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8.1 Introduction

In this chapter we consider reduced basis (RB) approximation and a posteriori
error estimation for linear functional outputs of affinely parametrized linear
parabolic partial differential equations. The essential ingredients are Galerkin
projection onto a low-dimensional space associated with a smooth para-
metrically induced manifold – dimension reduction; efficient and effective
POD-GreedyRB sampling methods for identification of optimal and
numerically stable approximations spaces – rapid convergence; rigorous
and sharp a posteriori error bounds for the linear-functional outputs
of interest – certainty; and Offline-Online computational decomposition
strategies – minimum marginal cost. The RB approach is effective in
the real–time context in which the expensive Offline stage is deemed
unimportant – for example parameter estimation and control; the RB
approach is also effective in the many–query context in which the expensive
Offline stage is asymptotically negligible – for example design optimization,
uncertainty quantification (Boyaval et al. 2008), and multi-scale analysis
(Boyaval 2008; Nguyen 2008).

There are two parts to this chapter. In the first part we present a rather
general RB formulation for linear parabolic equations: our development com-
bines earlier work in the parabolic case (Grepl and Patera 2005; Haasdonk
and Ohlberger 2008) and elliptic context (Prud’homme et al. 2002; Rozza
et al. 2008) with new advances in sampling procedures and in particular the
POD–GreedyRB approach. In the second part we develop an RB Bayesian
framework for parameter estimation which exploits the rapid response and
reliability of the certified reduced basis method; as an example we consider
detection and characterization of a delamination crack by transient thermal
analysis (Grepl 2005; Starnes 2002). In summary, the first part (Section 8.2)
emphasizes the essential RB ingredients in a general linear context – the state
of the art; the second part (Section 8.3) emphasizes the integration and impact
of RB technology in applications – real–time and many–query applications;
each section contains both background material and new contributions. Brief
concluding remarks (Section 8.4) discuss the possibilities for the future.

8.2 Linear Parabolic Equations

8.2.1 Reduced Basis Approximation

We first introduce several notations required for the remainder of the chap-
ter. Our parameter domain, a closed subset of R

P , shall be denoted D; a
typical parameter value in D shall be denoted μ. Our time domain shall
be denoted by I = [0, tf ] with tf the final time. Our physical domain in
d space dimensions shall be denoted Ω with boundary ∂Ω; a typical point
in Ω shall be denoted x = (x1, . . . , xd). We can then define the function
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space X = X(Ω) such that (H1
0 (Ω))V ⊂ X ⊂ (H1(Ω))V ; here H1(Ω) = {v|v ∈

L2(Ω),∇v ∈ (L2(Ω))d}, H1
0 (Ω) = {v ∈ H1(Ω)|v∂Ω = 0}, L2(Ω) is the space

of square integrable functions over Ω, and V = 1 (respectively, d) for scalar
(respectively, vector) problems. We denote by (·, ·)X the inner product asso-
ciated with the Hilbert space X; this inner product in turn induces a norm
‖ · ‖X =

√
(·, ·)X equivalent to the usual (H1(Ω))V norm. Similarly, we denote

by (·, ·) and ‖ · ‖ the L2(Ω) inner product and induced norm, respectively.
We consider a generalized convection-diffusion equation (expressed in weak

form): Given μ ∈ D, we find u(t; μ) such that

m(ut(t; μ), v; μ) + a(u(t; μ), v; μ) = f(v; t; μ), ∀v ∈ X, ∀t ∈ I, (8.1)

subject to initial condition u(t = 0; μ) = u0 ∈ L2(Ω). We then evaluate our
output as

s(t; μ) = �(u(t; μ); t; μ), ∀t ∈ I. (8.2)

We shall assume that a – which represents convection and diffusion – is
time–invariant, continuous over X, and coercive over X with coercivity
constant

α(μ) = inf
v∈X

a(w, w; μ)
‖w‖2

X

, ∀μ ∈ D;

we assume that m – which represents ‘mass’ or inertia – is time–invariant,
symmetric, and continuous and coercive over L2(Ω) with coercivity constant

σ(μ) = inf
v∈X

m(w, w; μ)
‖w‖2

, ∀μ ∈ D;

we assume that f and � are linear continuous functionals over X and L2(Ω),
respectively.

Finally, to effect our Offline–Online decomposition we shall require that
our bilinear and linear forms are ‘affine in parameter’ (more precisely, affine
in functions of the parameter): for some finite Qa and Qm, a and m may be
expressed as

a(w, v; μ) =
Qa∑
q=1

Θq
a(μ)aq(w, v), m(w, v; μ) =

Qm∑
q=1

Θq
m(μ)mq(w, v) (8.3)

for given parameter-dependent functions Θq
a, 1 ≤ q ≤ Qa, Θq

m, 1 ≤ q ≤ Qm,
and continuous parameter-independent bilinear forms aq, 1 ≤ q ≤ Qa, mq, 1 ≤
q ≤ Qm; furthermore, for some finite Qf and Q�, f and � may be expressed
as

f(v; t; μ) =
Qf∑
q=1

Θq
f (μ)fq(v; t), �(v; t; μ) =

Q�∑
q=1

Θq
�(μ)�q(v; t), (8.4)
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for given time/parameter-dependent functions Θq
f , 1 ≤ q ≤ Qf , Θq

� , 1 ≤
q ≤ Q�, and continuous parameter–independent linear forms fq, 1 ≤ q ≤
Qf , �q, 1 ≤ q ≤ Q�.

We now describe a general class – through not the most general class – of
problems which honors these hypotheses; for simplicity we consider a scalar
field (V = 1) in two space dimension (d = 2). We shall first define an ‘original’
problem (subscript o) for a field variable uo(t; μ) ∈ Xo(μ) over a parameter-
dependent domain Ωo(μ) ⊂ R

2,

mo(uo t(t; μ), v; μ) + ao(uo(t; μ), v; μ) = fo(v; t; μ), ∀v ∈ Xo(μ), (8.5)

so(t; μ) = �o(uo(t; μ); t; μ); (8.6)

we will then map Ωo(μ) to a parameter-independent reference domain Ω =
Ω(μref), μref ∈ D, to arrive at the ‘transformed’ problem (8.1), (8.2) – which
is the point of departure of our reduced basis approach. It remains to place
restrictions on both geometry (Ωo(μ)) and operators (ao, mo, fo, �o) such that
(upon mapping) this transformed problem satisfies our hypotheses – in par-
ticular, the affine assumption (8.3), (8.4). Towards this end, a domain decom-
position shall prove indispensable.

We first consider the class of admissible geometries. We may consider
Ωo(μ) (⇒ Ω = Ω(μref)) of the form

Ωo(μ) =
Jdom⋃
j=1

Ω
j

o(μ)

⎛
⎝⇒ Ω =

Jdom⋃
j=1

Ω
j

⎞
⎠

for which Ωj
o(μ) = T j(Ωj ; μ), 1 ≤ j ≤ Jdom, ∀μ ∈ D; here the Ωj

o (respectively,
Ωj), 1 ≤ j ≤ Jdom, constitute a conforming triangulation of Ωo(μ) (respec-
tively, Ω), and the T j , 1 ≤ j ≤ Jdom, are affine mappings. We next consider
the class of admissible operators. We may consider

ao(w, v; μ) =
Jdom∑
j=1

∫
Ωj

o(μ)

[
w,1 w,2 w

]
Kj

o(μ)

⎡
⎣ v,1

v,2

v

⎤
⎦,

mo(w, v; μ) =
Jdom∑
j=1

∫
Ωj

o(μ)

wMj
o(μ)v, (8.7)

fo(v; t; μ) =
Jdom∑
j=1

∫
Ωj

o(μ)

Fj
o (t; μ)v, �o(v; t; μ) =

Jdom∑
j=1

∫
Ωj

o(μ)

Lj
o(μ)v; (8.8)

here w,i refers to differentiation with respect to the ith spatial coordinate, and
the Kj

o : D → R
3×3, Mj

o : D → R, Fj
o : D → R,Lj

o : D → R, 1 ≤ j ≤ Jdom,
are prescribed coefficients. (There are additional standard restriction on
Kj

o,Mj
o, 1 ≤ j ≤ Jdom, related to coercivity.)
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The process by which we map this original problem to the transformed
problem – in which the Θq

a, Θq
m, Θq

f , Θq
� reflect the geometric and coefficient

parametric dependence – can be largely automated (Huynh et al. 2007-2009;
Rozza et al. 2008). There are many ways in which we can relax our assump-
tions and thus treat an even broader class of problems. For example, we may
consider ‘elliptical’ or ‘curvy’ triangular subdomains (Rozza et al. 2008); we
may consider a which satisfy only a weak coercivity (Garding) inequality
(Knezevic and Patera 2009); we may consider non–time–invariant bilinear
forms a and m; we may consider coefficient functions K,M which are poly-
nomial in the spatial coordinate (or more generally approximated by the
Empirical Interpolation Method (Barrault et al. 2004; Grepl et al. 2007a)).
These generalizations can be pursued, with no loss in rigor, by modifica-
tion of the methods – the error estimators, the sampling procedures, and
the Offline–Online decompositions – presented in this chapter. However, it
is important to recognize that, in general, increased complexity in geome-
try and operator will result in more terms in our affine expansions – larger
Qa, Qm, Qf , Q� – with corresponding detriment to the reduced basis (Online)
computational performance; we return to this point in the context of the
operation counts provided in Section 8.3 and then again for our particular
example of Section 8.3.

We next introduce the finite difference in time and finite element (FE) in
space discretization of this parabolic problem (Quarteroni and Valli 1997). We
first divide the time interval I into K subintervals of equal length Δt = tf/K
and define tk ≡ kΔt, 0 ≤ k ≤ K. We next define the finite element approx-
imation space XN ⊂ X of dimension N . Then, given μ ∈ D, we look for
uN k(μ) ∈ XN , 0 ≤ k ≤ K, such that

1
Δt

m(uN k(μ) − uN k−1(μ), v; μ) + a(uN k(μ), v; μ) = f(v; tk; μ),

∀v ∈ XN , 1 ≤ k ≤ K, (8.9)

subject to initial condition (uN 0, v) = (u0, v), ∀v ∈ XN . We then evaluate the
output: for 0 ≤ k ≤ K,

sN k(μ) = �(uN k(μ); tk; μ). (8.10)

We shall sometimes denote uN k(μ) as uN (tk; μ) and sN k(μ) as sN (tk; μ)
to more clearly identify the discrete time levels. Equation (8.9) – Euler-
Backward Galerkin discretization of (8.1) – shall be our point of departure:
we shall presume that Δt is sufficiently small and N is sufficiently large
such that uN (tk; μ) and sN (tk; μ) are effectively indistinguishable from
u(tk; μ) and s(tk; μ), respectively. (The development readily extends to
Crank-Nicolson discretization; for purposes of exposition, we consider the
simple Euler Backward approach.) Our goal is to accelerate the ‘truth’
discretization (8.9), (8.10), in the real-time and many-query contexts: we
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shall build our RB approximation on this truth discretization; and we shall
measure the RB computational performance and RB accuracy relative to
this truth discretization.

We now introduce the reduced basis (RB) approximation (Almroth et al.
1978; Fink and Rheinboldt 1983; Noor and Peters 1980; Porsching 1985).
Given a set of mutually (·, ·)X–orthogonal basis functions ξn ∈ XN , 1 ≤ n ≤
Nmax, the Nmax hierarchical RB spaces are given by

XN ≡ span {ξn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax. (8.11)

In actual practice (see Section 8.2.3), the spaces XN ∈ XN will be generated
by a POD–GreedyRB sampling procedure which combines spatial snapshots
in time and parameter – uN k(μ) – in an optimal fashion. Given μ ∈ D, we
now look for uk

N (μ) ∈ XN , 0 ≤ k ≤ K, such that

1
Δt

m(uk
N (μ) − uk−1

N (μ), v; μ) + a(uk
N (μ), v; μ) = f(v; tk; μ),

∀v ∈ XN , 1 ≤ k ≤ K, (8.12)

subject to (u0
N (μ), v) = (uN 0, v), ∀v ∈ XN . We then evaluate the associated

output: for 0 ≤ k ≤ K,

sk
N (μ) = �(uk

N (μ); tk, μ). (8.13)

We shall sometimes denote uk
N (μ) as uN (tk; μ) and sk

N (μ) as sN (tk; μ) to
more clearly identify the discrete time levels; note that the RB approximation
inherits the timestep of the truth discretization – there is no reduction
in the ‘temporal’ dimension. The RB quantities should in fact bear a
N–XN

N , uN k
N (μ), sN k

N (μ) – since the RB approximation is defined in terms of
a particular truth discretization: for clarity of exposition, we shall typically
suppress the ‘truth’ superscript; we nevertheless insist on stability/uniformity
as N → ∞ (and Δt → 0).

In general we can choose our domain decomposition to ensure that the
functions Θq

a,m,f,� are very smooth; it can then be demonstrated that the field
variable u(μ) is very smooth with respect to the parameter. It is then plausible
(and in certain cases may be proven theoretically (Maday et al. 2002; Rozza
et al. 2008)) that a properly chosen RB approximation – a Galerkin – optimal
linear combination of ‘good’ snapshots on a smooth manifold – will converge
very rapidly (even exponentially) with increasing N . Numerical results for a
large number of coercive elliptic and parabolic problems (Grepl and Patera
2005; Rozza et al. 2008) – including the example of this chapter – support
this conjecture: typically N ≈ O(10 − 100) and hence N 
 N ; the ‘sparse
samples’ identified by the POD–GreedyRB of Section 2.3 play an important
role. Of course performance will degrade as the number of parameters and the
ranges of the parameters increase; we return to this point in our computational
summary below.
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8.2.2 A Posteriori Error Estimation

Rigorous, sharp, and inexpensive a posteriori error bounds are crucial for
informed application of the reduced basis method: a posteriori error bounds
confirm in practice the dimension N required for the desired accuracy. To
construct the a posteriori error bounds for the RB approximation, we need
two ingredients. The first ingredient is the dual norm of the residual

εN (tk; μ) = sup
v∈XN

rN (v; tk; μ)
‖v‖X

, 1 ≤ k ≤ K, (8.14)

where rN (v; tk; μ) is the residual associated with the RB approximation (8.12)

rN (v; tk; μ) = f(v; tk; μ) − 1
Δt

m
(
uk

N (μ) − uk−1
N (μ), v; μ

)
−a

(
uk

N (μ), v; μ
)
, ∀v ∈ XN , 1 ≤ k ≤ K. (8.15)

The second ingredient is a lower bound 0 < αN
LB(μ) ≤ αN (μ), ∀μ ∈ D, for the

coercivity constant αN (μ) defined as

αN (μ) = inf
v∈XN

a(v, v; μ)
‖v‖2

X

, ∀μ ∈ D, (8.16)

and a lower bound 0 < σN
LB(μ) ≤ σN (μ), ∀μ ∈ D, for the coercivity constant

σN (μ) defined as

σN (μ) = inf
v∈XN

m(v, v; μ)
‖v‖2

, ∀μ ∈ D. (8.17)

Note that since XN ⊂ X, αN (μ) ≥ α(μ) > 0 and σN (μ) ≥ σ(μ) > 0, ∀μ ∈ D;
we shall ensure by construction that αN

LB(μ) > 0 and σN
LB(μ) > 0, ∀μ ∈ D.

We can now define our error bounds in terms of the dual norm of the
residual and the lower bounds for the coercivity constants. In particular, it
can readily be proven (Grepl and Patera 2005; Haasdonk and Ohlberger 2008;
Nguyen et al. 2009) that for all μ ∈ D and all N ,

‖uN k(μ) − uk
N (μ)‖ ≤ Δk

N (μ),
|sN k(μ) − sk

N (μ)| ≤ Δs k
N (μ), 1 ≤ k ≤ K, (8.18)

where Δk
N (μ) ≡ ΔN (tk; μ) (the L2 error bound) and Δs k

N (μ) ≡ Δs
N (tk; μ) (the

‘output error bound’) are given by

Δk
N (μ) ≡

√√√√ Δt

αN
LB(μ) σN

LB(μ)

k∑
k′=1

ε2
N (tk′ ; μ),

Δs k
N (μ) ≡

(
sup

v∈XN

�(v)
‖v‖

)
Δk

N (μ).

(8.19)
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(We assume for simplicity that uN 0 ∈ XN ; otherwise there will be an
additional contribution to Δk

N (μ).) Note again that the RB error is measured
relative to the ‘truth’ discretization.

It should be clear that our error bound for the output is rather crude. We
may pursue primal-dual RB approximations (Grepl and Patera 2005; Pierce
and Giles 2000; Rozza et al. 2008) that provide both more rapid convergence
of the output and also more robust (sharper) estimation of the output error.
However, in cases in which many outputs are of interest, for example inverse
problems, the primal-only approach described above can be more efficient and
also more adaptive – efficiently expanded to include additional outputs.

8.2.3 Offline–Online Computational Approach

The arguments above indicate that a reduced basis space of greatly reduced
dimension N 
 N may suffice for accurate approximation of the field and
output. However, each member of this space – and in particular each basis
function ξn, 1 ≤ n ≤ N – will be represented as a vector in R

N correspond-
ing to (say) the finite element nodal values. It is thus not clear how we can
efficiently compute our reduced basis solution and output without appeal
to high – dimensional objects – more generally, how we can translate the
reduced dimension into reduced computational effort. The error estimator
is even more problematic: the dual norm of the residual requires the truth
solution of a (Poisson–like) problem which will be almost as expensive as
the original PDE. In both cases, the affine assumption is the crucial enabler
that permits an efficient implementation in the real-time or many–query con-
texts: we can pre-compute components of the mass and stiffness matrices and
residual dual norm. We now provide the details.

Construction-Evaluation Decomposition

The affine representation (8.3) permits a ‘Construction-Evaluation’ decom-
position (Balmes 1996; Prud’homme et al. 2002) of computational effort
that greatly reduces the marginal cost – relevant in the real-time and
many-query contexts – of both the RB output evaluation, (8.13), and
the associated error bounds, (8.19). The expensive Construction stage,
performed once, provides the foundation for the subsequent very inexpensive
Evaluation stage, performed many times for each new desired μ ∈ D. We
first consider the Construction-Evaluation decomposition for the output and
then address the error bounds. For simplicity, in this section we assume that
f(v; tk; μ) = g(tk)f(v) for some control g(t), and that �(v; tk; μ) = �(v).

We represent uk
N (μ) as uk

N (μ) =
∑N

n=1 ωk
N n(μ)ξn, where we recall that the

ξn, 1 ≤ n ≤ N, are the basis functions for our RB space XN . We may then
evaluate the RB output as

sk
N (μ) = LT

Nωk
N (μ), 1 ≤ k ≤ K, (8.20)
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where LN n = �(ξn), 1 ≤ n ≤ N . To find the ωk
N j(μ), 1 ≤ j ≤ N, 1 ≤ k ≤ K,

we insert uk
N (μ) =

∑N
n=1 ωk

N n(μ)ξn, uk−1
N (μ) =

∑N
n=1 ωk−1

N n (μ)ξn, and v = ξm

in (8.12) to obtain the discrete system

(MN (μ) + ΔtAN (μ))ωk
N (μ) = Δtg(tk)FN + MN (μ)ωk−1

N (μ), 1 ≤ k ≤ K
(8.21)

where AN (μ) ∈ R
N×N , MN (μ) ∈ R

N×N , and FN (μ) ∈ R
N are given by

AN m,n(μ) = a(ξn, ξm; μ), MN m,n(μ) = m(ξn, ξm; μ), 1 ≤ m, n ≤ N , and
FN n = f(ξn), 1 ≤ n ≤ N , respectively. We next note that AN (μ) and MN (μ)
can be expressed, thanks to (8.3), as

AN (μ) =
Qa∑
q=1

Θq
a(μ)Aq

N , MN (μ) =
Qm∑
q=1

Θq
m(μ)Mq

N (8.22)

where the Aq
N m,n ≡ aq(ξn, ξm), 1 ≤ m, n ≤ N , 1 ≤ q ≤ Qa, Mq

N m,n ≡
mq(ξn, ξm), 1 ≤ m, n ≤ N , 1 ≤ q ≤ Qm, are parameter-independent. We can
now readily identify the Construction–Evaluation decomposition.

In the Construction stage we first form and store the time–independent
and μ–independent matrices/vectors Aq

Nmax ij , M
q′

Nmax ij , FNmax i, and LNmax i,
1 ≤ i, j ≤ Nmax, 1 ≤ q ≤ Qa, 1 ≤ q′ ≤ Qm. The operation count in the Con-
struction stage of course depends on N – even once the ξi, 1 ≤ i ≤ Nmax, are
known (obtained by the sampling procedure of the next section), it remains
to compute O(N2

max) finite element quadratures over the O(N ) triangula-
tion. Note that, thanks to the hierarchical nature of the RB spaces, the
stiffness matrices/vectors Aq

N ij , M
q′

N ij , FN i, and LN i, 1 ≤ i, j ≤ N, 1 ≤ q ≤
Qa, 1 ≤ q′ ≤ Qm, for any N ≤ Nmax can be extracted as principal subarrays
of the corresponding Nmax quantities. (For non-hierarchical RB spaces the
storage requirements are much higher.)

In the Evaluation stage, we first form the left–hand side of (8.21)
in O((Qa + Qm)N2) operations; we then invert the resulting N × N
matrix in O(N3) operations (in general, we must anticipate that the RB
matrices will be dense); finally, we compute ωk

N j , 1 ≤ j ≤ N, 1 ≤ k ≤ K,

in O(KN2) operations – O(KN3) operations for non-LTI systems – by
matrix-vector multiplication. Note that g(tk) need only be specified in the
Online stage; we return to this point in our sampling strategy below. Once
the ωk

N j , 1 ≤ j ≤ N, 1 ≤ k ≤ K, are obtained – O((Qa + Qm + N + K)N2)
operations in total – we evaluate our output from (8.20) in O(NK) oper-
ations. The storage and operation count in the Evaluation phase is clearly
independent of N , and we can thus anticipate – presuming N 
 N – very
rapid RB response in the real-time and many-query contexts.

The Construction-Evaluation procedure for the output error bound is a
bit more involved. There are three components to this bound: the dual norm
of � (readily computed, once, in the Construction phase); the lower bound
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for the coercivity constants, αN
LB(μ) and σN

LB(μ), computed Offline–Online
by the Successive Constraint Method (SCM) as described in detail in Huynh
et al. (2007); Rozza et al. (2008), and not discussed further here; and the dual
norm of the residual εN (tk; μ). We consider here the Construction-Evaluation
decomposition for the dual norm of the residual (Grepl and Patera 2005). We
first note from duality arguments that εN (tk; μ) can be expressed as

ε2
N (tk; μ) = ‖êN (tk; μ)‖2

X , 1 ≤ k ≤ K, (8.23)

where êN (tk; μ) is the Riesz representation of the residual,

(êN (tk; μ), v)X = rN (v; tk; μ), ∀v ∈ XN . (8.24)

Here rN (v; tk; μ) is the residual defined in (8.15) (with f(v; tk; μ) = g(tk)f(v)),
which we may further write – exploiting the reduced basis representation
uk

N (μ) =
∑N

n=1 ωk
N n(μ)ξn and affine assumption (8.3) – as

rN (v; tk; μ) = g(tk)f(v) − 1
Δt

Qm∑
q=1

N∑
j=1

Θq
m(μ)(ωk

N j(μ) − ωk−1
N j (μ))mq(ξj , v)

(8.25)

−
Qa∑
q=1

N∑
j=1

Θq
a(μ)ωk

N j(μ)aq(ξj , v),

for 1 ≤ k ≤ K.
It now follows directly from (8.24) and (8.25) that

êN (tk; μ) = g(tk)ΓN +
1

Δt

Qm∑
q=1

N∑
j=1

Θq
m(μ)(ωk

N j(μ) − ωk−1
N j (μ))Λqj

N

+
Qa∑
q=1

N∑
j=1

Θq
a(μ)ωk

N j(μ)Υqj
N , 1 ≤ k ≤ K,

(8.26)

where

(ΓN , v)X = f(v), ∀v ∈ XN ,

(Λqj
N , v)X = −mq(ξj , v), ∀v ∈ XN , 1 ≤ q ≤ Qm, 1 ≤ j ≤ N,

(Υqj
N , v)X = −aq(ξj , v), ∀v ∈ XN , 1 ≤ q ≤ Qa, 1 ≤ j ≤ N.

(8.27)

It then follows from (8.28) that

ε2
N (tk; μ)

= g(tk)g(tk)Cff
N 1(μ) +

N∑
j=1

N∑
j′=1

ωk
N j(μ)ωk

N j′(μ)Caa
N jj′(μ)
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+
1

Δt2

N∑
j=1

N∑
j′=1

(ωk
N j(μ) − ωk−1

N j (μ))(ωk
N j′(μ) − ωk−1

N j′ (μ))Cmm
N jj′(μ)

+2g(tk)
N∑

j=1

ωk
N j(μ)Cfa

N j(μ) +
2g(tk)

Δt

N∑
j=1

(ωk
N j(μ) − ωk−1

N j (μ))Cfm
N j (μ)

+
2

Δt

N∑
j=1

N∑
j′=1

(ωk
N j(μ) − ωk−1

N j (μ))ωk
N j′(μ)Cam

N jj′(μ), 1 ≤ k ≤ K, (8.28)

where, for 1 ≤ j, j′ ≤ N,

Cff
N 1(μ) = (ΓN , ΓN )X ,

Caa
N jj′(μ) =

Qa∑
q=1

Qa∑
q′=1

Θq
a(μ)Θq′

a (μ)(Υqj
N , Υq′j′

N )X ,

Cmm
N jj′(μ) =

Qm∑
q=1

Qm∑
q′=1

Θq
m(μ)Θq′

m(μ)(Λqj
N , Λq′j′

N )X ,

Cfa
N j(μ) =

Qa∑
q=1

Θq
a(μ)(Υqj

N , ΓN )X ,

Cfm
N j (μ) =

Qm∑
q=1

Θq
m(μ)(Λqj

N , ΓN )X ,

Cam
N jj′(μ) =

Qm∑
q=1

Qa∑
q′=1

Θq
m(μ)Θq′

a (μ)(Λqj
N , Υq′j′

N )X .

(8.29)

The Construction–Evaluation decomposition is now clear. We emphasize that
in infinite precision (8.28) and (8.23) are equivalent: (8.28) is a reformulation
of (8.23) that admits an Offline-Online decomposition.1

In the Construction stage, we find the ΓNmax , Λ
qj
Nmax

, 1 ≤ q ≤ Qm, 1 ≤
j ≤ Nmax, Υ

qj
Nmax

, 1 ≤ q ≤ Qa, 1 ≤ j ≤ Nmax, and form the inner products

(ΓNmax , ΓNmax)X , (Λqj
Nmax

, Λq′j′

Nmax
)X , 1 ≤ q, q′,≤ Qm, 1 ≤ j, j′ ≤ Nmax,

(Υqj
Nmax

, Υq′j′

Nmax
)X , 1 ≤ q, q′,≤ Qa, 1 ≤ j, j′ ≤ Nmax, (Λqj

Nmax
, Υq′j′

Nmax
)X , 1 ≤

q ≤ Qm, 1 ≤ q′ ≤ Qa, 1 ≤ j, j′ ≤ Nmax, (Λqj
Nmax

, ΓNmax)X , 1 ≤ q ≤ Qm, 1 ≤
j ≤ Nmax, (Υqj

Nmax
, ΓNmax)X , 1 ≤ q ≤ Qa, 1 ≤ j ≤ Nmax. The operation count

for the Construction stage clearly depends on N – 1 + (Qa + Qm)N finite
element ‘Poisson’ problems (8.27) and (1 + (Qa + Qm)N)2 finite element
quadratures over the triangulation. (The temporary storage associated with

1In finite precision (8.28) and (8.23) are not equivalent: εN (tk; μ) computed from (8.28)
will only be accurate to the square root of machine precision; εN (tk; μ) computed from
(8.23) will be accurate to machine precision. The former is rarely a limitation for actual
error tolerances of interest.
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the latter can be excessive for higher–dimensional problems: it is simple to
develop procedures that balance temporary storage and re–computation.)
Note that, thanks to the hierarchical nature of the reduced basis spaces,
these inner products for any N ≤ Nmax can be directly extracted from
the corresponding Nmax quantities. (As already noted, for non-hierarchical
reduced basis spaces the storage requirements will be considerably higher.)

In the Evaluation stage, given the reduced basis coefficients ωN j(tk; μ),
1 ≤ j ≤ N, 1 ≤ k ≤ K, and coefficient functions Θq

a(μ), 1 ≤ q ≤ Qa, Θq
m(μ),

1 ≤ q ≤ Qm: we can readily compute the coefficient functions (8.29) from the
stored inner products in O((Qa + Qm)2N2) operations; we then simply per-
form the sum (8.28) in O(N2) operations per time step and hence O(KN2)
operations in total. The operation count for the Evaluation stage is thus
(roughly) (K + (Qa + Qm)2)N2; note that the operation count for the Evalu-
ation stage is O(K(Qa + Qm)2N2) operations for non-LTI systems since the
coefficient functions (8.29) must be evaluated for each timestep. The cru-
cial point, again, is that the cost and storage in the Evaluation phase – the
marginal cost for each new value of μ – is independent of N : thus we can
not only evaluate our output prediction but also our rigorous output error
bound very rapidly in the parametrically interesting contexts of real-time or
many-query investigation. In short, we inherit the high fidelity and certainty
of the FE approximation but at the low cost of a reduced-order model.

This concludes the discussion of the Construction – Evaluation decompo-
sition. The Construction stage is performed Offline; the Evaluation stage is
invoked Online – for each new μ of interest in the real–time or many–query
contexts. However, there is another component to the Offline stage: we must
construct a good (rapidly convergent) reduced basis space and associated
basis functions ξi, 1 ≤ i ≤ Nmax, by a POD-GreedyRB procedure; this sam-
pling process in fact relies on the Construction–Evaluation decomposition to
greatly reduce the requisite number of (expensive) ‘candidate’ finite element
calculations over an (extensive) GreedyRB training sample, Ξtrain,RB, as we
now describe. (In actual practice there is also an Offline-Component to the
SCM construction of αN

LB(μ) and σN
LB(μ) as reported in Huynh et al. (2007);

Rozza et al. (2008).)

POD-GreedyRB Procedure

We address here the generation of our reduced basis space XN . Our sampling
procedure combines, as first proposed in Haasdonk and Ohlberger (2008),
the POD (Proper Orthogonal Decomposition) in tk – to capture the causality
associated with our evolution equation – with a Greedy procedure (Grepl and
Patera 2005; Rozza et al. 2008; Veroy et al. 2003b;) in μ – to treat efficiently
the higher dimensions and more extensive ranges of parameter variation.
(For an alternative ‘interpolation’ approach to reduced order time-parameter
spaces see Amsallem and Farhat (2008); Amsallem et al. (2009).)
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To begin, we summarize the well-known optimality property of the POD
(Kunisch and Volkwein 2002). Given J elements of XN , wj ∈ XN , 1 ≤ j ≤ J ,
and any positive integer M ≤ J , POD({w1, . . . , wJ}, M) returns M
(·, ·)X-orthogonal functions {χm, 1 ≤ m ≤ M} such that the space
VM = span{χm, 1 ≤ m ≤ M} is optimal in the sense that

VM = arg inf
YM⊂span{wj ,1≤j≤J}

(
1
J

J∑
j=1

inf
v∈YM

‖wj − v‖2
X

)1/2

where YM denotes a M -dimensional linear space. We also recall that to find
the χp we first form the correlation matrix C with entries Cij = (wi, wj)X ,
1 ≤ i, j ≤ J ; we then find the largest M eigenvalues λm, 1 ≤ m ≤ M, and
associated eigenvectors vm ∈ R

J , 1 ≤ m ≤ M, of the system Cvm = λmvm

with normalization (vm)T vm = 1; finally we form χm =
∑J

j=1 vm
j wj , 1 ≤ m ≤

M . Note that the χm thus satisfy the orthogonality condition (χm, χn)X =
λmδmn, 1 ≤ m, n ≤ M .

To initiate the POD-GreedyRB sampling procedure we must specify a very
large (exhaustive) ‘training’ sample of ntrain,RB points in D, Ξtrain,RB, and an
initial (say, random) RB parameter sample S∗ = {μ∗

0}. Typically we choose
Ξtrain,RB by Monte Carlo sampling over D with respect to a prescribed (usu-
ally uniform) density, however for P small (few parameters) often a uniform
or log-uniform deterministic distribution is preferred. The algorithm is then
given by

Set Z = ∅;
Set μ∗ = μ∗

0;
While N ≤ Nmax

{χm, 1 ≤ m ≤ M1} = POD({uN (tk; μ∗), 1 ≤ k ≤ K}, M1);
Z ← {Z, {χm, 1 ≤ m ≤ M1}};
N ← N + M2;
{ξn, 1 ≤ n ≤ N} = POD(Z, N);
XN = span{ξn, 1 ≤ n ≤ N};
μ∗ = arg maxμ∈Ξtrain,RB ΔN (tK = tf ; μ);
S∗ ← {S∗, μ∗};

end.
Set XN =span{ξn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax.

In actual practice, we typically exit the POD-Greedy sampling procedure at
N = Nmax ≤ Nmax,0 for which a prescribed error tolerance is satisfied: to wit,
we define

ε∗N,max = max
μ∈Ξtrain,RB

ΔN (tK ; μ)
‖uN (tK ; μ)‖ ,

and terminate when ε∗N,max ≤ εtol. Note, by virtue of the final re–definition,
the POD-Greedy generates hierarchical spaces XN , 1 ≤ N ≤ Nmax, which is
computationally very advantageous.
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There are two ‘tuning’ variables in the POD-GreedyRB procedure,
M1 and M2. We choose M1 to satisfy an internal POD error criterion
based on the usual sum of eigenvalues; we choose M2 ≤ M1 to minimize
duplication in the reduced basis space – though typically we prefer M2 > 1
in order to reduce the number of GreedyRB iterations and hence Offline
cost. We make two observations. First, the POD – GreedyRB method readily
accommodates a repeat μ∗ in successive GreedyRB cycles – new information
will always be available and old information rejected; in contrast, a pure
GreedyRB approach in both t and μ (Grepl and Patera 2005), though often
generating good spaces, can ‘stall.’ Second, thanks to the POD normalization
(χm, χn)X = λmδmn, 1 ≤ m, n ≤ M1, the modes generated in the first POD
at any parameter value μ∗ are automatically scaled by their respective
importance in representing u(tk; μ∗), 1 ≤ k ≤ K; the inputs to the second
POD (of Z) are thus correctly weighted to accommodate modes from
different parameter values. (An alternative single-stage POD-GreedyRB

procedure is proposed in Knezevic and Patera (2009).)
The procedure remains computationally feasible even for large parameter

domains and very extensive training samples (and in particular in
higher parameter dimensions P > 1): the POD is conducted in only one
(time) dimension and the GreedyRB addresses the remaining (parameter)
dimensions. The crucial point to note is that the operation count for the
POD-GreedyRB algorithm is additive and not multiplicative in ntrain,RB

and N : in searching for the next parameter value μ∗, we invoke the
Construction–Evaluation decomposition to inexpensively calculate the
a posteriori error bound at the ntrain,RB candidate parameter values;
ΔN (tk; μ) over Ξtrain,RB is computed by first constructing the necessary
parameter-independent inner products at cost which depends on N but not
on ntrain,RB and then evaluating the error over all training points at cost
ntrain,RB(K + (Qa + Qm)2)N2 (independent of N ) – hence the additive and
not multiplicative dependence on N and ntrain,RB. In contrast, in a pure
POD approach, we would need to evaluate the finite element ‘truth’ solution
at the ntrain,RB candidate parameter values at cost O(ntrain,RBN •). (Of
course, much of the computational economies are due not to the GreedyRB

per se, but rather to the accommodation within the GreedyRB of the
inexpensive error bounds.) As a result, in the POD–GreedyRB approach
we can take ntrain,RB relatively large: we can thus anticipate reduced basis
spaces and approximations that provide rapid convergence uniformly over
the entire parameter domain. (Note that more sophisticated and hence
efficient search algorithms can be exploited in the GreedyRB context, see for
example Bui-Thanh et al. (2007).)

We pursue the POD-GreedyRB sampling procedure – which involves both
the Construction and Evaluation phases – in an Offline stage. Then, in the
Online stage, we invoke only the very inexpensive Evaluation phase: μ →
sk

N (μ), Δk
N (μ), 1 ≤ k ≤ K. Note that in the POD-GreedyRB procedure we
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choose for g(t) the impulse function Grepl and Patera (2005); the resulting RB
space will thus have good approximation properties for any g(t), and hence
g(t) can be specified in the Online stage. (The latter property is of course lost
for non-LTI problems.)

Summary

We briefly summarize here the various steps in the full algorithm. First a
prerequisite: as described in Section 8.2.1, the original problem (potentially
posed over a parameter–dependent domain) must be mapped to a transformed
problem (over a reference domain); we must then confirm our hypotheses,
including the affine assumption (8.3). Not all (original) problems will yield
transformed problems that honor our hypotheses; and not all transformed
problems can be efficiently treated by our RB approach – in particular if P
or Q is too large, as discussed further below.

We then conduct the Offline stage. First, the (Offline component) of
the SCM procedure is executed in order to provide the small database
invoked by the Online component of the SCM lower bound for the coer-
civity constants, αN

LB(μ) of (8.16) and αN
LB(μ) of (8.17); we have chosen

not to emphasize this algorithmic ingredient given extensive details in
Huynh et al. (2007); Rozza et al. (2008). Second, the POD-GreedyRB

procedure is executed to provide the small database invoked by the
Online component of the RB output and output error bound prediction; the
database comprises Aq

Nmax
∈ R

Nmax×Nmax , 1 ≤ q ≤ Qa, Mq
Nmax

∈ R
Nmax×Nmax ,

1 ≤ q ≤ Qm, F q
Nmax

∈ R
Nmax , 1 ≤ q ≤ Qf , Lq

Nmax
∈ R

Nmax , 1 ≤ q ≤ Q� as
defined in (8.22) for the output; the L2 norm of � and (ΓNmax , ΓNmax)X ,
(Λqj

Nmax
, Λq′j′

Nmax
)X , 1 ≤ q, q′,≤ Qm, 1 ≤ j, j′ ≤ Nmax, (Υqj

Nmax
, Υq′j′

Nmax
)X , 1 ≤

q, q′,≤ Qa, 1 ≤ j, j′ ≤ Nmax, (Λqj
Nmax

, Υq′j′

Nmax
)X , 1 ≤ q ≤ Qm, 1 ≤ q′ ≤ Qa, 1 ≤

j, j′ ≤ Nmax, (Λqj
Nmax

, ΓNmax)X , 1 ≤ q ≤ Qm, 1 ≤ j ≤ Nmax, (Υqj
Nmax

, ΓNmax)X ,
1 ≤ q ≤ Qa, 1 ≤ j ≤ Nmax, for the output error bound. (Recall that the
necessary quantities for N ≤ Nmax can be extracted as subarrays of the
corresponding Nmax quantities.)

We may then exercise the Online stage. Given a parameter value μ ∈ D of
interest, we first calculate the output prediction: solution of (8.21) for the RB
field coefficients followed by evaluation of the sum (8.20). We next calculate
the output error bound: evaluation of the sums first of (8.29) and subsequently
of (8.28) for the dual norm of the residual; computation of the SCM lower
bounds αN

LB, σN
LB; and finally assembly of the final result, (8.19).

We shall focus here on the operation count for the Online stage. It is
clear from our earlier discussions that to leading order the output and out-
put error bound can be evaluated in O(N3 + (K + (Qa + Qm)2)N2) opera-
tions (the additional contribution of the SCM is typically negligible in the
Online stage) – independent of N . (The latter in turn implies that, at least
as regards the Online stage, N may be chosen conservatively large.) We do
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not have a strong a priori theory which permits us to forecast the requisite
N as a function of desired accuracy. However, at least for parametrically
smooth problems, the POD-GreedyRB spaces and Galerkin projection should
yield – and our posteriori error bounds will confirm – RB output predictions
which are highly accurate for N 
 N . Nevertheless, it is important to empha-
size that the Online operation count will certainly increase with the difficulty
of the problem: N will increase with the number of parameters P and the
extent of variation in the parameters as reflected in D; Qa, Qm will increase
with the geometric and operator complexity of the problem. In actual practice,
for coercive problems with as many as O(10) parameters N = O(100) suffices
(see Sen et al. (2006) for an elliptic example); even more parameters may
be considered if the parametric representation is effective – D of increasingly
limited extent in the higher parameter dimensions (Boyaval et al. 2008). Our
example of Section 8.3 shall serve as additional calibration of computational
effort associated with both the Online and also Offline stages.

8.3 Bayesian Parameter Estimation

8.3.1 Bayesian Approach

In parameter estimation problems we would like to infer the unknown
parameter μ� ∈ D ⊂ R

P from the measurements of outputs of interest,
s(m)(t; μ�), 1 ≤ m ≤ Mout, collected for t = tk

exp
j = kexp

j Δt ∈ [0, tf ], 1 ≤ j ≤
J ; here Mout is the number of outputs and J is the number of measurements
per output. (In actual practice, some of the P parameters – for example,
measurement system design variables – may be specified (or optimized)
rather than inferred.) In our case the outputs are expressed as functionals of
the solution of the forward problem (8.1) – s(m)(t; μ�) = �(m)(u(t; μ�)) for
1 ≤ m ≤ Mout. In order to assess our approach to parameter estimation we
create ‘synthetic’ data as

Gexp
mj (μ�; εexp) = s(m)N (tk

exp
j ; μ�) + εexp

mj , 1 ≤ m ≤ Mout, 1 ≤ j ≤ J,

(8.30)

where the s(m)N (tk
exp
j ; μ�) are the finite element approximation to the exact

output s(m)(tk
exp
j ; μ�) and the εexp

mj represent the ‘experimental’ error. We
assume the εexp

mj to be independent identically distributed (i.i.d.) Gaussian
random variables (hence white in time) with zero mean and known variance
σ2

exp; our formulation can in fact treat any desired probability distribution.
We apply the Bayesian approach to parameter estimation (Mosegaard and

Tarantola 2002) to the truth discretization of the forward problem (8.1). The
expected value2 EN [μ�|Gexp] of the unknown parameter μ� conditional on

2For brevity we consider only the expectation; our methodology also applies to the
variance and indeed the full empirical posterior distribution function.
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the data Gexp is given by

EN [μ�|Gexp] =

∫
D μΠN (Gexp|μ)Π0(μ)dμ∫
D ΠN (Gexp|μ′)Π0(μ′)dμ′ . (8.31)

Here the likelihood function ΠN (Gexp|μ) is given by

ΠN (Gexp|μ) =
(

1
2πσ2

exp

)MoutJ/2

exp
(
− (Gexp − FN (μ))T (Gexp − FN (μ))

2σ2
exp

)
,

(8.32)

where, for 1 ≤ m ≤ Mout and 1 ≤ j ≤ J , FN
mj : μ ∈ D → s(m)N (tk

exp
j ; μ)

denotes the finite element evaluation of the mth output at time tk
exp
j at any

given μ in our parameter domain D. The prior distribution on the parameter
μ, Π0(μ), is also assumed Gaussian3

Π0(μ) =
(

1
2πσ2

0

)P/2

exp
(
− (μ − μ0)T (μ − μ0)

2σ2
0

)
, (8.33)

where μ0 ∈ D is the prior mean and σ2
0 is the associated variance (more

generally a covariance); our approach is not limited to any particular prior.
Note that EN [μ�|Gexp] in (8.31) is an expectation with respect to the ‘ran-
dom’ parameter μ: for any given measurement, Gexp, EN [μ�|Gexp] is our
estimator for μ�; properly speaking, EN [μ�|Gexp] is a realization of a random
variable – a function of Gexp. (To avoid cumbersome notation, Gexp refers
both to the measurement random variable and to associated realizations.)

The expected value in (8.31) necessitates the computation of multidi-
mensional integrals, which in turn require numerous evaluations of the truth
outputs; in particular, in the remainder of this section we shall interpret

∫
D

Φ(μ) ≡
nquad∑
i=1

wquad
i Φ(μquad

i ), (8.34)

for wquad
i ∈ R+, μquad

i ∈ D, 1 ≤ i ≤ nquad.4 As a consequence, the parameter
estimation procedure can be very expensive. To reduce the computational
cost of Bayesian inverse analysis Wang and Zabaras (2005) introduce
POD–based model reduction. Our emphasis here is a posteriori error

3In theory, we must multiply (8.33) by a pre-factor reflecting the bounded D. In practice,
we shall consider small σ0 and large μ0 such that μ outside D are highly improbable – and
hence D is effectively RP .

4In this chapter we consider an adaptive piecewise Gauss–Legendre technique: we first
create a domain decomposition selectively refined near an approximate μ�; we then apply
standard tensor–product Gauss–Legendre quadrature within each subdomain. We denote
by nquad the total number of integrand evaluations required. For problems with more
parameters, Monte Carlo techniques would be necessary.
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estimation (absent in earlier Bayesian model reduction approaches): our
error bounds shall ensure that our Bayesian inferences are (i) certifiably
accurate (relative to the truth), and (ii) as efficient as possible – through
optimal choice of N for a given error tolerance. In the subsequent subsection,
we incorporate our a posteriori error bounds into the Bayesian approach
to permit rapid and reliable parameter estimation. (See also Grepl (2005);
Grepl et al. (2007b) for an alternative approach to RB inverse analysis which
more explicitly characterizes parameter uncertainty.)

8.3.2 A Posteriori Bounds for the Expected Value

We develop here inexpensive, rigorous lower and upper bounds for the
expected value (8.31) (with quadratures evaluated as (8.34)) based on the
RB outputs and associated output error bounds. Toward this end, we first
introduce FN mj(μ) = s

(m)
N (tk

exp
j ; μ) and ΔFN mj(μ) = Δs (m)

N (tk
exp
j ; μ) for

1 ≤ m ≤ Mout and 1 ≤ j ≤ J , and then F±
N (μ) = FN (μ) ± ΔFN (μ); here

s
(m)
N (tk; μ) and Δs (m)

N (tk; μ) are the RB prediction and associated error
bound for the mth output. We then define, for 1 ≤ m ≤ Mout and 1 ≤ j ≤ J ,

BN mj(μ) = max{|Gexp
mj − F−

N mj(μ)|, |Gexp
mj − F+

N mj(μ)|},

and

DN mj(μ) =

⎧⎪⎨
⎪⎩

0, if Gexp
mj ∈ [F−

N mj(μ), F+
N mj(μ)],

min{|Gexp
mj − F−

N mj(μ)|,
|Gexp

mj − F+
N mj(μ)|}, otherwise .

(8.35)

Note that Gexp ∈ R
MoutJ , F±

N (μ) ∈ R
MoutJ , DN (μ) ∈ R

MoutJ , and
BN (μ) ∈ R

MoutJ .
We now introduce two new likelihood functions

Πa
N (Gexp|μ) =

(
1

2πσ2
exp

)MoutJ/2

exp
(
−DT

N (μ)DN (μ)
2σ2

exp

)
,

Πb
N (Gexp|μ) =

(
1

2πσ2
exp

)MoutJ/2

exp
(
−BT

N (μ)BN (μ)
2σ2

exp

)
,

(8.36)

from which we may evaluate

ELB
N [μ�|Gexp] =

∫
D μΠb

N (Gexp|μ)Π0(μ)dμ∫
D Πa

N (Gexp|μ′)Π0(μ′)dμ′ ,

(8.37)

EUB
N [μ�|Gexp] =

∫
D μΠa

N (Gexp|μ)Π0(μ)dμ∫
D Πb

N (Gexp|μ′)Π0(μ′)dμ′ .
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(If μ takes on negative values then (8.37) must be modified slightly.) We
shall take

EAV
N [μ�|Gexp] =

1
2
(ELB

N [μ�|Gexp] + EUB
N [μ�|Gexp])

as our RB approximation to EN [μ�|Gexp].
It can be shown that the expected values defined in (8.37) satisfy

ELB
N [μ�|Gexp] ≤ EN [μ�|Gexp] ≤ EUB

N [μ�|Gexp], (8.38)

and hence

|EN [μ�|Gexp] − EAV
N [μ�|Gexp]| ≤ 1

2
ΔEN [μ�|Gexp]

≡ 1
2
(EUB

N [μ�|Gexp] − ELB
N [μ�|Gexp]).

We sketch the proof: we first note that, since |s(m)N (tk
exp
j ; μ) −

s
(m)
N (tk

exp
j ; μ)| ≤ Δs (m)

N (tk
exp
j ; μ),

F−
N (μ) ≤ FN (μ) ≤ F+

N (μ), ∀μ ∈ D; (8.39)

it thus follows that

DN (μ)T DN (μ) ≤ (Gexp − FN (μ))T (Gexp − FN (μ)) ≤ BN (μ)T BN (μ),
(8.40)

and hence
Πb

N (Gexp|μ) ≤ ΠN (Gexp|μ) ≤ Πa
N (Gexp|μ). (8.41)

The bound result (8.38) is a direct consequence of the definitions (8.37) and
inequality (8.41), and the non-negativity of Πa, Πb, Π0, (here) μ ∈ D, and
finally the quadrature weights.

In words, Πa
N is an upper bound for ΠN since we exploit the reduced

basis error bounds to ensure that for each quadrature point the argument of
the Πa

N Gaussian is of smaller magnitude than the argument of the ΠN – we
underestimate the difference between the experimental data and the model
prediction; similar arguments demonstrate that Πb

N constitutes a lower bound
for ΠN – now we overestimate the difference between the experimental data
and the model prediction. Thus (given our non-negativity hypotheses) we
can selectively choose upper bounds or lower bounds for the numerator and
denominator of (8.31) as provided in (8.37). Note that for probability distri-
butions that do not decay monotonically away from the (assumed zero) mean
the same procedure can be applied but DN and BN will now be slightly
more complicated (though still inexpensive to evaluate). We also emphasize
that our error estimator ΔEN [μ∗|Gexp] is a rigorous bound for the difference
between the expectation as calculated from the truth and the expectation
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as calculated from the reduced basis approximation for the same quadrature
formula (8.34). Finally, we can not yet propose a similar error bound for the
case of a Markov Chain Monte Carlo approach to the Bayesian estimation
problem; we defer this topic to future work.

In the Offline stage the RB is constructed: the POD-GreedyRB sampling
procedure is invoked and all necessary Online quantities are computed and
stored. Then, in the Online stage (which involves only the Evaluation phase),
for each new identification (μ�) – and hence for each new Gexp provided – we
evaluate in ‘real–time’ the expectation lower and upper bounds (8.37). (Note
for given Gexp the RB outputs and associated error bounds are computed
(only once) and stored on the quadrature grid; we can then evaluate the
several requisite integrals without further appeal to the RB approximation.) It
is clear that the RB approach will be much faster than direct FE evaluation (of
the requisite integrals) even for a single identification, and even more efficient
for multiple identifications: in the limit that nquad and/or the number of
identifications tends to infinity, the RB Offline effort is negligible – only the
very fast (N–independent) RB Online evaluations are relevant. Equivalently,
if our emphasis is on real–time identification, again only the very fast RB
Online evaluations are important.

8.3.3 Numerical Example

We consider the application of transient thermal analysis to detection of
flaws/defects in a Fiber-Reinforced Polymer (FRP) composite bonded to a
concrete (C) slab (Grepl 2005; Starnes 2002). Since debonds or delaminations
at the composite-concrete interface often occur (even at installation), effec-
tive and real-time quality control – providing reliable information about the
thickness and fiber content of the composite, and the location and size of
defects – is vital to safety.

We show the FRP-concrete system in Figure 8.1. The FRP layer is of
thickness hFRP and (truncated) lateral extent 10hFRP; the concrete layer is
of (truncated) depth and lateral extent 5hFRP and 10hFRP, respectively. We
presume that a delamination crack of unknown length wdel centered at x1 = 0
is present at the FRP–concrete interface. The FRP thermal conductivity,
specific heat, and density are given by k, c, and ρ with subscripts FRP and
C, respectively. We shall assume that the FRP and concrete share the same
known values for both the density and specific heat. We assume that the
FRP (respectively, concrete) conductivity is unknown (respectively, known);
we denote the (unknown) conductivity ratio as κ = kFRP/kC. (In practice,
the FRP conductivity depends on fiber orientation and content – and hence
somewhat unpredictable.)

We nondimensionalize all lengths by hFRP/2 and all times by
h2

FRPρCcC/4kC . The nondimensional temperature u is given by (T − T0)/
(TFRP,max − T0), where T is the dimensional temperature, T0 is the initial
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Figure 8.1 Delamination of a FRP layer bonded to a concrete slab.

temperature (uniform in both the FRP and concrete), and TFRP,max is the
maximum allowable FRP temperature. The nondimensional flux – imposed
at the FRP exposed surface, as shown in Figure 8.1 – g(t) is given by
q(t)hFRP/(2kC(TFRP,max − T0)), where q(t) is the dimensional flux. We
presume that the nondimensional surface heat flux g(t) – the stimulus – is
unity for 0 ≤ t ≤ 5 and zero for all t > 5. Henceforth, we refer only to
non-dimensional quantities (and thus now wdel should be re-interpreted as
the dimensional quantity normalized by hFRP/2.)

Upon application of our mapping procedures (to a reference domain with
crack length wdel = 3) as in Rozza et al. (2008) we arrive at the transformed
problem statement (1) with affine expansions (2) for Qa = 15, Qm = 2. (In
fact, due to symmetry, we consider only half the domain: x1 > 0.) Our initial
condition is u = 0; we integrate to a final time tf = 10.0. Our P = 2 (both
‘unknown’) parameters are μ ≡ (μ1, μ2) ≡ (wdel/2, κ) assumed to reside in
the parameter domain D ≡ [1, 5] × [0.5, 2]. Finally, we introduce our truth
discretization: we consider Euler backward discretization in time with Δt =
0.05 and hence K = 200 time levels tk = kΔt, 0 ≤ k ≤ K; we consider a linear
truth finite element approximation space XN of dimension N = 3581. (The
triangulation provides high resolution in the vicinity of the surface and near
the crack tip, the two regions which suffer sharp spatial gradients.) Finally,
we consider Mout = 2 outputs: as shown in Figure 8.1, each output functional
corresponds to the average of the (temperature) field5 over a ‘small’ square
of side – length 1 (flush with the exposed FRP surface); the square for the
first output is centered at (measurement site 1) x1 = 0, while the square for
the second output is centered at (measurement site 2) x1 = 6.5.

5Note that we must consider a small area average (rather than pointwise measure-
ment) to ensure that our output functionals remain bounded over L2(Ω) (indeed, even over
H1(Ω)); the L2(Ω) norm of these ‘area averaging’ functionals increases as the inverse of
the square root of the area.
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We first briefly discuss the RB approximation and error bounds, and
then turn to the inverse problem. This PDE is not too difficult: we need an
RB space of dimension only N = 50 to ensure – based on Δs (m)

N (tk, μ), m =
1, 2 – a ‘certified’ accuracy of roughly 0.5% in both outputs. In fact, the
effectivity – the ratio of the output error bound to the true output error – is
rather large, O(100), and hence the actual accuracy for N = 50 is less than
10−4; however, since in the Online stage our inferences are based on the
(inexpensive) error bound, we must construct an RB approximation for which
the error bound is sufficiently accurate. For N = 50 the Online RB calcula-
tion μ → s

(m)
N (tk; μ), Δs (m)

N (tk; μ), 0 ≤ k ≤ K, is effected in 0.21 seconds; in
contrast, direct truth evaluation requires 22 seconds. All computations in this
section are carried out on a 1.73 GHz Pentium IV processor with 1GB memory.

We now turn to parameter estimation. We focus on the sensitivity of the
parameter estimation procedure to the RB dimension N as (inexpensively but
rigorously) quantified by our expectation error bounds. In this experiment,
we set μ� = (μ1�, μ2�) = (wdel�, κ�) = (2.8, 0.9) and σ2

exp = 0.0025; we choose
for the prior mean and variance μ0 = (3.3, 1.2) and σ2

0 = 0.04, respectively.
The synthetic experimental data (8.30) is generated by adding i.i.d. Gaussian
random variables to our Mout = 2 outputs evaluated at J = 20 time levels
tk

exp
j , kexp

j = 10j, 1 ≤ j ≤ J . We then apply our adaptive piecewise Gauss-
Legendre quadrature algorithm with nquad = 10, 000 points.

We present in Table 8.1 the lower bound, ELB
N [μp�], upper bound, EUB

N [μp�],
and bound gap ΔEN [μp�], p = 1, 2, for the expected value of the unknown
parameter μ�; we consider a single realization Gexp. We observe that the
bound gaps ΔEN [μp�] = EUB

N [μp�] − ELB
N [μp�], p = 1, 2, decrease rapidly: as N

increases, Δs (m)
N (tk; μ) → 0 and hence DN (μ) → BN (μ) rapidly. The parame-

ter estimator is quite accurate: the expectation bounds for larger N are within
the white noise (5.0 %) of the true parameter value μ� = (2.8, 0.9), biased
toward μ0 as expected. The RB Online computation (for N = 50) of the
lower and upper bounds for the expected value is completed in approximately

Table 8.1 Lower bound, upper bound, and bound gap for the expected
value of the delamination half-width μ1 and conductivity ratio μ2 as a
function of N . The true parameter value is μ1� = 2.8 and μ2� = 0.9.

Delamination half-width Conductivity ratio

N ELB
N [μ1�] EUB

N [μ1�] ΔEN [μ1�] ELB
N [μ2�] EUB

N [μ2�] ΔEN [μ2�]

10 1.0527 7.5175 6.4648 0.3427 2.4468 2.1041
20 2.3896 3.3120 0.9224 0.7764 1.0759 0.2996
30 2.7417 2.8836 0.1419 0.8917 0.9378 0.0461
40 2.8008 2.8236 0.0228 0.9111 0.9185 0.0074
50 2.8096 2.8192 0.0096 0.9136 0.9171 0.0035
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35 minutes – arguably ‘real-time’ for this particular application – as opposed
to 61 hours for direct FE evaluation. The RB Offline time is roughly 2.8 hours,
and hence even for one identification the RB approach ‘pays off’; for several
identifications, the RB Offline effort will be negligible. (If real-time response
‘in the field’ is imperative, then even for one identification the RB Offline
effort is not important.) In short, we are guaranteed the fidelity of the truth
FE approximation but at the cost of a low order model.

8.4 Concluding Remarks

In this chapter we have developed a framework for reduced basis approxima-
tion and a posteriori error estimation for parametrized linear parabolic partial
differential equations. We have argued, and computationally confirmed, that
the reduced basis approach can provide highly accurate, very inexpensive, rig-
orously certified predictions in the real–time and many–query contexts. We
have further demonstrated that the certified reduced basis method can be inte-
grated into a Bayesian framework to provide very rapid yet reliable parameter
estimation procedures; similar advances should be possible for optimization
and control applications as well as multi-scale analyses.

Certainly the most important outstanding issue (at least within the con-
text of parabolic partial differential equations) is generality: given an ‘original’
problem of interest (i) is there an effective parametrization such that the
resulting ‘transformed’ problem is amenable to efficient and rigorous reduced
basis treatment, and (ii) can this effective parametrization be automati-
cally deduced and subsequently implemented within a general framework? At
present we know of large classes of linear problems and much smaller classes
of nonlinear problems (Nguyen et al. 2009) which can be and have been suc-
cessfully addressed by the certified reduced basis approach; future work must
focus both on theoretical advances to identify important impediments and
computational advances to address these restrictions.
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