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Finally, we assemble the elemental matrices EkðlÞ and vectors ekðlÞ, 1 6 k 6 K , to form the algebraic system of equations
associated with (28). We summarize the computational process in Table 3.

The operation count of the offline stage includes the computational cost of the adaptive sampling procedure outlined in
Section 3.2, NmaxK solves of (22), the POD procedure for K snapshot sets of size Nmax, and OðKQN2

maxÞ inner products. Here Q is
the maximum of Qk;1 6 k 6 K . The offline stage is thus computationally intensive, but performed only once. However, for
problems in which Xk and gkðx; lÞ, 1 6 k 6 K; are all the same, we only compute the offline quantities for any particular ele-
ment and apply the results to other elements. As a result, the offline cost is reduced by a factor of K in such case.

The operation count of the online stage includes OðKðQN2 þ neQNÞÞ to form AkðlÞ and FkiðlÞ, 1 6 k 6 K;1 6 i 6 ne,
OðKðN3 þ neN2ÞÞ to compute cki

N ðlÞ, 1 6 k 6 K;1 6 i 6 ne, OðKQN2 þ neKQNÞ to compute EkðlÞ and ekðlÞ, 1 6 k 6 K , and
OððKneÞcÞÞ to solve the global linear system for uZ

hðlÞ. The online complexity is thus OðKðN3 þ neN2 þ QN2þ
neQNÞ þ ðKneÞcÞ. The computer memory required is OðN3 þ QN2 þ QN þ KneÞ.

The crucial point is that once the offline stage is done, we can perform repetitive simulations of the underlying multiscale
PDE for a wide variation of the differential coefficient with an affordable computational cost. To make the point more precise,
we turn back to our discussion of the computational cost in Section 2.4. We assume that X ¼ ½0;1�d¼2 and that the domain is
decomposed into L� L linear rectangular elements. Each element is further divided into M �M subcell elements. We further
assume that the Q is Oð1Þ and that OðLcdÞ is small relative to OðneLdMcdÞ. Then the computer memory and operation count for
LFEM, MsFEM, and MsRBM are tabulated in Table 4. We note that while the memory requirement is similar, the ratio of the
operation count between MsRBM and MsFEM is
Table 3
A flow

Offline s
For eac
1. Per
2. Solv
3. App
4. Com

Online s
For eac
1. Ass
2. Solv
3. Com
4. For

Table 4
Compar

Cost

Memor
CPU tim
jMsFEM=MsRBM ¼
neMdc

N3 :
Therefore, MsRBM is efficient and thus relevant only when N3 is small relative to neMdc.

4. Numerical application

4.1. Problem description

In this section, we apply the multiscale reduced-basis method to steady state single phase flows through random porous
media of the form (1). We consider X ¼ ð0;1Þ � ð0;1Þ, u ¼ 0 on oX, and f ¼ 1. This is a model of flow in an oil reservoir with
uniform injection into the domain and outflow at the boundaries. A uniform finite element mesh is constructed by decom-
posing X into L� L rectangular (actually square) elements. The number of cell problems is K ¼ L� L. The multiscale methods
further subdivides each element into M �M subcell elements. We note that h ¼ 1=L and H ¼ 1=M. For simplicity, linear
boundary conditions are used in the cell problems. Reference solutions are computed on the well-resolved mesh of
LM � LM elements using the linear finite element method.

The permeability field gðx; lÞ is defined on a 72� 72 grid over the domain X as shown in Fig. 1(a). For each grid cell, the
value of g may vary randomly in the interval ½0:01;1�. The problem thus has P ¼ 722 ¼ 5184 parameters for the parametri-
zation of the permeability field and l 2 D � ½0:01;1�P . We fix LM ¼ 720 which corresponds to 100 elements per parameter
grid cell. This resolution is fine enough to serve as a reference. We consider L ¼ 18;24;36; and 72. We note that the elements
chart for implementation of MsRBM

tage
h element Xk;1 6 k 6 K , we do only once:
form the adaptive sampling procedure (see in Section 3.2) to compute the sample set Sk

J ¼ flk
j 2 D;1 6 j 6 Jg

e the discrete cell problems (22) for fwki
H ðlk

j Þ;1 6 i 6 ne;1 6 j 6 Jg
ly POD to compute ffk

ng
Nmax
n¼1 from the above snapshot set

pute and store Ak
q 2 RN�N , Fki

q 2 RN from (44), Bki
q 2 RN , Lk 2 RN , Ckij

q 2 R, and Dki 2 R from (47) for 1 6 i; j 6 ne, and 1 6 q 6 Q

tage
h new l 2 D, we compute uZ

hðlÞ as follows:
emble AkðlÞ 2 RN�N and FkiðlÞ 2 RN , 1 6 k 6 K;1 6 i 6 ne, from (43)
e (42) for ckiðlÞ 2 RN , 1 6 k 6 K;1 6 i 6 ne

pute EkðlÞ 2 Rne�ne and ekðlÞ 2 Rne , 1 6 k 6 K , from (46)
m and solve the global linear system

ison of LFEM, MsFEM,and MsRBM: memory requirement and CPU time to solve the parametrized problem (1) for different value of l

LFEM MsFEM MsRBM

y OððLMÞdÞ OðLd þMdÞ OðN3 þ LdÞ
e OððLMÞcdÞ OðLcd þ neLdMcdÞ OðLcd þ LdðN3 þ ðQ þ neÞN2ÞÞ
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Xk;1 6 k 6 K; are identical and that the differential coefficient gðx; lÞ has a similar form in all elements. Therefore, all the cell
problems can now be recast in the reference element Xref ¼ ½0;1=L� � ½0;1=L�which consists of ð72=LÞ � ð72=LÞ grid cells. Fur-
thermore, these cell problems have Pref ¼ ð72=LÞ � ð72=LÞ parameters, ðlk

1; . . . ;lk
Pref
Þ, which reside in a parameter space

Dref ¼ ½0:01;1�Pref . In summary, each the cell problem has
a

Fig. 1.
(for L ¼
Hk
q ¼ lk

q; Gk
qðxÞ ¼

1 if x 2 Rq;

0 otherwise;

�
ð48Þ
where for 1 6 q 6 Q ref ¼ Pref , lk
q 2 ½0:01;1� andRq correspond to the regions associated with the respective cells as indicated

in Fig. 1(b). Therefore, we need only to compute and store Ak
q 2 RN�N , Bki

q 2 RN , Lk
N 2 RN , Ckij

q 2 R, Dki 2 R, and Fki
q 2 RN ,

1 6 i; j 6 ne, 1 6 r 6 Q ref for the reference element X ref . In this way, the computational cost of the offline stage is reduced
by a factor of K.

We consider four different random realizations of the permeability field. The first realization g1 is normal distribution
with mean 0.5 and standard deviation 0.15. The second realization g2 is log-normal distribution calculated from
0:025� 101:6g1 . The third realization g3 is independent and identically distributed (i.i.d) uniform distribution in the interval
½0:01;1�. And the fourth realization g4 is i.i.d normal distribution with mean 0.5 and standard deviation 0.15. These random
fields are shown in Fig. 2. The first realization is generated using a spectral method [28]. At each spatial point in the 72� 72
grid, the value of g1 is given by the sum of 72 Fourier modes with low to high frequencies, which are uniformly distributed
random phases in the interval ½0;2p�. The shortest wavelength of this random field is thus 1=72 and it is well resolved on the
720� 720 grid since there are 11 nodes per shortest wavelength. However, the shortest wave length is not resolved on the
L� L grid as we consider L 6 72. The last two realizations are spatially uncorrelated uniform random field and Gaussian ran-
dom field, respectively. We note that the four realizations of the permeability fields are stationary random fields and that the
Gaussian random fields g1 and g4 are generated such that they take values in ½0:01;1:0�.

Below we present numerical results obtained with using LFEM, MsFEM, and MsRBM. We assess the accuracy of the meth-
ods with the error measure
EhðlÞ ¼
kurðlÞ � uhðlÞkL2ðXÞ

kurðlÞkL2ðXÞ
: ð49Þ
Here the subscript r refers to the reference solution and the subscript h denotes computed solutions. All calculations are
implemented and performed in Matlab� environment.

4.2. Numerical results

We first look at convergence of the RB approximation for the cell problems. To develop FE approximation for the cell
problems, we use classical P1 Lagrange finite elements on a quadrangular and uniform FE mesh shown in Fig. 1(c). The
RB convergence is performed for a random sample Ntest of size n test ¼ 1000 over the parameter domain Dref . We define
the maximum error as
emax
N ¼ max

16i6ne
max

l ref2Ntest
kwi

Hðlref Þ � wi
NðlrefÞkH1ðXref Þ

: ð50Þ
Here wi
Hðlref Þ and wi

Nðl refÞ, 1 6 i 6 ne, are the FE solutions and RB solutions of the cell problems, respectively.
We present in Fig. 3(a) the maximum error, emax

N , as a function of N for L ¼ 36 corresponding to the parameter domain Dref

of P ref ¼ 4 parameters; Fig. 3(b) and (c) provide the same quantities for L ¼ 24 (Pref ¼ 9) and L ¼ 18 (Pref ¼ 16), respectively.
We observe that the RB approximation converges very rapidly (exponentially with the RB dimension N). Note that the rate of
b c

The porous media flow problem: (a) permeability grid of 72� 72 cells, (b) reference cell element Xref ¼ ½0;1=L� � ½0;1=L� of QL ¼ ð72=LÞ � ð72=LÞ cells
18), and (c) FE mesh on Xref . Note that our cell problems are formulated on Xref which depends on the upscaling dimension L.



Fig. 2. Four different random realizations of the permeability field: (a) normal distribution, (b) log-normal distribution, (c) i.i.d uniform distribution, and (d)
i.i.d. normal distribution. The first two realizations are generated using the spectral method.
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convergence decreases with L since the number of parameters increases by a factor of 4 when we decrease L by a factor of 2.
As a result, the number of snapshots and basis functions required to achieve the desired accuracy also increases as L
decreases.

We next present in Table 5 the relative errors in L2ðXÞ norm obtained using the various methods for the normal distri-
bution of the permeability shown in Fig. 2(a). We see that the errors decreases as L increases (h decreases). For small values
of L such as L ¼ 18 and L ¼ 24, the errors of using the multiscale methods is almost one order of magnitude smaller than the
error of using LFEM. We next give in Table 6 the results for the log-normal distribution of the permeability shown in Fig. 2(b).
The results indicate the same trend of convergence observed in Table 5: the errors are reduced with increasing L.

We further present the errors in Table 7 for the i.i.d. uniform distribution of the permeability (in Fig. 2(c)) and in Table 8
for the i.i.d. normal distribution of the permeability (in Fig. 2(d)). We see that different from the two previous cases, the er-
rors of using the multiscale methods initially increases as h decreases. This trend reverses when h becomes closer to the
smallest scale of the problem. In the third case, the errors of using the multiscale methods have the same order of magnitude
as the errors of using LFEM even when L is small. We note that the errors in the third case converge slower than those in the
other cases. This is because the i.i.d uniform distribution yields more complex permeability field and solution structure than
the other distributions.

In all four cases of the permeability field, we note that the differences in the errors of using MsFEM and MsRBM are very
small, which implies that MsRBM has the same order of convergence as MsFEM. This is consistent with our a priori conver-
gence result stated in Lemma 1.

We now study the convergence of the multiscale RB solution with respect to the RB dimension N. We present in Fig. 4 the
relative errors obtained using MsRBM for the four realizations of the permeability. It is clear that the errors of using MsRBM
decrease rapidly toward the errors of of using MsFEM as we increase N. For example, the combinations ðN; LÞ ¼ ð10;36Þ,
ðN; LÞ ¼ ð30;24Þ, and ðN; LÞ ¼ ð50;18Þ yield results which are quite close to those obtained using MsFEM as seen in Tables
5–8. Furthermore, we note that as L decreases MsRBM needs larger N in order to achieve a similar accuracy as MsFEM. This
is due to the fact that the number of parameters for each cell problem is inversely proportional to L� L and that N required to
satisfy the desired accuracy increases significantly as the number of parameters increases observed in Fig. 3. Therefore, L and N
must be chosen on the basis of efficiency and accuracy of MsRBM. Since the computational cost of the online stage is



2 4 6 8 10

10
5

10
4

10
3

M
ax

im
um

  e
rr

or

5 10 15 20 25 30 35
10

5

10
4

10
3

10
2

M
ax

im
um

  e
rr

or

10 20 30 40 50 60

10
4

10
3

10
2

M
ax

im
um

  e
rr

or

a b

c

Fig. 3. The maximum error emax
N as a function of N for: (a) L ¼ 36, (b) L ¼ 24, and (c) L ¼ 18.

Table 5
Relative errors in L2ðXÞ norm as a function of L for LFEM, as a function of L and M for MsFEM, and as a function of L and N for MsRBM for the 1st realization of the
permeability field

L M N LFEM MsFEM MsRBM

18 40 50 0.0304 0.0045 0.0045
24 30 30 0.0252 0.0038 0.0038
36 20 10 0.0102 0.0034 0.0034
72 10 1 0.0012 0.0012 0.0012

Table 6
Relative errors in L2ðXÞ norm as a function of L for LFEM, as a function of L and M for MsFEM, and as a function of L and N for MsRBM for the 2nd realization of
the permeability field

L M N LFEM MsFEM MsRBM

18 40 50 0.0405 0.0127 0.0129
24 30 30 0.0389 0.0115 0.0116
36 20 10 0.0130 0.0079 0.0079
72 10 1 0.0028 0.0028 0.0028

Table 7
Relative errors in L2ðXÞ norm as a function of L for LFEM, as a function of L and M for MsFEM, and as a function of L and N for MsRBM for the 3rd realization of
the permeability field

L M N LFEM MsFEM MsRBM

18 40 50 0.0773 0.0652 0.0687
24 30 30 0.1037 0.0743 0.0750
36 20 10 0.0622 0.0884 0.0884
72 10 1 0.0578 0.0578 0.0578
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Table 8
Relative errors in L2ðXÞ norm as a function of L for LFEM, as a function of L and M for MsFEM, and as a function of L and N for MsRBM for the 4th realization of
the permeability field

L M N LFEM MsFEM MsRBM

18 40 50 0.0387 0.0109 0.0118
24 30 30 0.0278 0.0155 0.0157
36 20 10 0.0194 0.0184 0.0184
72 10 1 0.0123 0.0123 0.0123
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Fig. 4. Relative errors in L2ðXÞ norm (obtained using MsRBM) as a function of N for L ¼ 18;24 and 36 for: (a) normal distribution, (b) log-normal
distribution, (c) i.i.d uniform distribution, and (d) i.i.d. normal distribution.
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OðLcd þ neLdN3Þ, using smaller N and larger L is better than using larger N and smaller L for a given accuracy. So the pair
ðN; LÞ ¼ ð10;36Þ is more efficient than ð30;24Þ and ð50;18Þ. This is in contrast to MsFEM which favors the smaller value of L.

Finally, we show in Fig. 5 the ratio of the computational times between MsFEM and MsRBM as a function of N for
L ¼ 18;24 and 36. We see that the computational time ratio decreases with increasing N. Nevertheless, thanks to the rapid
convergence of the RB approximation, MsRBM reduces computational time by a factor of 50, while providing a similar accu-
racy. The crucial new capability is fast RB calculations that permit us to efficiently treat a large number of cell problems at
the fine local mesh, thereby providing rapid repeated solution of the elliptic problem for a wide range of porous media; for
any given realization of the permeability field in the parameter space, the problem may be solved online within 7 seconds for
L ¼ 18 and N ¼ 50, 4 seconds for L ¼ 24 and N ¼ 30, 3 seconds for L ¼ 36 and N ¼ 10, 9 seconds for L ¼ 72 and N ¼ 1 on a
Pentium IV 1.73 GHz laptop. The computational efficiency renders MsRBM deemed useful for analysis of multiscale systems
in composite materials and porous media.

5. Conclusions

We have presented a multiscale reduced-basis method for the efficient solution of multiscale parametrized elliptic PDEs.
The problems have heterogeneous coefficients that are characterized by a very large number of independent parameters. Our
approach involves the development of reduced order modeling for the homogeneous cell problems, since resolution of the
cell problems is the most expensive operation in a multiscale method. To render the model reduction process efficient, we
develop an offline–online computational procedure for the generation and simulation of a reduced order model. The offline
stage is performed only one time, while the online stage can be repeated many times for any new medium. In addition, we
exploit similarity of parametrization to replicate the reduced order model from one element to the other, thereby reducing
the offline cost quite significantly. The operation count of the online stage depends on the cubic power of N – the dimension
of the reduce order model. However, since the reduced basis spaces are constructed upon snapshots optimally selected by
the adaptive sampling procedure, N is typically small. We have also shown that the method inherits the convergence prop-
erties of the multiscale FE method.

Numerical experiment confirms uniformly rapid convergence of the RB approximation and the error estimates in L2 norm.
Through comparison with the multiscale FE method we demonstrate that the proposed method reduces significantly the
computational cost, while retaining the accuracy of the high-fidelity FE model. As a result, solution of the underlying PDE
can be obtained rapidly and accurately for any given parameter value in the range considered. The method is thus relevant
to parameter design and optimization in multiscale processes.

However, many questions remains as regards the extension of the multiscale RB method to treat parametrized multiscale
problems more satisfactorily. In many cases, the oversampling technique can significantly improve the accuracy of the mul-
tiscale methods. Extension of this method to treat oversampling is thus necessary and subject to an ongoing investigation.
Although we develop the a posteriori error bounds for the solution of the cell problems and use these error bounds in the
adaptive sampling procedure, a posteriori error estimation for quantifying a multiscale RB approximation remains an open
and challenging task. Another direction in future research is the extension of this work to explore how the accuracy of
the RB approximation depends on the covariance structure of the permeability field and more generally to treat non-station-
ary random fields. Further developments are needed and may lead to a fast and reliable tool for solving parametrized PDEs
with multiple scales, thereby enabling the reach of this method to important applications such as inverse problems.
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Appendix A. Proper orthogonal decomposition

The proper orthogonal decomposition (POD), also known as the Karhunen-Loève expansion, has found its applications in
many areas of engineering disciplines such as pattern recognition, image processing, signal analysis, data compression, etc.
[14]. The method has also been extensively used by the model reduction community to construct a set of basis functions
which may significantly reduce the degrees of freedom required to fulfill a given error tolerance when they are used in place
of the FE basis. Below we briefly describe the method and refer the reader to a wide body of literature [14,21,22,31] for a
thorough discussion.

We aim to generate an optimal (in the mean square error sense) basis set ffngN
n¼1 from any given (parameter-correlated)

set of NmaxðPNÞ snapshots fnkgNmax
k¼1 . To this end, let VN ¼ spanfv1; . . . ; vNg � spanfn1; . . . ; nNmaxg be an ‘‘arbitrary” space of

dimension N. Without loss of generality, we assume that the space VN is orthonormal such that ðvn; vmÞ ¼ dnm;

1 6 n;m 6 N. (Note that ð�; �Þ denotes an appropriate inner product.) The POD space, WN ¼ spanff1; . . . ; fNg, is defined as
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WN ¼ arg min
VN�spanfn1 ;...;nNmax g

1
Nmax

XNmax

k¼1

inf
ak2RN

knk �
XN

n¼1

ak
nvnk2

 !
: ðA:1Þ
It follows from the orthornormality of VN that ak
n ¼ ðnk; vnÞ;1 6 n 6 N;1 6 k 6 Nmax. Hence, we have
WN ¼ arg min
VN�spanfn1 ;...;nNmax g

1
Nmax

XNmax

k¼1

knk �
XN

n¼1

ðnk; vnÞvnk2

 !
: ðA:2Þ
We then expand the objective and invoke the orthornormality of the space VN to arrive a maximization problem
WN ¼ arg max
VN�spanfn1 ;...;nNmax g

1
Nmax

XNmax

k¼1

XN

n¼1

nk; vnð Þ2: ðA:3Þ
This maximization problem means to find the basis set WN that captures the most energy possible. Hence, the error mini-
mization notion of optimality is equivalent to the energy maximization notion of optimality, which is exactly the idea on
which the Karhunen-Loève expansion is based.

In particular, we can construct the POD spaces by using the method of snapshots [31]. We first form the correlation matrix
C 2 RNmax�Nmax given by
Cij ¼
1

Nmax
ðni; njÞ; 1 6 i; j 6 Nmax: ðA:4Þ
We then look for the eigenpairs (vk 2 RNmax ; kk 2 Rþ0) satisfying
Cvk ¼ kkvk: ðA:5Þ
Note that the eigenvalues are arranged in descending order k1 P k2 P � � �P kNmax . We finally compute the basis functions fn

as
fn ¼
XNmax

k¼1

vn
knk; 1 6 n 6 N: ðA:6Þ
Here the eigenvector vn corresponds to the eigenvalue kn.
From the above construction it should be clear that POD spaces are not only optimal and orthonormal, but also hierar-

chical – W1 �W2 � � � � �WN . The POD can also work in other Banach spaces such as L2ðXÞ.
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