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SUMMARY

For general non-linear parametrized partial differential equations (PDEs), the standard Galerkin projection
is no longer efficient to generate reduced-order models. This is because the evaluation of the integrals
involving the non-linear terms has a high computational complexity and cannot be pre-computed. This
situation also occurs for linear equations when the parametric dependence is nonaffine. In this paper,
we propose an efficient approach to generate reduced-order models for large-scale systems derived from
PDEs, which may involve non-linear terms and nonaffine parametric dependence. The main idea is to
replace the non-linear and nonaffine terms with a coefficient-function approximation consisting of a linear
combination of pre-computed basis functions with parameter-dependent coefficients. The coefficients
are determined efficiently by an inexpensive and stable interpolation at some pre-computed points. The
efficiency and accuracy of this method are demonstrated on several test cases, which show significant
computational savings relative to the standard Galerkin projection reduced-order approach. Copyright q
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many systems/processes in engineering and science are described by parametrized partial differ-
ential equations (PDEs). Typically, the quantities of engineering interests are not the full field
variables, but rather certain outputs, best articulated as functionals of the field variables. Typical
outputs include flow rate, pressure drops, concentration and flux, critical stresses or maximum
displacements, and lift and drag forces. These outputs are functions of system parameters, or
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28 N. C. NGUYEN AND J. PERAIRE

inputs, that serve to identify a particular configuration of the system—geometry, material proper-
ties, initial and boundary conditions, and loads. The relevant system behavior is thus described by
an implicit input–output relationship, evaluation of which demands solution of the underlying PDE.
The design, optimization, control, and characterization of engineering systems require repeated
and real-time output prediction.

Our goal is to develop an efficient reduced-order modeling approach for the rapid prediction
of functional outputs associated with parametrized PDEs. Our approach is based on past and
recent developments of the reduced-basis approaches (RBAs) [1–7] and reduced-order modeling
techniques [8–14]. The fundamental observation is that the field variable is not an arbitrary member
of the infinite-dimensional solution space associated with the underlying PDE; rather, it resides on
a much lower-dimensional manifold induced by the parametric dependence. Low-order methods
explicitly recognize and exploit this observation to develop reduced-order modeling of parametrized
PDEs, often at a reduction of several orders of magnitude in the degrees of freedom compared
with the classical models generated by finite element (FE), finite volume (FV), or finite difference
(FD) methods.

In particular, the reduced-basis method has been successfully developed for (a) parametrized
linear elliptic and parabolic PDEs that are affine‡ in the parameter [7, 15–19] and (b) non-linear
PDEs that are at most quadratically non-linear in the field variable [20–22]. In these cases, a very
efficient reduced-basis approximation can be developed by exploiting the affine decomposition of
the parametrized differential operator and resolving non-linear terms into the sum of products of the
basis functions and coefficients; in such cases, the reduced-basis method offers significant—several
orders of magnitude—computational savings relative to classical solution methods. However, while
the assumptions of affine parameter dependence and quadratic non-linearity are crucial to computa-
tional efficiency, they restrict the application of the reduced-basis method to some specific domains.
For example, problems involving nonaffine parameter dependence and highly non-linear terms
do not fall into categories (a) and (b). Hence, when applied to such problems, the traditional
reduced-basis method no longer provides efficiency to compete with classical solution methods.

The proper orthogonal decomposition (POD)-Galerkin approach has been widely used to produce
reduced-order modeling of time-dependent PDEs. Nevertheless, its success and thus applications
remain very much limited to linear and quadratically non-linear problems such as linearized
Euler and parabolic equations [12, 13, 23], Burgers equation [10, 24], and incompressible Navier–
Stokes equations [11, 25, 26]. Other model reduction techniques have also been developed for
non-linear time-dependent problems. In particular, linearization methods [27–29] and polynomial
approximation methods [30, 31] have been proposed to treat certain (weakly) non-linear problems
quite satisfactorily. However, inefficient representation of the non-linear terms and fast growth
of the computational complexity in the presence of strong non-linearity render these methods
impractical for more general applications.

The classes of parametrized PDEs we consider here include (i) linear elliptic equations with
nonaffine parameter dependence, (ii) non-linear elliptic equations, and (iii) non-linear time-
dependent convection–diffusion equations. For such classes of PDEs, the reduced-order modeling
provided by the standard Galerkin projection is no longer efficient. This is because the evaluation
of the integrals involving the nonaffine and non-linear terms has a high computational complexity
and cannot be pre-computed. To recover efficiency, we replace the nonaffine and non-linear terms

‡‘Affine parameter dependence’ means that the parametrized differential operator can be expressed as a sum of
products of parameter-dependent functions and parameter-independent operators [7, 15–17].
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with a coefficient-function approximation consisting of a linear combination of pre-computed basis
functions and parameter-dependent coefficients. The coefficients are determined very efficiently
by an inexpensive and stable interpolation at some pre-computed points. This allows us to apply
an offline/online computational decomposition [7, 17, 21] for the generation and simulation of the
reduced-order model. Unlike the standard Galerkin reduced-order approach (ROA), our method
has a low computational complexity for the (online) evaluation of the integrals associated with the
nonaffine and non-linear terms. The method can thus effect considerable computational economies
relative to both the standard Galerkin ROA and classical solution methods.

Our work is in some aspects related to a new RBA, first introduced in [32] for linear elliptic
problems with nonaffine parameter dependence and recently extended more broadly to non-linear
elliptic and parabolic problems [33]. In particular, both the present approach and the approach
discussed in the previous work [32, 33] deal with non-linearities by developing a coefficient-
function approximation for the non-linear terms. The formulation and analysis of the resulting
reduced model is thus similar for the two approaches. Although our paper here and [32, 33] address
common issues in reduced-order modeling of non-linear problems, our method differs from these
earlier efforts in two important aspects. First, rather than a greedy basis construction approach, we
employ the POD approach to construct our low-dimensional approximation spaces. The POD basis
provides the optimal representation of the given snapshot set in the mean square error sense and
works well for time-dependent problems. Second, rather than the empirical interpolation method
(EIM) [32, 33], we use the so-called best points interpolation method (BPIM) first introduced in
[34] to develop coefficient-function expansions for the nonaffine and non-linear terms. Compared
with the EIM, the BPIM is more expensive in the construction of interpolation points and basis
functions, but provides approximations with higher accuracy than the EIM. As a result, with the
BPIM we can use a smaller number of basis functions to achieve the same accuracy, which in turn
leads to a more economical reduced-order model than with the EIM.

This paper is organized as follows. In Section 2, we present a short review of the BPIM.
In subsequent sections, we introduce the abstract formulation and develop the reduced-order
approximation for linear elliptic problems in Section 3, non-linear elliptic problems in Section 4,
and non-linear time-dependent convection–diffusion problems in Section 5. Numerical examples
are presented in each section in order to assess the efficiency and accuracy of our approach. Finally,
in Section 6, we present concluding remarks.

2. BEST POINTS INTERPOLATION METHOD

In this section, we briefly describe the BPIM to construct a ‘coefficient-function’ approximation
of parametrized functions. The approximation of such a class of functions is important for the
effective reduced-order treatment of nonaffine and non-linear PDEs. We also refer the reader
to [32, 33, 35] for an alternative approach—the EIM—in approximating parametrized fields. In
addition to their use in non-linear model reduction, these methods can be applied in a variety
of applications, for example, image or data compression involving domains of irregular profile,
fast rendering and visualization in animation, the development of computer simulation surrogates
or experimental response surface for design and optimization, and the determination of a good
numerical integration scheme for smooth functions on irregular domains. See [34] for application
of the BPIM to face recognition and optimal sensor placement for field reconstruction and [35]
for application of the EIM to polynomial interpolation and numerical integration.
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30 N. C. NGUYEN AND J. PERAIRE

2.1. Coefficient-function procedure

We consider the problem of approximating a given l-dependent function x→g(x;l)∈L∞(�)∩
C0(�), for all l∈D, by a coefficient-function expansion gM (x;l); here x=(x1, . . . , xd) is a
point of the physical domain �∈Rd , and D∈RP is the parameter space in which our P-tuple
parameter vector l=(�1, . . . ,�P) resides. Toward this end, we assume that we are given an
approximation space spanned by M orthonormal basis functions, �M =span{�1, . . . ,�M }, with
(�i ,� j )=�i j ,1�i, j�M ; here � is the Kronecker symbol and (·, ·) denotes the L2(�) inner
product with an induced norm ‖·‖=√

(·, ·). We further assume that we are given an associated
set of M interpolation points {zm ∈�}Mm=1.

Next, we define our coefficient-function approximation as

gM (x;l)=
M∑

m=1
�Mm(l)�m(x) (1)

where the coefficient vector bM (l) is the solution of

M∑
m=1

�m(zi )�Mm(l)=g(zi ;l), i=1, . . . ,M (2)

We observe from (1)–(2) that gM (x;l) and g(x;l) are equal at the interpolation points {zm}Mm=1.
Further note that we can express gM (x;l) in terms of the cardinal functions (Lagrange inter-

polation functions) as

gM (x;l)=
M∑

m=1
g(zm;l)�m(x) (3)

Here, the cardinal functions {�m}Mm=1 are defined by � j (zi )=�i j and hence are given by

�i (x)=
M∑
j=1

�i (z j )� j (x), 1�i�M (4)

We point out that {�m}Mm=1 depends on both {�m}Mm=1 and {zm}Mm=1.
The approximation quality depends critically on both the basis set {�m}Mm=1 and the point set

{zm}Mm=1. In this paper, we use the POD method [36–38] to compute {�m}Mm=1 from a suitably
fine set of snapshots

S
g
K ≡{�gk (x)=g(x;lgk ), lgk ∈ SgK ,1�k�K } (5)

where SgK ={lg1, . . . ,lgK } is a selected parameter sample set. Details of the POD procedure are
given in Appendix A for reference. Once we have the basis set {�m}Mm=1, we can determine the
point set {zm}Mm=1 as follows.

2.2. Interpolation points

We first introduce the best approximations of the elements in the snapshot set as

g∗
M (·;lgk )=arg min

wM∈�M

‖g(·;lgk )−wM‖, 1�k�K (6)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:27–55
DOI: 10.1002/nme



REDUCED-ORDER MODELING FOR PARAMETRIZED NON-LINEAR PDES 31

It is easily derived from the orthonormality of the �m that

g∗
M (x;lgk )=

M∑
m=1

�Mm(lgk )�m(x), 1�k�K (7)

where the coefficients are given by

�Mm(lgk )=(�m,g(·;lgk )), m=1, . . . ,M, 1�k�K (8)

We now define our interpolation points {zm}Mm=1 as a minimizer of the following minimization
problem:

min
x1∈�,...,xM∈�

K∑
k=1

∥∥∥∥g∗
M (·;lgk )−

M∑
m=1

�Mm(x1, . . . ,xM ;lgk )�m

∥∥∥∥
2

M∑
n=1

�n(xm)�Mn(x1, . . . ,xM ;lgk )=g(xm;lgk ), 1�m�M, 1�k�K (9)

Substituting (8) into (9) and invoking orthonormality of {�m}Mm=1, we obtain

min
x1∈�,...,xM∈�

K∑
k=1

M∑
m=1

(�Mm(lgk )−�Mm(x1, . . . ,xM ;lgk ))2

M∑
n=1

�n(xm)�Mn(x1, . . . ,xM ;lgk )=g(xm;lgk ), 1�m�M, 1�k�K (10)

In words, {zm}Mm=1 is determined so as to minimize the average error between the interpolants
gM (·;lgk ) and the best approximations g∗

M (·;lgk ). For this reason, the points {zm}Mm=1 shall be
referred as ‘best points’.§

2.3. Solution procedure

We now find a solution to the least-squares minimization problem (10) using the Levenberg–
Marquardt (LM) algorithm [39]. Let s=(x1, . . . ,xM ); we write the objective in (10) as

F(s)= 1

2

Q∑
q=1

r2q (s) (11)

where rq(s),1�q�Q=KM, are given by

rq(s)=�Nm(lgk )−�Nm(s;lgk ), 1�k�K , 1�m�M (12)

§Although BPIM and EIM address the same problem, the two approaches differ significantly in several ways. The
EIM [35] constructs the basis set and the interpolation point set through an inductive interpolation procedure, which
chooses the Lagrange basis functions at the parameter points where the L∞ error attains maximum value and the
interpolation points at the spatial coordinates where the error function attains its largest absolute magnitude. Further
details of the BPIM and its relation to the EIM can be found in [34].
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32 N. C. NGUYEN AND J. PERAIRE

The gradient and Hessian of the objective function F(s) can thus be computed as

∇F(s) =
Q∑

q=1
rq(s)∇rq(s)=(J(s))Tr(s) (13)

∇2F(s) = (J(s))TJ(s)+
Q∑

q=1
rq(s)∇2rq(s) (14)

where for 1�q�Q, 1�m�M ,

Jqm(s)= �rq(s)
�xm

= ��Mm(s;lgk )
�xm

(15)

Hence, when the residuals rq(s) are small, we may approximately compute the Hessian in terms
of only the Jacobian matrix J(s) as

∇2F(s)≈(J(s))TJ(s) (16)

The Jacobian matrix J(s) is computed by differentiating both sides of constraint (10) with respect
to s. Finally, the interpolation points zm,1�m�M, are determined by solving problem (10). For
the examples presented in this paper, the optimal solution is typically reached in less than 15
iterations of the LM algorithm.

3. NONAFFINE LINEAR ELLIPTIC EQUATIONS

In this section, we develop the reduced-order approximation of linear elliptic equations with
nonaffine parameter dependence. The basic idea is to replace the nonaffine terms with the
coefficient-function expansions constructed using the BPIM. A model problem involving geometric
variation is provided to demonstrate the application of our ROA to shape optimization problems.
Note that we can also develop the a posteriori error estimation for the reduced-order model
discussed in this section. However, since such extension goes beyond the content of this paper, we
refer the reader to [32] for a detailed discussion.

3.1. Abstract problem formulation

We consider a suitably regular domain �⊂Rd , d=2, with spatial coordinate x. We define
the Hilbert spaces X ≡H1

0 (�)—or, more generally, H1
0 (�)⊂ X ⊂H1(�)—where H1(�)={v|v∈

L2(�),∇v∈(L2(�))d} and H1
0 (�)={v|v∈H1(�),v|�� =0}. We also recall the parameter domain

D⊂RP and parameter vector l=(�1, . . . ,�P) introduced in the previous section.
The abstract formulation for a l-parametrized linear elliptic PDE can be stated as follows: given

any l∈D⊂RP , we find

s(l)=�O(u(l);l) (17)

where u(l)∈ X (�) is the solution to

a(u(l),v;l)=�(v;l) ∀v∈ X (�) (18)
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REDUCED-ORDER MODELING FOR PARAMETRIZED NON-LINEAR PDES 33

Here, �O(·;l),�(·;l) are continuous functionals, and a(·, ·;l) is a continuous bounded bilinear
form. In addition, we make certain assumptions on the parametric dependence of a, �, and �O . In
particular, we suppose that, for some finite Q, a may be expressed as

a(w,v;l)=
Q∑

q=1
aq(w,v,gq(·;l)) (19)

and � and �0 are given by

�(v;l) = b(v,h(·;l)) (20)

�O(v;l) = c(v,hO(·;l)) (21)

Here aq : X×X×L∞(�)→R,1�q�Q, are continuous l-dependent trilinear forms; b: X×
L∞(�)→R and c: X×L∞(�)→R are continuous l-dependent bilinear forms; and h(x;l),
hO(x;l), gq(x;l)∈L∞(�)∩C0(�):�×D→R,1�q�Q, are known functions. We note that a
defined above is nonaffine in the parameter because the operators aq depend on gq(x;l)—general
functions of spatial coordinate x and parameter vector l.

In practice, the exact solution u(l) is often not available; we thus replace u(l) with a ‘truth’
approximation, uh(l), which resides in (say) a suitably fine piecewise-linear FE approximation
space Xh ⊂ X of very large dimension N. The FE discretization of (17)–(18) is thus: given any
l∈D, we evaluate

sh(l)=�O(uh(l);l) (22)

where uh(l)∈ Xh satisfies

a(uh(l),v;l)=�(v;l) ∀v∈ Xh (23)

We shall assume that the discretization is sufficiently rich such that uh(l) and u(l) and hence sh(l)
and s(l) are indistinguishable at the accuracy level of interest. Unfortunately, the computational
cost associated with this FE approximation will depend on some power of N. As a result, the
evaluation l→sh(l) is simply too costly in the many-query and real-time contexts often of interest
in engineering.

In what follows, we develop a reduced-order approximation of problem (17)–(18) for the rapid
prediction of the output of interest. The reduced-order approximation shall be built upon the FE
approximation, and the reduced-order error will thus be evaluated with respect to sh(l).

3.2. Reduced-order approximation

We follow the formulation outlined in [33] to derive the discrete reduced system. To begin, we
introduce a parameter sample SuK ={lu1 ∈D, . . . ,luK ∈D} and an associated set of snapshots Su

K ≡
{�uk =uh(luk ),1�k�K }, where uh(luk ) is a solution to (23) for l=luk . Upon the snapshot set Su

K ,
we apply the POD procedure (see in Appendix A) to construct N (�K ) basis functions {�n}Nn=1
and define an associated approximation space WN =span{�1, . . . ,�N }. (We note that the greedy
sampling algorithm based on the L∞ norm is used in [33] to compute the Lagrange reduced-basis
spaces. In [40], it has been numerically verified that the POD reduced basis yields smaller error
in the L2 norm, but larger error in the L∞ norm with a very small difference. This discrepancy is
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34 N. C. NGUYEN AND J. PERAIRE

likely due to the fact that the POD provides basis functions optimal in the L2 norm, whereas the
greedy approach provides optimal basis functions in the stronger L∞ norm.)

Were we to follow the standard Galerkin ROA, we would obtain an approximation uSGN (l)∈WN
that satisfies

Q∑
q=1

aq(uSGN (l),v,gq(·;l))=b(v,h(·;l)) ∀v∈WN (24)

Expressing uSGN (l)=∑N
j=1 u

SG
N j (l)� j and choosing v=�i , 1�i�N , we arrive at

ASG
N (l)uSGN (l)=LSG

N (l) (25)

where ASG
N (l)∈RN×N and LSG

N (l)∈RN are given by

ASG
Ni j (l) =

Q∑
q=1

aq(� j ,�i ,g
q(·;l)), 1�i, j�N

LSG
Ni (l) = b(�i ,h(·;l)), 1�i�N

(26)

The output of interest would then be evaluated as

sSGN (l)=
N∑
j=1

uSGN j (l)c(� j ,h
O(·;l)) (27)

We note that since N 
N the (full) linear system (25) of size N×N is very small compared
with the (sparse) N×N linear system associated with the FE discretization (23). The standard
Galerkin ROA can thus effect a significant reduction in the degrees of freedom. Unfortunately, for
any given parameter l, the cost of assembling the stiffness matrix ASG

N (l) depends on N because
of the presence of the nonaffine functions gq(x,l),1�q�Q, in the trilinear forms aq ,1�q�Q.
Similarly, the cost of assembling LSG

N i (l) and evaluating the output sSGN (l) also scales with N.
Consequently, although having much less degrees of freedom, the standard Galerkin reduced-order
model may not offer significant computational savings relative to the FE approximation using
advanced iterative methods.

To obtain an efficient reduced-order approximation, we first employ the BPIM to construct the

point sets {zg1m }Mg1

m=1, . . . , {zg
Q

m }MgQ

m=1 , {zhm}Mh

m=1, {zhOm }MhO

m=1 and basis sets {�g1
m }Mg1

m=1, . . . , {�gQ
m }MgQ

m=1 ,

{�h
m}Mh

m=1, {�hO
m }MhO

m=1 for gq(x;l),1�q�Q, h(x;l), and hO(x;l) respectively, as described in

Section 2. For notational simplification, we presume that Mg1 =·· ·=MgQ =Mh =MhO =M . We
next replace gq(x,l),1�q�Q, h(x;l), and hO(x;l) with our coefficient-function expansions
gqM (x,l), 1�q�Q, hM (x;l), and hOM (x;l), respectively. Our reduced-order approximation is
thus: for any given l∈D, we evaluate

sN ,M (l)=c(uN ,M (l),hOM (·;l)) (28)

where uN ,M (l)∈WN satisfies

Q∑
q=1

aq(uN ,M (l),v,gqM (·;l))=b(v,hM (·;l)) ∀v∈WN (29)
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In order to derive the discrete equations for this reduced-order approximation, we write

uN ,M (l) =
N∑

n=1
uN ,Mj (l)� j

gqM (·,l) =
M∑

m=1
g(zg

q

m ;l)�gq
m , 1�q�Q

hM (·,l) =
M∑

m=1
h(zhm;l)�h

m

hOM (·,l) =
M∑

m=1
hO(zh

O

m ;l)�hO
m

(30)

Substituting these representations into (29) and (28) and choosing v=�i ,1�i�N , we obtain

N∑
j=1

(
Q∑

q=1

M∑
m=1

gq(zg
q

m ;l)aq(� j ,�i ,�
gq
m )

)
uN ,Mj (l)=

M∑
m=1

h(zhm;l)b(�i ,�h
m), 1�i�N (31)

and

sN ,M (l)=
M∑

m=1

N∑
j=1

hO(zh
O

m ;l)uN ,Mj (l)c(� j ,�
hO
m ) (32)

Equivalently, we arrive at the linear system of N equations for the coefficient vector uN ,M (l)

AN (l)uN ,M (l)=LN (l) (33)

and then calculate

sN ,M (l)=(LO
N (l))TuN ,M (l) (34)

where

AN (l) =
Q∑

q=1

M∑
m=1

gq(zg
q

m ;l)Aqm
N

LN (l) =
M∑

m=1
h(zhm,l)Lm

N (35)

LO
N (l) =

M∑
m=1

hO(zh
O

m ,l)LOm
N

Here Aqm
N ∈RN×N ,1�q�Q,1�m�M , and Lm

N ,LOm
N ∈RN ,1�m�M, are given by

Aqm
Ni j = aq(�i ,� j ,�

gq
m ), 1�i, j�N

Lm
Ni = b(�i ,�

h
m), 1�i�N

LOm
Ni = c(�i ,�

hO
m ), 1�i�N

(36)
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Figure 1. Offline construction algorithm.

Figure 2. Online evaluation algorithm.

The matrices and vectors in the above equation do not depend on the parameter vector l and can
therefore be pre-computed offline. The remaining operations required to form (33)–(35) can be
performed online.

We summarize the computational process in Figure 1 for the offline stage and in Figure 2 for
the online stage. The offline construction of our reduced-order model is of course computationally
intensive, but it is done only one time. However, in the online stage, we can compute sN ,M (l)
with a total cost of O(N 3+QMN 2) operations for any given new parameter vector l.

Hence, as required in the many-query or real-time contexts, the online complexity is independent
of N—the dimension of the FE approximation space. Since N ,M,Q
N, we expect significant
computational savings in the online stage relative to the FE approximation (23) and relative to the
standard Galerkin reduced-order model built upon (24).

3.3. Example 1: a problem of geometric variation

We consider the Poisson equation with homogeneous Dirichlet condition solved on a parametrized
domain �̂(l),

−∇2� = 1 in �̂(l)

� = 0 on ��̂

The parameter vector is given by l=(�1,�2)≡(R,	)∈D≡[1,10]×[1,10], where R and 	 control
the size and shape of the domain as shown in Figure 3; the inner and outer boundaries of the
cross-section are described by the closed curves |x̂1|	+|x̂2|	 =1 and |x̂1|	+|x̂2|	 =(R+1)	,
respectively. Finally, the output of interest is the integral of � over �̂. Although simple enough,
this example serves to demonstrate the usefulness of our ROA for shape optimization problems.
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Figure 3. The cross-section �̂ varies with geometric parameters R and 	. The ‘cut’ domain �o is formed
by the dashed lines and the boundary of the cross-section.

(a) (b)

Figure 4. The computational domains: (a) reference domain � and (b) original cut domain �o.

Owing to geometric symmetry, the problem can be reformulated as −∇2uo=1 in �o(l) with
homogeneous Neumann condition on �o

N≡�o
1∪�o

3 and homogeneous Dirichlet condition on �o
D≡

�o
2∪�o

4; here �o(l) is a ‘cut’ domain as shown in Figure 4(b). Hence, uo(l)∈ Xo, Xo≡{v∈
H1(�o(l))|v|�o

D
=0}, is the solution to

∫
�o(l)

∇uo(l) ·∇v d�o=
∫

�o(l)
v d�o ∀v∈H1(�o(l)) (37)

The output of interest is then so(l)=8
∫
�o(l) u

o(l)d�o.
We treat geometric variation in an indirect way by transforming Equation (37) on �o(l) to a

new equation on a ‘fixed’ reference domain �≡]0,1[×]0,1[ shown in Figure 4(a). To do this,
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we establish a one-to-one mapping between � and �o(l). The geometric mapping F from x=
(x1, x2)∈� to xo=(x1o , x

2
o)∈�o(l) is given by

x1o = (x1)((x2)R+1)

(1+(x1)	)1/	
, x2o = (x2)R+1

(1+(x1)	)1/	
(38)

Our exact solution on the original domain, uo(l), can then be expressed in terms of the solution
on the mapped domain, u(l), as uo(xo;l)=u(F−1(xo);l). The solution on the mapped domain
satisfies a weak formulation of the form (18) in which the trilinear forms, bilinear forms, and
nonaffine functions are given by

a1(w,v,g1(x;l)) =
∫

�
g1(x;l) �w

�x1
�v

�x1
d�

a2(w,v,g2(x;l)) =
∫

�
g2(x;l) �w

�x2
�v

�x2
d�

a3(w,v,g3(x;l)) =
∫

�
g3(x;l)

(
�w

�x1
�v

�x2
+ �w

�x2
�v

�x1

)
d�

b(v,h(x;l)) =
∫

�
h(x;l)v d�

c(v,hO(x;l)) =
∫

�
hO(x;l)v d�

g1(x;l) = R(1+(x1)2)

R(x2)+1

g2(x;l) = R(x1)2	−2(x2)+R(x2)+(x1)2	−2+1

R((x1)	+1)2

g3(x;l) = (x1)	−1−(x1)

(x1)	+1

h(x;l) = R(1+(x1)	)−2/	(R(x2)+1)

hO(x;l) = R(1+(x1)	)−2/	(R(x2)+1)

Here X ≡{v∈H1(�)|v|�1∪�3
=0}. The output is evaluated as s(l)=�O(u(l);l); note for this

example that �O =� and hO(x;l)=h(x;l).
The computational domain is discretized uniformly into piecewise-linear resulting in an FE

approximation space Xh ∈ X of dimension N=10000. We present in Figure 5 the computed
solutions for different parameter values. As regards the offline construction, we choose for SgK a

regular grid of 15×15 points over D and construct {�h
m}Mmax

m=1 , {zhm}Mmax
m=1 , and {�gq

m }Mmax
m=1 , {zg

q

m }Mmax
m=1 ,

1�q�Q, for Mmax=12; we then take Su
K =S

g
K and compute the associated snapshot set Su

K

upon which the basis set {�n}Nmax
n=1 is constructed for Nmax=30. We plot in Figure 6 the point sets

corresponding to g2(x;l) and h(x;l) for M=Mmax. We see that most interpolation points are
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(a) (b) (c)

Figure 5. The FE solutions on the physical domain �̂ for: (a) l=(1,1), (b) l=(1,2), and (c) l=(1,10).
Note how the geometry and solution change as �2 increases.

Figure 6. Distribution of the interpolation points on the reference domain � for g2(x;l) and h(x;l).

distributed along the x2=0.6 and x2=0 lines. Since these functions are linear in x2, only two
points suffice to capture their behavior in the x2 direction.

We now present results obtained with our ROA. For this purpose, we choose a test sample �Test
as a regular 20×20 grid over D and define the average relative error norm as


uave,rel=meanl∈�Test

‖uh(l)−uN ,M (l)‖
‖uh(l)‖

Figure 7 shows 
uave,rel as a function of N and M . We observe very rapid convergence of uN ,M (l)
to uh(l). The quality of the reduced-order approximation depends on N and M in a strongly
coupled manner: for a fixed value of M the error initially decreases with increasing N and then
levels off for N large enough; when the error does not improve with increasing N , increasing
M tends to reduce the error. This behavior of the error is expected because the accuracy of our
reduced-order approximation is limited by the coefficient-function approximation error which is
decreased with increasing M . It basically suggests that optimal combinations of N and M are
at the ‘knees’ of the error curves: for example, the combination M=6 and N =12 appears to
be nearly optimal. Furthermore, we note that our coefficient-function approximation can lead to
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Figure 7. Average relative error norm 
uave,rel as a function of N and M for Example 1.

Table I. Numerical results for Example 1: maximum relative error in the output over the test sample �Test
and normalized computational time as a function of N for the ROA (with M=12) and the SGA.

ROA SGA FEA

N M Maximum relative error Online time Maximum relative error Online time Computational time

4 12 4.28E−02 2.34E−04 4.28E−02 1.94E−01 1
8 12 2.14E−02 5.75E−04 2.14E−02 1.95E−01 1
12 12 1.49E−02 9.41E−04 1.49E−02 1.97E−01 1
16 12 5.32E−03 1.23E−03 5.32E−03 2.01E−01 1
20 12 9.76E−04 1.59E−03 9.75E−04 2.04E−01 1

Note: The online times are normalized with respect to the computational time for sh(l).

a very accurate representation of the nonaffine terms and indeed, for this example, M can be
chosen smaller than N without sacrificing the accuracy.

Finally, we compare the results obtained with the proposed ROA to those obtained with the
standard Galerkin reduced-order approach (SGA). In Table I, we present the maximum relative
error in the output over the test sample �Test and computational times as a function of N for
both the ROA (with M=12) and the SGA. Here, the computational times are normalized with
respect to the time required to compute the finite element approximation (FEA) output sh(l) shown
in the last column of Table I. Since the standard Galerkin reduced-order model suffers from an
N-dependent cost of assembling the reduced stiffness matrix and load vector, its computational
advantage relative to the FE approximation is very modest as observed in Table I. In contrast,
our reduced-order approximation achieves significant computational savings relative to the FE
approximation and yields a convergence rate which is very similar to that of the standard Galerkin
reduced-order model. Of course, this comparison is meaningful only if we are in the real-time or
many-query contexts—in which the offline cost can be amortized over many output predictions.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:27–55
DOI: 10.1002/nme



REDUCED-ORDER MODELING FOR PARAMETRIZED NON-LINEAR PDES 41

4. NON-LINEAR ELLIPTIC EQUATIONS

In this section, we illustrate how the proposed approach can be applied to non-linear elliptic
equations. The numerical difficulty is the presence of strong non-linearities in the differential
operator; we shall simply treat non-linear terms as ‘functions’ and construct associated coefficient-
function approximations. We shortly introduce the abstract formulation and describe the reduced-
order approximation; we then discuss numerical results obtained for a model problem. Further
discussion and in particular the development of a posteriori error estimation can be found in [41].
4.1. Abstract problem formulation

We consider the following problem: for any l∈D, find

s(l)=�O(u(l)) (39)

where u(l) satisfies the weak form of the l-parametrized non-linear elliptic PDE

�(l)aL(u(l),v)+
∫

�
g(u(l);l)v d�=�(v) ∀v∈ X (40)

Here g(w;l): X×D→R is a general non-linear function of w∈ X and the parameter vector l;
�:D→R is a l-dependent function; aL : X×X →R is a continuous bounded bilinear functional
and �O ,�: X →R are continuous bounded functionals. Here, for simplicity, we shall assume that
aL and �O ,� are independent of l, although this limitation could be readily removed. Further, we
assume that our abstract problem is well posed in the sense of Hadamard, meaning that its solution
exists, is unique, and depends continuously on the data functional �.

Next, we recall our FE approximation space Xh(⊂ X) of dimension N. Our FE approximation
is then: given l∈D, we find

sh(l)=�O(uh(l)) (41)

where uh(l)∈ Xh is the solution to the discretized weak statement

�(l)aL(uh(l),v)+
∫

�
g(uh(l);l)v d�=�(v) ∀v∈ Xh (42)

We assume that |s(l)−sh(l)| is suitably small and hence that N will typically be very large.

4.2. Reduced-order approximation

We first introduce a sample set SuK ={lu1 ∈D, . . . ,luK ∈D}, associated snapshot set Su
K ={�k =

uh(luk ),1�k�K }, and reduced-basis space WN =span{�n,1�n�N }; here uh(luk ) is the solution of
(42) at l=luk and �n,1�n�N , are the POD basis functions. The standard Galerkin reduced-order
model [7, 15–18] is then obtained by a standard Galerkin projection: given l∈D, we evaluate

sSGN (l)=�O(uSGN (l)) (43)

where uSGN (l)∈WN satisfies

�(l)aL(uSGN (l),v)+
∫

�
g(uSGN (l);l)v d�=�(v) ∀v∈WN (44)
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Unfortunately, the presence of strong non-linearity in g does not allow for the efficient offline–
online procedure outlined in Section 3.2. As a result, although the dimension of system (44) is
small, solving it is actually expensive: the evaluation of the integral

∫
� g(uSGN (l);l)v d� will scale

as some power of N. Therefore, it is somewhat disingenuous to interpret (44) as a reduced-order
model.

We seek to develop a reduced-order approximation with an online evaluation cost independent
of N. Towards this goal, we compute a set of snapshots

S
g
K ≡{�gk =g(uh(l

u
k );l),1�k�K }

(Recall that the uh(lk) were already computed for all luk ∈ SuK .) We then construct {zgm}Mm=1 and
{�g

m}Mm=1 by following the procedures described in Section 2. Then, for any given w∈ Xh , we

approximate g(w;l) by gw
M =∑M

m=1 g(w(zgm);l)�g
m .

We may now replace g(uSGN (l);l)—as required in our reduced-basis projection for uSGN (l)—
with g

uN ,M
M (x;l). Our reduced-basis approximation is thus: given l∈D, we evaluate

sN ,M (l)=�O(uN ,M (l)) (45)

where uN ,M (l)∈WN satisfies

�(l)aL(uN ,M (l),v)+
∫

�
g
uN ,M
M (x;l)v=�(v) ∀v∈WN (46)

We expand our reduced-order approximation and coefficient-function approximation as

uN ,M (l) =
N∑
j=1

uN ,Mj (l)� j

g
uN ,M
M (x;l) =

M∑
m=1

g(uN ,M (zgm);l)�g
m =

M∑
m=1

g

(
N∑
j=1

uN ,Mj (l)� j (z
g
m);l

)
�g
m

Substituting these representations into (46) yields

�(l)ANuN ,M (l)+CN ,Mg
(
DM,NuN ,M (l);l)=LN (47)

where AN ∈RN×N ,CN ,M ∈RN×M ,DM,N ∈RM×N ,LN ∈RN , and LO
N ∈RN are given by

ANi j = aL(� j ,�i ), 1�i, j�N

CN ,Mim =
∫

�
�g
m�i , 1�i�N , 1�m�M

DM,Nmj = � j (z
g
m), 1�m�M, 1� j�N

LNi = �(�i ), 1�i�N

LO
Ni = �O(�i ), 1�i�N

(48)

These reduced-order matrices and vectors are parameter independent.
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To solve (47) for uN ,M (l), we may apply a Newton iterative scheme: given a current iterate
ūN ,M (l) we must find an increment duN ,M (l) such that

(�(l)AN +ĒN (l))duN ,M (l)=LN −�(l)AN ūN ,M (l)−CN ,Mg(DM,N ūN ,M (l);l) (49)

Here, ĒN (l)∈RN×N must be calculated at every Newton iteration as

ĒNi j (l)=
M∑

m=1
CN ,Mimg1

(
N∑

n=1
DM,NmnūN ,Mn(l);l

)
DM,Nmj , 1�i, j�N (50)

where g1(w;l) is the first derivative of g with respect to w. Note that calculating ĒN (l) has a
cost of O(MN 2).

Finally, we evaluate the reduced-order output as

sN ,M (l)=(LO
N )TuN ,M (l) (51)

Similar to that in Section 3.2, we can develop an efficient offline–online procedure for the rapid
evaluation of sN ,M (l) for each l in D.

The operation count of the online stage is essentially the predominant Newton update component
(49): at each Newton iteration, we first assemble the right-hand side and compute ĒN at cost
O(MN 2); we then form and invert the left-hand side (Jacobian) of (49) at cost O(N 3). The
online complexity depends only on N , M , and the number of Newton iterations; we thus recover
N independence in the online stage.

4.3. Example 2: non-polynomial non-linearity
We consider a particular instantiation of our abstract statement in which

�(l)=�1, aL(w,v)=
∫

�
∇w ·∇v d�, g(w;l)=|w|�2−1w

and �O(v)=�(v)=∫� v d�. Here, �=]0,1[×]0,1[, D=[0.01,1]×[1,10]∈R2, and X =H1
0 (�).

Our model problem is well posed and becomes linear for �2=1.
We present in Figure 8 two typical solutions obtained with a regular linear triangular FE

approximation space Xh of dimension N=10000. We see that as �1 decreases and �2 increases,
the solution develops a boundary layer. For the offline construction, we choose SuK as the nodes

of a regular 12×12 grid over D and generate {�n}Nmax
n=1 , {�g

m}Mmax
m=1 , and {zgm}Mmax

m=1 for Nmax=9 and

Mmax=10. We plot the interpolation point set {zgm}Mmax
m=1 in Figure 9. We see that all the points lie

in one-quarter of the domain due to the symmetry in the solution and that many points lie close
to the boundary due to the presence of the boundary layer.

We now present numerical results for the reduced-order approximation. We show in Figure 10
the convergence of 
uave,rel with respect to N and M . Here 
uave,rel is the average relative error norm
over the parameter sample �Test⊂D of size 16×16. The reduced-order approximation converges
very rapidly to the FE approximation. Furthermore, the error behavior is similar to that of the linear
example of Section 3.3: the errors initially decrease, but then ‘plateau’ in N for a particular value
of M ; then increasing M reduces the errors further. This implies that for a given N , we can always
choose M large enough so that the error induced by the coefficient-function approximation does
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Figure 8. Numerical solutions at typical parameter points for the non-linear elliptic problem:
(a) l=(1,1) and (b) l=(0.01,10).

Figure 9. Distribution of the interpolation points {zm}Mmax
m=1 over the physical domain � for Mmax=10.

not affect the desired accuracy of our reduced-order approximation. Similar convergence results
have also been observed for the RBA [33, 42].

We compare numerical results obtained with our ROA and with the standard Galerkin ROA.
We tabulate in Table II the maximum relative error in the output over �Test and computational
times as a function of N (for M=10) for both the ROA and the SGA. Here, the computational
times are normalized with respect to the time to compute sh(l) in the last column of Table II. We
observe very high accuracy of the output approximation and significant computational savings: for
a relative accuracy of less than 0.0002 (N =4,M=10), the online time to compute sN ,M (l) is less
than 1/30 000 the time to compute sh(l). In addition, thanks to fast convergence of the coefficient-
function and reduced-order approximations and thanks to the N-independent computational cost
of the online stage, our reduced-order model is almost four orders of magnitude less expensive
than the standard Galerkin reduced-order model, while yielding practically the same convergence
and accuracy.
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Figure 10. Average relative error norm 
uave,rel as a function of N and M for Example 2.

Table II. Numerical results for Example 2: maximum relative error in the output over �Test and normalized
computational time as a function of N for the ROA (with M=10) and the SGA.

ROA SGA FEA

N M Maximum relative error Online time Maximum relative error Online time Computational time

1 10 2.02E−01 1.98E−05 2.02E−01 8.23E−01 1
2 10 2.33E−03 2.41E−05 2.33E−03 8.37E−01 1
3 10 2.25E−03 2.79E−05 2.25E−03 8.37E−01 1
4 10 1.90E−04 2.89E−05 1.90E−04 8.41E−01 1
5 10 1.81E−04 3.05E−05 1.81E−04 8.41E−01 1
6 10 4.14E−05 3.16E−05 4.14E−05 8.42E−01 1

Note: The computational times are normalized with respect to the computational time for sh(l).

5. NON-LINEAR CONVECTION–DIFFUSION EQUATIONS

In order to illustrate how our proposed approach can accommodate time-dependent problems,
we consider a scalar non-linear convection–diffusion problem with only one parameter l∈R.
We note that the approach can be easily extended to multi-parameter systems of PDEs. The
essential new ingredient is the presence of time; we shall simply treat time as an additional, albeit
special, parameter. We briefly describe the abstract formulation of non-linear convection–diffusion
equations and then develop the associated reduced-order approximation. Finally, we discuss the
results obtained using our approach and the RBA presented in [32, 33] for the two-dimensional
Buckley–Leverett equation.
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5.1. Abstract problem formulation

We consider the following problem: for any given l∈D⊂R, we find the output of interest as

s(l, t)=�O(u(l, t)) (52)

where u(l, t) is the solution to

m

(
�u(l, t)

�t
,v

)
−
∫

�

(
� f 1(u(l, t))

�x1
+ � f 2(u(l, t))

�x2

)
d�

+ laL(u(l, t),v)=0 ∀v∈ X, t ∈(0,T ] (53)

with initial condition u(l, t)=u0(x) and appropriate boundary condition. Here, l is a viscosity
parameter varying in the parameter space D∈R1; the fluxes, ( f 1(u(l, t)) and f 2(u(l, t))), are
non-linear functions of the field variable u(l, t); aL and m are parameter-independent bilinear
forms; and �O is a linear functional. We note that the output and field variable are now functions
of both the parameter l and time t .

We consider a discretization of (52)–(53) using the FE approximation and the second-order
backward difference formula. We denote the number of time steps by J and let �t=T/J . We
further introduce a piecewise-linear FE approximation space Xh of very large dimension N. Our
FE discretization is thus: given any l∈D, for j =2, . . . , J , evaluate

sh(l, t
j )=�O(uh(l, t

j )) (54)

where uh(l, t j )∈ Xh is the solution to

m(uh(l, t
j ),v)− 2

3
�t
∫

�

(
� f 1(u(l, t))

�x1
+ � f 2(u(l, t))

�x2

)
d�+ 2

3
�tlaL(uh(l, t

j ),v)

= 4

3
m(uh(l, t

j−1),v)− 1

3
m(uh(l, t

j−2),v) ∀v∈ Xh (55)

subject to the initial condition (uh(l,0),v)=(u0,v),∀v∈ Xh . Note that marching (55) forward in
time requires uh(l, t1) and that we use the Crank–Nicolson scheme to compute uh(l, t1) from
uh(l,0). In essence, (55) yields a non-linear discrete system of equations which can be solved by
Newton’s method at each time step.

5.2. Reduced-order approximation

We introduce an approximation subspace WN =span{�1, . . . ,�N }, where the basis functions �n are
constructed using the POD procedure on a set of snapshots

Su
K ≡{�uk =uh(l

u
i , t

j ),1�i�I,1� j�J,1�k�K = I J }

Here, uh(lui , t
j ),1� j�J, are the solutions to (55) at parameter points li ,1�i�I, belonging to

the sample set SuI ={lu1 ∈D, . . . ,luI ∈D}.
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We next consider the standard Galerkin projection: for l∈D, we find

sSGN (l, t j )=�O(uSGN (l, t j )), 2� j�J (56)

where uSGN (l, t j )∈WN satisfies

m(uSGN (l, t j ),v)− 2

3
�t
∫

�
f 1(uSGN (l, t j ))

�v

�x1
d�

− 2

3
�t
∫

�
f 2(uSGN (l, t j ))

�v

�x2
d�+ 2

3
�tlaL(uSGN (l, t j ),v)

= 4

3
m(uSGN (l, t j−1),v)− 1

3
m(uSGN (l, t j−2),v), v∈WN (57)

As pointed out earlier, this standard Galerkin reduced-order model is not efficient.
To recover efficiency, we develop the coefficient-function approximation for the non-linear terms

in (57). Henceforth, we compute two sets of snapshots

F1
K ≡ {� f 1

k = f 1(uh(l
u
i , t

j )),1�i�I,1� j�J,1�k�K = I J }

F2
K ≡ {� f 2

k = f 2(uh(l
u
i , t

j )),1�i�I,1� j�J,1�k�K = I J }

from which we construct {z f 1
m }Mm=1, {� f 1

m }Mm=1, and {z f 2
m }Mm=1, {� f 2

m }Mm=1, respectively, following
the procedures described in Section 2. (For notational simplification, we assume that the
number of basis functions for both the coefficient-function expansions is the same.) Then for

any given w∈ Xh , we approximate f 1(w) by f 1,wM =∑M
m=1 f 1(w(z f 1

m ))� f 1
m and f 2(w) by

f 2,wM =∑M
m=1 f 2(w(z f 2

m ))� f 2
m .

Our reduced-order approximation is obtained by replacing f 1(uSGN (l, t j )) and f 2(uSGN (l, t j ))

with f
1,uN ,M
M (l, t j ) and f

2,uN ,M
M (l, t j ): given any l∈D, for j =2, . . . , J , we evaluate

sN ,M (l, t j )=�O(uN ,M (l, t j )) (58)

where uN ,M (l, t j )∈WN satisfies

m(uN ,M (l, t j ),v)− 2

3
�t
∫

�
f
1,uN ,M
M (l, t j )

�v

�x1
d�

− 2

3
�t
∫

�
f
2,uN ,M
M (l, t j )

�v

�x2
d�+ 2

3
�tlaL(uN ,M (l, t j ),v)

= 4

3
m(uN ,M (l, t j−1),v)− 1

3
m(uN ,M (l, t j−2),v), v∈WN (59)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:27–55
DOI: 10.1002/nme



48 N. C. NGUYEN AND J. PERAIRE

Furthermore, we expand

uN ,M (l, t j ) =
N∑

n=1
uN ,Mn(l, t

j )�n

f
1,uN ,M
M (l, t j ) =

M∑
m=1

f 1(uN ,M (z f 1
m ;l, t j ))� f 1

m =
M∑

m=1
f 1
(

N∑
n=1

uN ,Mn(l, t
j )�n(z

f 1
m )

)
� f 1
m

f
2,uN ,M
M (l, t j ) =

M∑
m=1

f 2(uN ,M (z f 2
m ;l, t j ))� f 2

m =
M∑

m=1
f 2
(

N∑
n=1

uN ,Mn(l, t
j )�n(z

f 2
m )

)
� f 2
m

Substituting these representations into (59) and choosing v=�n′,1�n′�N , we immediately
obtain the non-linear algebraic system: for j =2, . . . , J , uN ,M (l, t j )=[uN ,M 1(l, t j ), . . . ,
uN ,MN (l, t j )]T∈RN satisfies

MNuN ,M (l, t j )− 2
3�t (C

1
N ,MF1

M (uN ,M (l, t j ))+C2
N ,MF2

M (uN ,M (l, t j )))

+ 2
3�tlANuN ,M (l, t j )= 1

3MN (4uN ,M (l, t j−1)−uN ,M (l, t j−2)) (60)

with the initial vector uN ,Mn(0)=(uh(0),�n),1�n�N , and with the coefficient vector uN ,M (l, t1)
being computed using the Crank–Nicolson scheme.

In the above, MN ∈RN×N and AN ∈RN×N are matrices with entries

MNnn′ =m(�n′,�n), ANnn′ =aL(�n′,�n) (61)

for 1�n,n′�N ; C1
N ,M ∈RN×M and C2

N ,M ∈RN×M are given by

C1
N ,Mnm =

∫
�

� f 1
m

��n
�x1

, C2
N ,Mnm =

∫
�

� f 2
m

��n
�x2

(62)

for 1�n�N , 1�m�M ; and F1
M (uN ,M (l, t j ))∈RM and F2

M (uN ,M (l, t j ))∈RM are given by

F1
M (uN ,M (l, t j )) = f 1(D1

M,NuN ,M (l, t j )) (63)

F2
M (uN ,M (l, t j )) = f 2(D2

M,NuN ,M (l, t j )) (64)

where D1
M,N ∈RM×N and D2

M,N ∈RM×N are matrices with entries

D1
M,Nmn =�n(z

f 1
m ), D2

M,Nmn =�n(z
f 2
m ) (65)

for 1�m�M,1�n�N .
The non-linear algebraic system (60) can be readily solved using Newton’s method at each time

step for the coefficient vectors uN ,M (l, t j ),1� j�J . The reduced-order output is then calculated as

sN ,M (l, t j )=(LO
N )TuN ,M (l, t j ), 1� j�J (66)

Here LO
N ∈RN is the output vector with entries LO

Nn =�O(�n),1�n�N . The offline-online proce-
dure can be developed as follows.
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In the offline stage, we compute and store uN ,M (0), AN , MN , C1
N ,M , C2

N ,M , D1
M,N , D

2
M,N ,

LO
N . In the online stage—for each new parameter value l—we solve the non-linear system (60)

at each time step for the coefficient vector uN ,M (l, t j ) and evaluate the output sN ,M (l, t j ) with
a computational cost (per Newton iteration per time step) of only O(MN 2+N 3).

5.3. Example 3: Buckley–Leverett equation
Our example is the two-dimensional Buckley–Leverett equation

�u
�t

+ � f 1(u)

�x1
+ � f 2(u)

�x2
−l∇2u=0 in �×(0,T ] (67)

with initial condition u0(x)=exp(−16((x1)2+(x2)2)) and homogeneous boundary condition on
��. Here �=]−1.5,1.5[2, l∈D≡[0.05,0.1], t ∈(0,T ] with T =0.5, and f 1(u) and f 2(u) are
the fluxes that are non-linear functions of the field variable u,

f 1(u)= u2

u2+(1−u)2
, f 2(u)= f1(u)(1−5(1−u)2)

The output of interest is the average of the field variable over the physical domain. The two-
dimensional Buckley–Leverett equation is often used to describe two-phase flow in porous media
with a gravitation pull in the x1-direction.

The weak formulation is stated as: given l∈D, find s(l, t)=∫� u(l, t), where u(l, t)∈ X =
H1
0 (�)≡{v∈H1(�)|v|�� =0} is the solution to∫

�

�u
�t

v d�−
∫

�
f 1(u)

�v

�x1
d�−

∫
�
f 2(u)

�v

�x2
d�+l

∫
�

∇u ·∇v=0 ∀v∈ X, t ∈(0,T ] (68)

Our abstract statement (53)–(52) thus obtains for

m(w,v)=
∫

�
wv d�, a(w,v)=

∫
�

∇w ·∇v d�, �O(v)=
∫

�
v d�

For the FE discretization, we use �t=0.02 (J =25 time steps) and a uniform triangular piecewise-
linear FE approximation space of dimension N=10000. Figure 11 shows two typical solutions
at time t j =10�t for different values of l. We see that when l=0.05, the solution develops sharp
gradient due to the strong effect of non-linearity. However, as l increases, the effect of non-linearity
is dominated by the viscous effects, and the solution spreads out.

We now present the results obtained. For this purpose we define the average relative error in
the solution as


uave,rel=meanl∈�Test,1� j�J
‖uh(l, t j )−uN ,M (l, t j )‖

‖uh(l, t j )‖
Here �Test⊂D is the parameter test sample of size 21. Figure 12 shows 
uave,rel as a function of
N and M . We observe very rapid convergence of our reduced-order approximation and a similar
convergence behavior as already seen in the previous examples. Note that our offline construction
is based on Su

K , which consists of the initial solution uh(t0) and 11×25 solutions corresponding
to the parameter sample SuI ={lu1, . . . ,luI } of size I =11. We include uh(t0) in Su

K to render the
error at time t=0 as small as possible.
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Figure 11. Numerical solutions for Example 3 at t j =10�t : (a) l=0.05 and (b) l=0.1.

Figure 12. Average relative error 
uave,rel as a function of N and M for Example 3.

We next compare numerical results obtained with the proposed approach, the RBA of [32, 33],
and the standard Galerkin ROA. In Table III, we present the maximum relative error in the output
as a function of N and M for the ROA, RBA, and SGA. We first see that the three approaches
yield uniform and rapid convergence of the reduced-order output approximation. However, the
ROA results in smaller errors than the RBA for all values of N and M : for example, for the
case of (N ,M)=(30,40), the error is 9.51E−04 for the ROA and is 3.10E−03 for the RBA.
This can be attributed to the choice of basis functions and interpolation points. First, for non-
linear time-dependent problems, the interactions between the solution at different times are nicely
captured by the global nature of the POD optimization; in this context, the greedy approach is not
as successful as the POD approach. Second, the non-linearities and their interactions at different
times are captured by the optimal selection of the BPIM, which provides a better accuracy for
the coefficient-function approximation and the associated reduced-order model. In addition, we
observe that the differences in the results obtained with the ROA and SGA are very small.
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Table III. Maximum relative error in the output for the reduced-order models generated by the proposed
approach (ROA), the reduced-basis approach (RBA) of [32, 33], and the standard Galerkin projection

approach (SGA) for different values of N and M for Example 3.

ROA RBA SGA

N M Maximum relative error Maximum relative error Maximum relative error

10 20 2.08E−02 3.23E−02 2.08E−02
20 30 4.91E−03 8.31E−03 4.77E−03
30 40 9.51E−04 3.10E−03 9.42E−04
40 50 3.29E−04 5.26E−04 3.01E−04
50 60 9.91E−05 3.00E−04 9.62E−05

Table IV. Online computational times (normalized with respect to the computational time of the FE
approximation) for different values of N and M for Example 3.

ROA RBA SGA FEA

N M Online time Online time Online time Computational time

10 20 2.58E−05 2.58E−05 4.35E−01 1
20 30 3.16E−05 3.16E−05 4.37E−01 1
30 40 5.34E−05 5.34E−05 4.38E−01 1
40 50 8.50E−05 8.50E−05 4.40E−01 1
50 60 1.38E−04 1.38E−04 4.42E−01 1

Finally, in Table IV, we present the computational times to calculate the output as a function
of N and M . Here the computational times are normalized with respect to the time to compute
the FE approximation output shown in the last column of Table IV. For a relative accuracy of
less than 0.1% (corresponding to (N ,M)=(30,40) with the ROA and (N ,M)=(40,50) with the
RBA), the reduction in online response time for both the ROA and the RBA is more than four
orders of magnitude compared with the SGA and the FEA. This is due to the dramatic dimension
reduction provided by the Galerkin projection on the reduced-basis space and the coefficient-
function approximation of the non-linear terms. We notice however that the offline computations
are expensive since we must solve for the FE solutions over the parameter sample set. Hence, if
a many-query context, or a clear demand for real-time response, can justify the offline cost, the
proposed approach and the RBA presented in [32, 33] can be gainfully employed.

6. CONCLUSIONS

We have presented an efficient numerical approach for developing reduced-order models of
nonaffine and non-linear parametrized PDEs. Although we discuss scalar problems and linear
functionals, our approach can be easily extended to systems of equations and non-linear func-
tionals. It is demonstrated through numerical examples that the approach provides computational
savings of many orders of magnitude relative to both the FE approximation and standard Galerkin
ROA. Compared with the RBA of [32, 33], the proposed method is found to produce better, more
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accurate, models at a slightly higher computational cost in the offline stage. Therefore, the proposed
approach can be gainfully used to generate efficient low-order models of non-linear large-scale
systems, which are of considerable interest in the parameter estimation, design, optimization, and
control contexts.

In this paper, we have not considered the selection of snapshots and a posteriori error estimation.
The accuracy, efficiency, and reliability of a reduced-order model depend crucially on the quality
of the snapshot set for guaranteeing stable and rapid convergence, and a posteriori estimator
for quantifying the error in the approximation process. While these important issues need to
be addressed in the reduced-order modeling of parametrized PDEs, they remain very open and
challenging especially for non-linear problems, the discussion of which is beyond the scope of this
paper. Instead, we refer the reader to [41, 43] for a greedy algorithm for the judicious selection of
snapshots and a posteriori error estimation procedures for linear and certain non-linear problems.

APPENDIX A: POD PROCEDURE

We describe the POD procedure to generate an orthonormal basis set {�n}Nn=1 from any given set of
linearly independent snapshots {�k}Kk=1. First, a two-point spatial correlation function is defined as

K(x,x′)= 1

K

K∑
k=1

�k(x)�k(x
′) (A1)

which accepts the following spectral decomposition:

K(x,x′)=
K∑

k=1

k�k(x)�k(x

′) (A2)

Here, the set of basis functions �k,1�k�K , are ordered such that the associated eigenvalues


k = 1

K

K∑
l=1

(�k,�l)
2
X (A3)

satisfy 
k�
k+1.
Next, for a given N <K , the POD procedure consists in finding �n,1�n�N , so as to maximize

the captured energy

maxEN =
N∑

n=1

(
1

K

K∑
k=1

(
�n,�k

)2
X

)
=

N∑
n=1


n (A4)

subject to the constraints (�n,�n′)X =�nn′,1�n,n′�N . The first few basis functions represent the
main energy-containing structures in the snapshots, with their relative importance quantified by

n . It can be shown that problem (A4) amounts to solve the eigenfunction equation

(K(x,x′),�(x′))X =
�(x) (A5)

for the first N eigenfunctions.
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The method of snapshots [38] expresses a typical empirical eigenfunction �(x) as a linear
combination of the �k

�(x)=
K∑

k=1
ak�k(x) (A6)

Substituting this representation and (A1) into (A5), we immediately obtain

Ca=
a (A7)

where C∈RK×K is given by Ci j =(1/K )(�i ,� j )X ,1�i, j�K . The eigenproblem (A7) can then
be solved for the first N eigenvectors from which the POD basis functions �n,1�n�N , are
constructed using (A6).

The optimality of the POD basis can be shown by considering an arbitrary set of orthonormal
basis functions, {vn}Nn=1, and demonstrating that the POD basis {�n}Nn=1 minimizes

min
v1,...,vN

1

K

(
K∑

k=1
inf
akN∈RN

∥∥∥∥�k−
N∑

n=1
�kNnvn

∥∥∥∥
2

X

)
(A8)

Indeed, this minimization problem is equivalent to the maximization problem (A4), which in turn
asserts the optimality of {�n}Nn=1.
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