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Abstract In this paper we present rigorous a posteriori L2 error bounds for re-
duced basis approximations of the unsteady viscous Burgers’ equation in one space
dimension. The a posteriori error estimator, derived from standard analysis of the
error-residual equation, comprises two key ingredients—both of which admit effi-
cient Offline-Online treatment: the first is a sum over timesteps of the square of the
dual norm of the residual; the second is an accurate upper bound (computed by the
Successive Constraint Method) for the exponential-in-time stability factor. These er-
ror bounds serve both Offline for construction of the reduced basis space by a new
POD-Greedy procedure and Online for verification of fidelity. The a posteriori error
bounds are practicable for final times (measured in convective units) T ≈ O(1) and
Reynolds numbers ν−1 � 1; we present numerical results for a (stationary) steepen-
ing front for T = 2 and 1 ≤ ν−1 ≤ 200.
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1 Introduction

The reduced basis method and related model-reduction approaches are well devel-
oped for linear parametrized parabolic partial differential equations [10, 12, 15, 30,
34]. The reduced basis approach—built upon an underlying “truth” finite element dis-
cretization which we wish to accelerate—can provide both very reliable results and
very rapid response in the real-time and many-query contexts. The former (reliability)
is ensured by rigorous a posteriori bounds for the error in the reduced basis approx-
imation relative to the truth finite element discretization: we provide estimators for
the field variable in the relevant norms as well as for any particular scalar output(s)
of interest. The latter (rapid response) is ensured by an Offline-Online computational
strategy that minimizes marginal cost: in an expensive Offline stage we prepare a very
small reduced basis “database”; in the Online stage, for each new parameter value of
interest, we rapidly evaluate both the output of interest and the associated a posteri-
ori error bound—in complexity independent of the dimensionality of the truth finite
element approximation space.

However, in the nonlinear case there are still many open research issues. We shall
focus in this paper on the development of rigorous a posteriori error bounds for
the one-dimensional parametrized unsteady viscous Burgers’ equation; the Burgers’
equation is of interest primarily as a model for the unsteady incompressible Navier-
Stokes equations, the extension to which is considered in subsequent papers [26, 27].
There are examples of rigorous reduced basis a posteriori error bounds for the steady
Burgers’ [37] and incompressible Navier-Stokes [28, 36] equations; the new contri-
bution of the current paper is treatment of the unsteady—parabolic—case. Although
there are many examples of reduced order models for the unsteady incompressible
Navier-Stokes equations [5, 7, 9, 13, 14, 17–21], none is endowed with rigorous
a posteriori error bounds.

The unsteady viscous Burgers’ equation, like the unsteady incompressible Navier-
Stokes system, appears computationally simple: a quadratic nonlinearity that admits
standard Galerkin treatment. (Note for higher-order and non-polynomial nonlineari-
ties more sophisticated reduced basis approximations must be considered [3, 6, 11,
32] that in turn introduce both numerical and theoretical complications. The results
of the current paper do not directly extend to these more difficult cases.) However,
in the interesting case of small viscosity the unsteady viscous Burgers’ equation,
like the unsteady incompressible Navier-Stokes system [8, 22], is in fact computa-
tionally difficult: exponential instability compromises a priori and a posteriori error
estimates—any useful bounds are perforce limited to modest (final) times and modest
Reynolds numbers. (More precisely, stability considerations will limit the product of
the final time and the Reynolds number.)
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The approach developed in this paper does not eliminate the exponential growth
in time. (In some cases [22] it may be possible to demonstrate algebraic growth in
time; however, more generally—most simply, linearly unstable flows—we must ad-
mit exponential sensitivity to disturbances.) Rather we develop a procedure, within
the reduced basis context, for the calculation of a more accurate estimate for the
stability factor which reflects the full spatial and temporal structure of the solu-
tion. The resulting error bounds, though certainly still pessimistic, are practicable
for final times (measured in convective units) T ≈ O(1) and Reynolds numbers
ν−1 � 1; we demonstrate the relevance of our bounds to fluid dynamically inter-
esting contexts—response-to-disturbance and bifurcation analyses—in [26, 27]. The
error bounds serve not only for certification, but also for efficient construction of
rapidly convergent reduced basis approximations.

In Sect. 2 we introduce the reduced basis (RB) approximation for the unsteady
viscous Burgers’ equation. In Sect. 3.1 we develop the associated a posteriori er-
ror bounds; in Sect. 3.2 we describe the formulation and calculation of the stability
growth factor by the Successive Constraint Method (SCM). In Sect. 4.1 we sum-
marize the Offline-Online (or “Construction-Evaluation”) computational strategy for
efficient evaluation of the reduced basis prediction and associated a posteriori error
bound; in Sects. 4.2 and 4.3 we describe POD-GreedyRB and GreedySCM sampling
approaches for construction of the reduced basis space and the SCM parameter sam-
ple, respectively. Finally, in Sect. 5 we present numerical results—which are particu-
larly important in the present context since the stability factors, and hence the utility
of the bounds, can only be determined in situ.

As already indicated, in this paper we address for the first time rigorous reduced
basis a posteriori error bounds for the unsteady viscous Burgers’ equation: our em-
phasis is on the requisite theoretical and computational innovations. This new mater-
ial includes the development of the error bound for quadratically nonlinear parabolic
equations; the adaptation of the Successive Constraint Method (SCM) procedure to
the calculation of solution- and time-dependent stability factors; a new POD-Greedy
procedure, based on an earlier proposal in [15], for time-parameter sampling; and
finally numerical results that demonstrate the practical relevance of the proposed ap-
proach. Note, however, that for completeness we do include in this paper a summary
of some earlier work: a brief description of the Offline-Online approach to evalua-
tion of the dual norm of the residual [28, 36]; and a short summary of the Successive
Constraint Method (SCM) [16, 35].

2 Reduced basis approximation

To begin, we introduce the domain Ω =]0,1[ and the space X = H 1
0 (Ω), where

H 1
0 (Ω) = {v ∈ H 1(Ω) |v(0) = v(1) = 0}, H 1(Ω) = {v ∈ L2(Ω) |vx ∈ L2(Ω)}, and

L2(Ω) = {v measurable | ∫
Ω

v2 < ∞}. We further define the X inner product and
norm as (w,v)X = ∫

Ω
wxvx and ‖w‖X = √

(w,w)X , respectively, and the L2(Ω)

inner product and norm as (w,v) ≡ ∫
Ω

wv and ‖w‖ ≡ √
(w,w), respectively. Fi-

nally, we introduce the closed parameter (viscosity) domain D ≡ [νmin, νmax] with
0 < νmin < νmax.
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We next introduce L2(Ω)-continuous linear functionals f and �. Then, given ν ∈
D, U (ν) ∈ L2(0, T ;X) ∩ C0([0, T ];L2(Ω)) [33] satisfies

d

dt
(U (t;ν), v) + c(U (t;ν), U (t;ν), v) + νa(U (t;ν), v) = f (v), ∀v ∈ X, (1)

with initial condition U (t = 0;ν) = 0. We subsequently evaluate our “output of inter-
est”: for all times t ∈ [0, T ],

S(t;ν) = �(U (t;ν)). (2)

Here T is the final time, C0(I ) is the space of continuous functions over the interval I ,
ν denotes the viscosity—we shall sometimes refer to ν−1 as the Reynolds number—
and

c(w, z, v) = −1

2

∫

Ω

wzvx,

(3)

a(w,v) =
∫

Ω

wxvx,

are the convective trilinear and viscous bilinear forms, respectively. Equations (1)
and (4) represent the standard unsteady viscous Burgers’ equation in one space di-
mension [25]; in our numerical experiments we shall choose f (v) = �(v) = ∫

Ω
v, as

we discuss in greater detail in Sect. 5.
We next introduce the time-discrete Burgers’ equation. Towards that end, we first

divide the time interval [0, T ] into K subintervals of equal length Δt = T/K ; we then
define tk ≡ kΔt , 0 ≤ k ≤ K . Given ν ∈ D, we now look for uk(ν) ∈ X,0 ≤ k ≤ K,

such that u0(ν) = 0 and

1

Δt
(uk(ν)−uk−1(ν), v)+c(uk(ν), uk(ν), v)+νa(uk(ν), v) = f (v), ∀v ∈ X, (4)

for 1 ≤ k ≤ K . We then evaluate the associated output: for 0 ≤ k ≤ K ,

sk(ν) = �(uk(ν)). (5)

We shall sometimes denote uk(ν) as u(tk;ν) and sk(ν) as s(tk;ν) to more clearly
identify the discrete time levels. Equation (4)—Euler Backward discretization of
(1)—shall be our point of departure: we shall presume that Δt is chosen sufficiently
small that uk(ν) = u(tk;ν) and sk(ν) = s(tk;ν) are effectively indistinguishable
from U (tk;ν) and S(tk;ν), respectively. For our purposes, the timestep Δt is fixed;
we do not consider Δt → 0. (The development readily extends to Crank-Nicolson
discretization; for purposes of exposition, we consider the simple Euler Backward
approach.)

We next introduce a Galerkin finite element “truth” spatial discretization of our (al-
ready time-discrete) equation (4). We denote by XN the standard conforming linear
finite element space over a uniform “triangulation” of Ω comprising N + 1 elements



Reduced basis approximation and a posteriori error estimation 161

each of length 1/(N + 1); note that XN is of dimension N . Then, given ν ∈ D, we
look for uN k(ν) ∈ XN ,0 ≤ k ≤ K, such that uN 0(ν) = 0 and

1

Δt
(uN k(ν) − uN k−1(ν), v) + c(uN k(ν), uN k(ν), v) + νa(uN k(ν), v) = f (v),

∀v ∈ XN , (6)

for 1 ≤ k ≤ K . We then evaluate the associated output: for 0 ≤ k ≤ K ,

sN k(ν) = �(uN k(ν)). (7)

We shall build our reduced basis approximation upon the “truth” discretization (6),
and we shall measure the error in our reduced basis prediction relative to uN k(ν) ≡
uN (tk;ν) and sN k(ν) ≡ sN (tk;ν). (As we shall observe, the Online cost (and stabil-
ity) of the reduced basis evaluations shall be independent of N : we may thus choose
N conservatively.)

Finally, we introduce the reduced basis approximation. Given a set of mutually
(·, ·)X-orthogonal basis functions ξn ∈ XN ,1 ≤ n ≤ Nmax, the hierarchical reduced
basis spaces are given by

XN ≡ span {ξn,1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax. (8)

The reduced basis approximation to uN k(ν) ∈ XN , uk
N(ν) ∈ XN , shall be expressed

as

uk
N(ν) =

N∑

n=1

ωk
N n(ν)ξn. (9)

The spaces XN ∈ XN ,1 ≤ N ≤ Nmax, and basis functions ξn,1 ≤ N ≤ Nmax, will
be generated by a POD-GreedyRB sampling procedure which combines spatial snap-

shots in time and viscosity—uN k(ν)—in an optimal fashion. The POD-GreedyRB
will normalize the basis functions such that ‖ξn‖X → 0 exponentially fast as n in-
creases; we shall observe ωk

N n(ν) ∼ O(1),1 ≤ n ≤ N—consistent with rapid con-
vergence of the reduced basis approximation.

We now introduce the Galerkin reduced basis approximation. Given ν ∈ D, we
look for uk

N(ν) ∈ XN,0 ≤ k ≤ K, such that u0
N(ν) = 0 and

1

Δt
(uk

N(ν)−uk−1
N (ν), v)+ c(uk

N (ν), uk
N(ν), v)+ νa(uk

N(ν), v) = f (v), ∀v ∈ XN,

(10)
for 1 ≤ k ≤ K . We then evaluate the associated output: for 0 ≤ k ≤ K ,

sk
N (ν) = �(uk

N(ν)). (11)

(In Sect. 4, we shall develop the algebraic equations associated with (10)–(11).) We
shall sometimes denote uk

N(ν) as uN(tk;ν) and sk
N (ν) as sN(tk;ν) to more clearly

identify the discrete time levels. In fact all the reduced basis quantities should bear
a N —XN

N ,uN k
N (ν), sN k

N (ν)—since the reduced basis approximation is defined in
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terms of a particular truth discretization: for clarity of exposition, we shall typically
suppress the “truth” superscript; however, we shall insist upon stability/uniformity of
our reduced basis approximation as N → ∞.

The goal of the reduced basis approximation is simple: dimension reduction—
N � N —and associated computational economies. (Note however that there is no
“reduction in time”: the reduced basis approximation inherits the fixed Δt of the truth
approximation.) Obviously, for the Burgers’ equation in one space dimension, there
is not much room for significant economies; however, in higher spatial dimensions,
(Online) reduced basis evaluation is typically several orders of magnitude less expen-
sive than the classical finite element approach [26, 27, 31, 35].

3 A posteriori error bound

3.1 L2 error bound

In this section we aim to develop an a posteriori bound Δk
N(ν) ≡ ΔN(tk;ν),1 ≤ k ≤

K , for the L2 error in the solution such that

‖uN k(ν) − uk
N(ν)‖ ≤ Δk

N(ν), 1 ≤ k ≤ K, ∀ν ∈ D, (12)

for any N = 1, . . . ,Nmax. (We note that L2 estimates for the linear parabolic case are
considered in [15].) Since the linear output functional � is in L2(Ω), the error in the
output satisfies

|sN k(ν) − sk
N (ν)| ≤ Δs k

N (ν), 1 ≤ k ≤ K, ∀ν ∈ D, (13)

where Δs k
N (ν), which we shall denote the “output error bound,” is given by

Δs k
N (ν) =

(

sup
v∈XN

�(v)

‖v‖

)

Δk
N(ν). (14)

We introduce the effectivities associated with these error estimates as

ηN(tk;ν) = Δk
N(ν)

‖uN k(ν) − uk
N(ν)‖ and ηs

N(tk;ν) = Δs k
N (ν)

|sN k(ν) − sk
N(ν)| . (15)

Clearly, the effectivities are a measure of the quality of the proposed estimator: for
rigor, we shall insist upon effectivities ≥ 1; for sharpness, we desire effectivities as
close to unity as possible.

There are two main components to our error bounds. The first component is the
dual norm of the residual

εN(tk;ν) = sup
v∈XN

rN(v; tk;ν)

‖v‖X

, 1 ≤ k ≤ K, (16)



Reduced basis approximation and a posteriori error estimation 163

where rN(v; tk;ν) is the residual associated with the reduced basis approxima-
tion (10)

rN(v; tk;ν) = f (v) − 1

Δt

(
uk

N(ν) − uk−1
N (ν), v

)

− c
(
uk

N(ν),uk
N(ν), v

) − νa
(
uk

N(ν), v
)
, ∀v ∈ XN , 1 ≤ k ≤ K.

(17)

Note the dual norm is defined over XN , and not X, since we measure our reduced
basis error relative to the truth finite element discretization.

The second component is a lower bound

ρLB
N (tk;ν) ≤ ρN(tk;ν), 1 ≤ k ≤ K, ∀ν ∈ D, (18)

for the stability constant ρN(tk;ν) defined as

ρN(tk;ν) = inf
v∈XN

4c(uk
N(ν), v, v) + νa(v, v)

‖v‖2
, 1 ≤ k ≤ K, ∀ν ∈ D; (19)

efficient calculation of ρLB
N (tk;ν) is the topic of Sect. 3.2. The stability constant

(19)—negative values shall result in growth—is closely related to the absolute
(monotonic decay) criterion of hydrodynamic stability theory [23].

We can demonstrate

Proposition 1 There exists a positive constant C independent of ν such that

ρN(tk;ν) ≥ −C
‖uk

N(ν)‖4

ν3
, 1 ≤ k ≤ K, (20)

for ρN(tk;ν) defined in (19).

Proof We first observe that, for any v ∈ X,

|4c(uk
N(ν), v, v)| = 2

∥
∥
∥
∥
∥

∫ 1

0
uk

N(ν)vvxdx

∥
∥
∥
∥
∥

≤ 2‖uk
N(ν)‖‖v‖L∞(Ω)‖v‖X

≤ 4‖uk
N(ν)‖‖v‖1/2‖v‖1/2

X ‖v‖X (21)

by the L∞-H 1 embedding (which perforce restricts our arguments to one space di-
mension), the Cauchy-Schwarz inequality, and a Gagliardi-Nirenberg inequality. We
then apply the Young inequality twice to obtain

4‖v‖1/2‖v‖3/2
X ‖uk

N(ν)‖ ≤ 2

(

δ‖v‖ + ‖v‖3
X

δ

)

‖uk
N(ν)‖

≤
(

κ‖v‖2‖uk
N(ν)‖2 + δ2

κ

)

+ 2‖v‖3
X‖uk

N(ν)‖
δ

, ∀v ∈ X,

(22)
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for any positive δ and κ . We now choose δ = 4‖uk
N (ν)‖‖v‖X

ν
and κ = 32‖uk

N (ν)‖2

ν3 to

obtain for all v ∈ X (and hence all v ∈ XN ⊂ X)

|4c(uk
N(ν), v, v)| ≤ 32

‖uk
N(ν)‖4‖v‖2

ν3
+ ν‖v‖2

X. (23)

Therefore, we have

ρN(tk;ν) ≥ −32
‖uk

N(ν)‖4

ν3
, 1 ≤ k ≤ K, (24)

which proves the desired result for C = 32. �

Note that ‖uk
N(ν)‖ may be bounded in terms of f , ν, and T , which in turn provides

a lower bound for ρN(tk;ν) which is independent of N . This extremely pessimistic
bound is of course of very little comfort or utility; in our actual estimation proce-
dure for ρN(tk;ν), described in the next section, we reflect the full temporal-spatial
structure of uk

N(ν),1 ≤ k ≤ K, and obtain more meaningful and useful lower bounds.
We can now define our error bound Δk

N(ν),1 ≤ k ≤ K , in terms of the dual norm
of the residual and the lower bound for the stability constant. We first define

Δt∗N(ν) = 1

2|min(0,min1≤k≤K ρLB
N (tk;ν))| . (25)

Then, for Δt < Δt∗N(ν), which ensures 1 + ΔtρLB
N (tk;ν) > 0,1 ≤ k ≤ K , we define

our a posteriori error bound as

Δk
N(ν) =

√√
√
√

Δt
ν

∑k
m=1(ε

2
N(tm;ν)

∏m−1
j=1 (1 + ΔtρLB

N (tj ;ν)))
∏k

m=1(1 + Δt ρLB
N (tm;ν))

, 1 ≤ k ≤ K. (26)

Note (26) is the Euler Backward version of the classical continuous-time exponential
result. (The particular fashion in which ρLB

N (tj ;ν) appears in our bound—in particu-
lar, as an integral in time—is important in the generalization of Proposition 1 to the
case of higher space dimensions.)

For ν sufficiently large (Reynolds sufficiently small), ρN(tk;ν) will be uniformly
positive and hence error growth will be controlled; in this case, we can consider rather
large times—effectively reaching steady or (say) steady-periodic states. However, for
smaller ν, ρN(tk;ν) will certainly be negative and hence the error bound (26) will
grow exponentially in time; in this case, we will be practically limited to modest final
times—the smaller the ν, the smaller the practicable final time T . In fact, the actual
limitations are less severe than might be anticipated: we quantify the restrictions for
a particular Burgers’ example in Sect. 5, and for several Navier -Stokes examples
in [26, 27]. (Clearly, the ν−1/2 prefactor in the error bound (26) is also less than
welcome; future work will consider different norms to mitigate this effect.)

To close this section we prove (12) for our bound of (26) by appropriate modifica-
tion of classical procedures [33]:
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Proposition 2 For given ν ∈ D, Δt < Δt∗N(ν) of (25), and error bound Δk
N(ν) de-

fined in (26), the error estimate (12) holds for any N ∈ [1,Nmax].

Proof We note from (6) and (17) that the error em(ν) ≡ uN m(ν) − um
N(ν) satisfies

1

Δt

(
em(ν) − em−1(ν), v

) + c
(
uN m(ν),uN m(ν), v

) − c
(
um

N(ν),um
N(ν), v

)

+ νa
(
em(ν), v

) = rN(v; tm;ν), ∀v ∈ XN . (27)

From trilinearity, and symmetry in the first two arguments, of the form c in (4) we
can derive the following equality

c
(
uN m(ν),uN m(ν), v

) − c
(
um

N(ν),um
N(ν), v

)

= c
(
em(ν), em(ν), v

) + 2c
(
um

N(ν), em(ν), v
)
, ∀v ∈ XN . (28)

It thus follows that

1

Δt

(
em(ν) − em−1(ν), v

) + c
(
em(ν), em(ν), v

) + 2c
(
um

N(ν), em(ν), v
)

+ νa
(
em(ν), v

) = rN(v; tm;ν), ∀v ∈ XN . (29)

We now choose v = em(ν) in (29) and invoke (16) to find

1

Δt

(
em(ν) − em−1(ν), em(ν)

) + c
(
em(ν), em(ν), em(ν)

)

+ 2c
(
um

N(ν), em(ν), em(ν)
) + νa

(
em(ν), em(ν)

) ≤ εN(tm;ν)‖em(ν)‖X.

(30)

Application of Young’s inequality, 2AB ≤ 1
ε
A2 + εB2,∀ε > 0, yields (for ε = ν)

εN(tm;ν)‖em(ν)‖X ≤ 1

2

(1

ν
ε2
N(tm;ν) + ν‖em(ν)‖2

X

)

= 1

2

(1

ν
ε2
N(tm;ν) + νa

(
em(ν), em(ν)

))
. (31)

We now use ‖em(ν) − em−1(ν)‖2 > 0 and the equality

c
(
em(ν), em(ν), em(ν)

) = −1

6

∫ 1

0

∂e3(tm;ν)

∂x
= 0 (32)

to reduce (30) to

1

Δt

((
em(ν), em(ν)

) − (
em−1(ν), em−1(ν)

)) + 4c
(
um

N(ν), em(ν), em(ν)
)

+ νa
(
em(ν), em(ν)

) ≤ 1

ν
ε2
N(tm;ν). (33)
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Hence, from (33) and (18)–(19) we obtain

(
1 + Δt ρLB

N (tm;ν)
)(

em(ν), em(ν)
) − (

em−1(ν), em−1(ν)
) ≤ Δt

ν
ε2
N(tm;ν). (34)

We now multiply by (the positive quantity, given our hypothesis on Δt)
∏m−1

j=1 (1 +
Δt ρLB

N (tj ;ν)) on both sides of (34) to obtain

(
em(ν), em(ν)

) m∏

j=1

(
1 + ΔtρLB

N (tj ;ν)
)

− (
em−1(ν), em−1(ν)

)m−1∏

j=1

(
1 + Δt ρLB

N (tj ;ν)
)

≤ Δt

ν
ε2
N(tm;ν)

m−1∏

j=1

(
1 + Δt ρLB

N (tj ;ν)
)

; (35)

we then sum this equation from m = 1 to k and recall e(t0;ν) = 0 to finally arrive at

(
ek(ν), ek(ν)

) k∏

m=1

(
1 + Δt ρLB

N (tm;ν)
)

≤ Δt

ν

k∑

m=1

ε2
N(tm;ν)

m−1∏

j=1

(
1 + Δt ρLB

N (tj ;ν)
)

, 1 ≤ k ≤ K, (36)

which is the desired result. �

3.2 Successive constraint method

As already indicated, the theory (e.g., a priori or even a posteriori finite element error
analysis) for the Navier-Stokes equations is plagued by exponential growth factors
and large prefactors [8, 22]. (There are some cases in which algebraic-in-T bounds
can be derived [22], however the requisite conditions will not always be satisfied.)
The simplest bounds for the exponential growth rate involve the L∞(Ω)-norm of the
gradient of the velocity—in our case, the gradient of uN(t;ν)—which indeed will
increase as ν−1 as ν decreases. We believe our formulation (26), (19), will improve
upon these theoretical estimates—not enough to permit long-time integration at very
high Reynolds numbers, but enough to permit practical and rigorous error estimation
for (applications characterized by) modest times and modest Reynolds numbers.

There are two reasons for our optimism—admittedly bolstered in hindsight by
both the numerical results reported in a later section as well as Navier-Stokes re-
sults of subsequent papers [26, 27]. First, (19) includes a viscous term that will
somewhat constrain the minimizer and hence moderate the minimum: a candidate
field large only in a thin destabilizing layer will also incur significant dissipation.
Second, ρN(t;ν) of (19) shall be estimated (conservatively but) relatively precisely:
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our lower bound ρLB
N (t;ν) shall reflect the detailed spatial and temporal structure of

uN(tk;ν),1 ≤ k ≤ K . For the latter calculation we shall adapt the Successive Con-
straint Method, as we now describe.

The Successive Constraint Method (SCM) introduced in [16, 35] is a procedure
for the construction of lower bounds for the coercivity and (in the non-coercive case)
inf-sup stability constants that appear in reduced basis a posteriori error bounds for
linear elliptic (and parabolic) PDEs [35]. The SCM—based on an Offline-Online
strategy relevant in the many-query and real-time reduced basis context—reduces the
Online (real-time/deployed) calculation to a small Linear Program for which the op-
eration count is independent of N . The SCM method can in fact be applied to any
generalized eigenproblem: we now consider adaptation to the particular generalized
eigenproblem of interest here—our stability constant (19); we emphasize that the
current context is rather more difficult than earlier situations as the underlying eigen-
problem (for nonlinear problems) will depend on the reduced basis solution for the
field variable.

3.2.1 Preliminaries

We first expand the reduced basis solution uk
N(ν) as

uk
N(ν) =

N∑

n=1

ωN n(t
k;ν)ξn, (37)

where ωN(tk;ν) = [ωN 1(t
k;ν), . . . ,ωN N(tk;ν)]T ∈ R

N is the reduced basis coeffi-
cient vector. We can thus write (19) as

ρN(tk;ν) = inf
v∈XN

N+1∑

n=1

ΦN n(t
k;ν)

dN n(v, v)

‖v‖2
, (38)

where the symmetric bilinear forms dN n and the functions ΦN n(t
k;ν) are given by

dN n(w,v) =
{

2c(ξn,w,v) + 2c(ξn, v,w), n = 1, . . . ,N,

a(w,v), n = N + 1,
(39)

and

ΦN n(t
k;ν) =

{
ωN n(t

k;ν), n = 1, . . . ,N,

ν, n = N + 1.
(40)

It is important to note that the bilinear forms are independent of time and viscosity—
this property shall be exploited in our development here.

For clarity of exposition, we introduce a time-parameter quantity μ = (tk;ν) in
Dμ ≡ {t0, . . . , tK}× D (recall that D ≡ [νmin, νmax]). We then introduce an objective
function J obj

N : Dμ × R
N+1 → R given by

J obj
N (μ;y) =

N+1∑

n=1

ΦN n(μ)yn, (41)
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where y = [y1, . . . , yN+1]T ∈ R
N+1. We may then express our stability constant as

ρN(μ) = inf
y∈YN

J obj
N (μ;y), (42)

where the set YN ⊂ R
N+1 is defined by

YN =
{

y ∈ R
N+1 | ∃wy ∈ XN s.t. yn = dN n(wy,wy)

‖wy‖2
, 1 ≤ n ≤ N + 1

}

. (43)

The equivalence between (38) and (42), (43) is readily confirmed.
To construct our lower bound we will replace YN with a set Y LB

N ⊃ YN which
leads to easier computation and in particular an Offline-Online decomposition. (We
shall also develop an upper bound, which we describe subsequently.) The set Y LB

N

will contain two types of constraints: “box constraints” that place limits on each ele-
ment of y independently; and “stability factor constraints” that place limits on linear
combinations of the elements of y. We now describe these constraints: in our partic-
ular context, both types of constraints are crucial to computational performance.

The box constraints shall take the form y ∈ B N
N for

B N
N =

N+1∏

n=1

[

σ N
Nn,σ

N
Nn

]

, (44)

where

σ N
Nn = inf

w∈XN

dN n(w,w)

‖w‖2
, σ N

Nn = sup
w∈XN

dN n(w,w)

‖w‖2
, 1 ≤ n ≤ N + 1. (45)

We note that the dN n are not bounded with respect to the L2(Ω) norm. In general,
|σ N

Nn| (and |σ N
Nn|) ≤ N ‖ξn‖X,1 ≤ n ≤ N , where we recall that N is the dimension of

our truth finite element approximation space. Since in fact ‖ξn‖X → 0 exponentially
fast as n increases any slight growth with N is not important or visible in practice.
For n = N +1, σ N

Nn is of course bounded and in fact positive as N → ∞; σ N
Nn → ∞

as N → ∞ but plays no role in (42) since ΦN N+1 = ν > 0.
The stability factor constraints take the form, for any given μ,

N+1∑

n=1

ΦN n(μ
′)yn > ρN(μ′), ∀μ′ ∈ CM,μ

J . (46)

Here CM,μ
J is the set of M (≥ 1) points in CJ closest to the given μ ∈ Dμ, where

CJ ≡ {μSCM
1 ∈ Dμ, . . . ,μSCM

J ∈ Dμ} (47)

is an “SCM parameter sample” the construction of which (by a GreedySCM proce-
dure) shall be discussed in Sect. 4.3. Note that we measure proximity in a weighted
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norm: for μ = (tk;ν) ∈ Dμ and μ′ = (tk
′ ;ν′) ∈ CJ , the distance between μ and μ′ is

defined as

dist(μ,μ′) =
√

(T (ν − ν′))2 + (νmin(tk − tk
′
))2; (48)

this choice will ensure that the set CM,μ
J contains many points in time near the ν of

interest. (Note that if M > J , then we set CM,μ
J = CJ .) Finally, we denote by

RJN ≡ {ρN(μSCM
1 ), . . . , ρN(μSCM

J )} (49)

the set of stability factors for the parameter points of the SCM parameter sample CJ .

3.2.2 Lower Bound

Now for given CJ , M ∈ N ≡ {1,2, . . .}, and any μ ∈ Dμ, we define the “lower bound”
set Y LB

N (μ; CJ ,M) ⊂ R
N+1 as

Y LB
N (μ; CJ ,M) ≡

{

y ∈ R
N+1 | y ∈ B N

N ,

N+1∑

n=1

ΦN n(μ
′)yq ≥ ρN(μ′),∀μ′ ∈ CM,μ

J

}

.

(50)
We then define our lower bound ρLB

N (tk;ν) ≡ ρLB
N (μ = (tk;ν); CJ ,M) as

ρLB
N (μ; CJ ,M) = min

y∈Y LB
N (μ;CJ ,M)

J obj
N (μ;y). (51)

We can demonstrate [16, 35] that YN ⊂ Y LB
N (μ; CJ ,M) and hence

Proposition 3 Given CJ ⊂ Dμ and M ∈ N,

ρLB
N (tk;ν) ≤ ρN(tk;ν), ∀μ ≡ (tk;ν) ∈ Dμ, (52)

for ρLB
N (tk;ν) = ρLB

N (μ = (tk;ν); CJ ,M) defined in (51).

We note that our lower bound (51) is in fact a linear optimization problem (or Lin-
ear Program (LP)). We observe that our LP (51) contains N + 1 design variables and
2(N +1)+M (one-sided) inequality constraints. The crucial observation is that given
B N

N and the sets CJ and RJN the operation count to evaluate μ → ρLB
N (μ; CJ ,M) is

independent of N ; we discuss the Offline-Online computational implications in the
next section.

3.2.3 Upper bound

As we shall see in Sect. 4.3, we also require an upper bound for the stability constant
for the (effective) construction of a good SCM parameter sample CJ . For given CJ ,
M ∈ N, and any μ ∈ Dμ, we introduce our “upper bound” set Y UB

N (μ; CJ ,M) as

Y UB
N (μ; CJ ,M) =

{

y∗(μ′) | μ′ ∈ CM,μ
J

}

, (53)
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where

y∗(μ) = arg inf
y∈YN

J obj
N (μ;y)

(in the event of non-uniqueness, any selection criterion suffices). We can then define
our upper bound as

ρUB
N (μ; CJ ,M) = min

y∈Y UB
N (μ;CJ ,M)

J obj
N (μ;y). (54)

It directly follows from (53) that Y UB
N (μ; CJ ,M) ⊂ YN and hence, for given CJ and

M ∈ N, ρUB
N (μ; CJ ,M) ≥ ρN(μ), ∀μ ∈ Dμ.

We note that the upper bound (54) is a simple enumeration: given the set
{y∗(μ′) | μ′ ∈ CJ }, the operation count to evaluate μ → ρUB

N (μ; CJ ,M) is indepen-
dent of N . We return to the computational implications shortly.

4 Offline-Online computational approach

4.1 Construction-evaluation decomposition

The calculation of the reduced basis output sN(tk;ν) and output error bound
Δs

N(tk;ν) admits a Construction-Evaluation decomposition.1 The expensive—

N -dependent—Construction stage, performed once, enables the subsequent very
inexpensive—N -independent—Evaluation stage, performed many times for each
new desired ν ∈ D. Note the reduced basis approach is particularly relevant in the
real-time context and the many-query context; for the former the relevant metric is
marginal cost—the (inexpensive) Evaluation stage—since the Construction stage is
deemed not important; for the latter the relevant metric is asymptotic average cost—
again, the (inexpensive) Evaluation stage—since the Construction stage is negligi-
ble. We first discuss the Construction-Evaluation approach for sN(tk;ν),1 ≤ k ≤ K ;
we subsequently discuss the Construction-Evaluation approach for the output error
bound Δs

N(tk;ν).
In order to compute sN(tk;ν) we expand uN(tk;ν),1 ≤ k ≤ K, as

uN(tk;ν) =
N∑

j=1

ωk
N j (ν)ξj , (55)

1This Construction-Evaluation decomposition is essentially the Offline-Online strategy described (in gen-
eral terms) in the Introduction. However, in the Offline POD-GreedyRB and GreedySCM sampling pro-
cedures (described in the next section) we already invoke the Construction-Evaluation decomposition in
order to inexpensively evaluate the error bound and stability factor bound, respectively. Hence we use
the more precise term Construction-Evaluation—used both in the Offline and Online stages—to describe
the procedure by which we can decouple the N -dependent and N -independent components of the basic
reduced basis calculations (for the reduced basis coefficients, reduced basis output prediction, stability
factor, and a posteriori error bounds).
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where we recall that the ξj ,1 ≤ j ≤ N, are the basis functions for our reduced basis
space XN . We may then evaluate the reduced basis output as

sN(tk;ν) =
N∑

j=1

ωk
N j (ν)�(ξj ), 1 ≤ k ≤ K. (56)

It remains to obtain the ωk
N j (ν),1 ≤ j ≤ N,1 ≤ k ≤ K .

At any given time level tk , we find uN(tk;ν) from Newton iteration applied to
(10): if we denote the current Newton iterate as uN(tk;ν) then the Newton increment
δuN(tk;ν) satisfies

1

Δt
(δuN(tk;ν), v) + 2c(uN(tk;ν), δuN(tk;ν), v) + νa(δuN(tk;ν), v)

= rN(v; tk;ν), ∀v ∈ XN, (57)

where for all v ∈ XN (or XN ) the Newton residual is given by

rN(v; tk;ν) ≡ f (v) − 1

Δt
(uN(tk;ν) − uN(tk−1;ν), v)

− c(uN(tk;ν),uN(tk;ν), v) − νa(uN(tk;ν), v). (58)

The next iterate is then given by uN(tk;ν) + δuN(tk;ν); we continue until conver-
gence. We now express the crucial computational kernel—(57) and (58)—in alge-
braic form.

Towards that end, we first expand the current Newton iterate and the Newton in-
crement as

uN(tk;ν) =
N∑

j=1

ωk
N j (ν)ξj , (59)

δuN(tk;ν) =
N∑

j=1

δωk
N j (ν)ξj , (60)

respectively. It then follows from (57) and (58) that the δωk
N j (ν),1 ≤ j ≤ N, satisfy

the equations

N∑

j=1

[
MN ij

Δt
+ 2

N∑

n=1

ωk
N n(ν)FN nij + νAN ij

]

δωk
N j (ν) = rN(ξi; tk;ν),

1 ≤ i ≤ N, (61)

with

rN(ξi; tk;ν) = f (ξi) −
N∑

j=1

MN ij

Δt
(ωk

N j (ν) − ωk−1
N j (ν))

−
N∑

n=1

N∑

j=1

FN nijω
k
N n(ν)ωk

N j (ν) − ν

N∑

j=1

AN ijω
k
N j (ν), (62)
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for 1 ≤ i ≤ N. Here the

MN ij = (ξj , ξi), FN nij = c(ξn, ξj , ξi), AN ij = a(ξj , ξi), 1 ≤ i, j, n ≤ N,

(63)
are parameter-independent arrays. We can now readily identify the Construction-
Evaluation decomposition.

In the Construction stage we first form and store the time-independent and
ν-independent arrays MNmax ij , FNmax nij , ANmax ij , f (ξi), and �(ξi),1 ≤ n, i, j ≤
Nmax. The operation count in the Construction stage of course depends on N —even
once the ξi,1 ≤ i ≤ Nmax, are known (obtained by the GreedyRB sampling proce-
dure of the next section), it remains to compute O(N3

max) finite element quadra-
tures over the triangulation. Note that, thanks to the hierarchical nature of the re-
duced basis spaces, the stiffness matrices/vectors MN ij , FN nij , AN ij , f (ξi), and
�(ξi),1 ≤ n, i, j ≤ N, for any N ≤ Nmax can be extracted as principal subarrays of
the corresponding Nmax quantities. (For non-hierarchical reduced basis spaces the
storage requirements are much higher.)

In the Evaluation stage, for each Newton iteration at each time level k = 1, . . . ,K :
we first form the left-hand side of (61) and the residual of (62)—in O(N3) operations;
we then solve the resulting N ×N system of linear equations for δωk

N j ,1 ≤ j ≤ N—

again in O(N3) operations (in general, we must anticipate that the reduced basis ma-
trices will be dense). Once the ωk

N j ,1 ≤ j ≤ N,1 ≤ k ≤ K, are obtained—O(N3K)

operations in total—we evaluate our output from (56)—in O(NK) operations. The
storage and operation count in the Evaluation stage is clearly independent of N , and
we can thus anticipate—presuming N � N —very rapid reduced basis response in
the real-time and many-query contexts. For problems in higher dimensions the com-
putational savings can be very significant.

We now turn to the error bound Δs
N(tk;ν). It is clear from (14) that the output error

bound Δs
N(tk;ν) can be directly evaluated in terms of the dual norm of �—which we

can readily compute in the Construction stage—and the L2(Ω) error bound, Δk
N(ν);

we thus focus on the L2(Ω) error bound, Δk
N(ν). It is furthermore clear from (26) that

there are two components to the calculation of Δk
N(ν): evaluation of ρLB

N (tk;ν) by
the Successive Constraint Method, and computation of the dual norm of the residual,
εN(tk;ν) of (16). We first briefly discuss the Construction-Evaluation decomposition
for the former; we then consider the latter (computation of the dual norm for quadratic
nonlinearities is described in detail in [28, 36], and we thus provide here only a brief
summary).

In the Construction stage of the SCM we form the sets B N
N and CJ , RJN for the

lower bound and the set {y∗(μ′) | μ′ ∈ CJ } for the upper bound. Clearly, the opera-
tion count for this Construction stage is dependent on N and quite intensive: we must
compute many finite element minimum (and maximum) eigenvalues and associated
eigenvectors. In the Evaluation stage of the SCM, both the lower bound and upper
bound calculations are quite simple, as already described in Sect. 3: the lower bound
is a small Linear Program; the upper bound is an enumeration/comparison. (In both
cases, we must first find the M closest points to μ in CJ —from (48)—to form CM,μ

J :
this is readily effected by a simple sort.) The storage and operation count in the Eval-
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uation stage is independent of N , and in fact typically quite small relative to other
components.

We now turn to the dual norm of the residual. We first note from duality that
εN(tk;ν) can be expressed as

ε2
N(tk;ν) = ‖êN (tk;ν)‖2

X, 1 ≤ k ≤ K, (64)

where êN (tk;ν) is the Riesz representation of the residual,

(êN (tk;ν), v)X = rN(v; tk;ν), ∀v ∈ XN . (65)

Here rN(v; tk;ν) is the residual defined in (17), which we may further write—
exploiting the reduced basis representation—as

rN(v; tk;ν) = f (v) − 1

Δt

N∑

j=1

(ωk
N j (ν) − ωk−1

N j (ν))(ξj , v)

−
N∑

n=1

N∑

j=1

ωk
N n(ν)ωk

N j (ν)c(ξn, ξj , v) − ν

N∑

j=1

ωk
N j (ν)a(ξj , v),

(66)

for 1 ≤ k ≤ K .
It now follows directly from (65) and (66) that

êN (tk;ν) =
(N+1)2
∑

m=1

Υ m
N (tk;ν)Γ m

N , 1 ≤ k ≤ K, (67)

where the Υ m
N (tk;ν) depend on timestep and viscosity ν explicitly but also through

ω(tk;ν) and ω(tk−1;ν), and the Γ m
N are solutions to time-independent and ν-

independent “Poisson” problems of the form

(Γ m
N ,v)X = gm

N(v), ∀v ∈ XN . (68)

The Υ m
N (tk;ν), gm

N,1 ≤ m ≤ (N + 1)2, are given (for a particular ordering) by

Υ 1
N(tk;ν) = 1, Υ 2

N(tk;ν) = − (ωk
N 1 − ωk−1

N 1 )

Δt
, . . . ,

(69)
Υ N+2

N (tk;ν) = −ωk
N 1(ν)ωk

N 1(ν), . . . , Υ N2+2N+1
N (tk;ν) = −ν

corresponding to

g1
N(v) = f (v), g2

N = (ξ1, v), . . . ,
(70)

gN+2
N (v) = c(ξ1, ξ1, v), . . . , gN2+2N+1

N (v) = a(ξN , v).
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It then follows from (64) that

ε2
N(tk;ν) =

(N+1)2
∑

i=1

(N+1)2
∑

j=1

Υ i
N(tk;ν)Υ

j
N(tk;ν)(Γ i

N ,Γ
j
N)X, 1 ≤ k ≤ K. (71)

The Construction-Evaluation decomposition is now clear.
In the Construction stage, we find the Γ m

Nmax
,1 ≤ m ≤ (Nmax + 1)2, and form

the inner products (Γ i
Nmax

,Γ
j
Nmax

)X,1 ≤ i, j ≤ (Nmax + 1)2. The operation count for

the Construction stage clearly depends on N —(Nmax + 1)2 finite element “Poisson”
problems (68) and (Nmax +1)4 finite element quadratures over the triangulation. (The
temporary storage associated with the latter can be excessive for higher-dimensional
problems: it is simple to develop procedures that balance temporary storage and
re-computation.) Note that, thanks to the hierarchical nature of the reduced basis
spaces, the inner products (Γ i

N ,Γ
j
N)X,1 ≤ i, j ≤ (N + 1)2, for any N ≤ Nmax can

be directly extracted from the corresponding Nmax quantities. (As already noted, for
non-hierarchical reduced basis spaces the storage requirements will be considerably
higher.)

In the Evaluation stage, given the reduced basis coefficients ωN j (t
k;ν),1 ≤ j ≤

N,1 ≤ k ≤ K : we can readily compute the coefficient functions Υ
j
N(tk;ν),1 ≤ j ≤

(N + 1)2,1 ≤ k ≤ K ; we then simply perform the sum (71) from the stored inner
products—O((N + 1)4) operations per time step and hence O((N + 1)4K) oper-
ations in total. As desired, the operation count for the Evaluation stage is indeed
independent of N . The quartic scaling with N is obviously less than welcome; how-
ever, in actual practice, for modest N the cost to evaluate s(tk;ν) and the cost to
evaluate ΔN(tk;ν) are often not too incommensurate—the many O(N3) operations
of the former partially balance the (N +1)4 operations of the latter. Multi-domain (in
parameter) approaches can also reduce the deleterious effect of the N4 scaling.

This concludes the discussion of the Construction-Evaluation decomposition. The
Construction stage is performed Offline; the Evaluation stage is invoked Online—for
each new ν of interest in the real-time or many-query contexts. However, there are
two other components to the Offline stage. First, we must construct a good (rapidly
convergent) reduced basis space and associated basis functions ξi,1 ≤ i ≤ Nmax, by
a POD-GreedyRB procedure: this sampling process in fact relies on the Construction-
Evaluation decomposition to greatly reduce the requisite number of (expensive)
“candidate” finite element calculations over an (extensive) GreedyRB training sam-
ple, Ξtrain,RB. And second, we must construct our SCM parameter sample CJ by
a GreedySCM procedure; this sampling process also relies on the Construction-
Evaluation decomposition in particular to greatly reduce the number of (expen-
sive) stability factor calculations over an (extensive) GreedySCM training sample,
Ξtrain,SCM.

4.2 POD-GreedyRB sampling strategy

We address here the generation of our reduced basis space XN . Our sampling pro-
cedure combines, as first proposed in [15], the POD (Proper Orthogonal Decompo-
sition) in tk —to capture the causality associated with our evolution equation—with
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a Greedy procedure [12, 35, 38] in ν—to treat efficiently the higher dimensions and
more extensive ranges of parameter variation. (For an alternative “interpolation” ap-
proach to reduced order time-parameter spaces see [1, 2].)

To begin, we summarize the well-known optimality property of the POD [24].
Given L elements of XN , wj ∈ XN ,1 ≤ j ≤ L, and any positive integer P ≤ N ,
POD({w1, . . . ,wL},P ) returns P (·, ·)X-orthogonal functions {χp,1 ≤ p ≤ P } such
that the space VP = span{χp,1 ≤ p ≤ P } is optimal in the sense that

VP = arg inf
YP ⊂span{wj ,1≤j≤L}

(
1

L

L∑

j=1

inf
v∈YP

‖wj − v‖2
X

)1/2

,

where YP denotes a P -dimensional linear space. We also recall that to find the
χp we first form the correlation matrix C with entries Cij = (wi,wj )X,1 ≤ i, j ≤
L; we then find the largest P eigenvalues λp,1 ≤ p ≤ P, and associated eigen-
vectors vp ∈ R

L,1 ≤ p ≤ P, of the system Cvp = λpvp with normalization
(vp)T vp = 1; finally we form χp = ∑L

j=1 v
p
j wj ,1 ≤ p ≤ P . Note that the χp thus

satisfy the orthogonality condition (χm,χn)X = λmδmn,1 ≤ m,n ≤ P .
To initiate the POD-GreedyRB sampling procedure we must specify a very large

(exhaustive) “training” sample of ntrain,RB points in D, Ξtrain,RB, and an initial (say,
random) RB parameter sample S∗ = {ν∗

0 }. Moreover, we shall require a nominal value
ρ∗

N for the lower bound of the stability constant: for the purposes of the POD-Greedy
sampling only, we replace our SCM lower bound with ρLB

N (tk;ν) = ρ∗
N,1 ≤ k ≤

K,∀ν ∈ D; we then define Δ∗
N(tk;ν) to be our usual a posteriori L2 error bound

(26) but now with ρLB
N (tk;ν) replaced by the “nominal” stability factor ρ∗

N — hence
Δ∗

N(tk;ν) is not in fact a true error bound but rather just an indicator. (We return to
this point at the conclusion of this section.)

The algorithm is then given by

Set Z = ∅;
Set ν∗ = ν∗

0 ;
While N ≤ Nmax

{χp,1 ≤ p ≤ P1} = POD({uN (tk;ν∗),1 ≤ k ≤ K},P1);
Z ← {Z, {χp,1 ≤ p ≤ P1}};
N ← N + P2; {ξn,1 ≤ n ≤ N} = POD(Z,N);
XN = span{ξn,1 ≤ n ≤ N};
ν∗ = arg max

ν∈Ξtrain,RB
Δ∗

N(tK = T ;ν);
S∗ ← {S∗, ν∗};

end.

Set XN = span{ξn,1 ≤ n ≤ N},1 ≤ N ≤ Nmax.
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In actual practice, we typically exit the POD-Greedy sampling procedure at N =
Nmax ≤ Nmax,0 for which a prescribed error tolerance is satisfied: to wit, we define

ε∗
N,max = max

ν∈Ξtrain,RB
Δ∗

N(tK ;ν),

and terminate when ε∗
N,max ≤ ε∗

tol. Note by virtue of the final re-definition the POD-
Greedy generates hierarchical spaces XN , 1 ≤ N ≤ Nmax, which is computationally
very advantageous.

There are two “tuning” variables in the POD-GreedyRB procedure, P1 and P2.
We choose P1 to satisfy an internal POD error criterion based on the usual sum of
eigenvalues; we choose P2 ≤ P1 to minimize duplication in the reduced basis space—
though typically we prefer P2 > 1 in order to reduce the number of GreedyRB itera-
tions and hence Offline cost. We make three observations. First, the POD-GreedyRB
method readily accommodates a repeat ν∗ in successive GreedyRB cycles—new in-
formation will always be available and old information rejected; in contrast, a pure
GreedyRB approach in both t and ν [12], though often generating good spaces, can
“stall.” Second, thanks to the POD normalization (χm,χn)X = λmδmn,1 ≤ m,n ≤
P1, the modes generated in the first POD at any parameter value ν∗ are automati-
cally scaled by their respective importance in representing u(tk;ν∗),1 ≤ k ≤ K ; the
second POD (of Z ) is thus correctly weighted to accommodate POD modes from dif-
ferent parameter values. Third, our POD normalization but now in the second POD
yields ‖ξn‖X = √

λn,1 ≤ n ≤ Nmax, where the λn are the eigenvalues of the corre-
lation matrix associated to Z (of the last GreedyRB iteration); we thus motivate our
earlier claims that ‖ξn‖X → 0 rapidly as n increases (presuming a rapidly convergent
RB approximation) and ωk

Nn(ν) ≈ O(1),1 ≤ n ≤ N . The latter are in fact confirmed
by our numerical experiments of the next section.

The procedure remains computationally feasible even for large parameter domains
and very extensive training samples (and in particular in higher parameter dimen-
sions): the POD is conducted in only one (time) dimension and the GreedyRB ad-
dresses the remaining (parameter) dimensions. The crucial point to note is that the
operation count for the POD-GreedyRB algorithm is additive and not multiplicative
in ntrain,RB and N : in searching for the next parameter value ν∗, we invoke the
Construction-Evaluation decomposition to inexpensively calculate the a posteriori
error bound at the ntrain,RB candidate parameter values; in contrast, in a pure POD ap-
proach, we would need to evaluate the finite element “truth” solution at the ntrain,RB
candidate parameter values. (Of course, much of the computational economies are
due not to the GreedyRB per se, but rather to the accommodation within the GreedyRB
of the inexpensive error bounds.) As a result, in the POD-GreedyRB approach we can
take ntrain,RB relatively large: we can thus anticipate reduced basis spaces and approx-
imations that provide rapid convergence uniformly over the entire parameter domain.
(Note that more sophisticated and hence efficient search algorithms can be exploited
in the GreedyRB context, for example [4].)

Once the reduced basis spaces are defined we can then construct our SCM para-
meter sample, as described in the next section. If we find that the true lower bound
is in fact very different from—much more negative than—our nominal value ρ∗

N we
may wish to, or need to, return to the POD-GreedyRB algorithm in order to ensure a
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sufficiently accurate reduced basis approximation. Typically if we choose ρ∗
N and ε∗

tol
conservatively such a “restart” is not required. It is imperative to note that, in actual
Online calculations—evaluations μ → sN(tk;ν),Δs k

N (μ) in many-query and real-
time applications such as optimization, control, and parameter estimation—we rely
on the true stability factor lower bound such that Propositions 2 and 3 are rigorously
valid.

4.3 GreedySCM sampling strategy

We now present the construction of the SCM parameter sample CJ by a GreedySCM
algorithm. We shall require an SCM training sample Ξtrain,SCM of ntrain,SCM points
in Dμ. We also require a tolerance εSCM of the order of unity which shall control the
error in the lower bound prediction.

We first set J = 1 and choose C1 = {μSCM
1 } “arbitrarily.” We then perform

While max
μ∈Ξtrain,SCM

[exp(T ρUB
Nmax

(μ; CJ ,M)) − exp(T ρLB
Nmax

(μ; CJ ,M))

exp(T ρLB
Nmax

(μ; CJ ,M))

]

> εSCM :

μSCM
J+1 = arg max

μ∈Ξtrain,SCM

[exp(T ρUB
Nmax

(μ; CJ ,M)) − exp(T ρLB
Nmax

(μ; CJ ,M))

exp(T ρLB
Nmax

(μ; CJ ,M))

]

;

CJ+1 = CJ ∪ μSCM
J+1 ;

J ← J + 1;
end.

Note we control not the gap between the upper bound and the lower bound but rather
the gap between the exponential of the upper bound and the exponential of the lower
bound: this heuristic better reflects the effect of the stability parameter on the ultimate
L2 a posteriori error bound. We typically choose εSCM = T νmax.

We denote by J max(εSCM) the value of J upon exit—the value of J for which our
tolerance is satisfied: our lower bound for N = Nmax is thus given by ρLB

Nmax
(tk;ν) =

ρLB
Nmax

(μ = (tk;ν); CJ max ,M). It is important to note that our GreedySCM algo-
rithm is performed for N = Nmax. Then, once the SCM parameter sample has
been constructed, we compute the ρN(μSCM

j ),1 ≤ j ≤ J max—the RJ maxN —for all

N = 1, . . . ,Nmax − 1. (Note that the ρNmax(μ
SCM
j ),1 ≤ j ≤ J max—the RJ max Nmax —

are already calculated as part of the GreedySCM procedure.) We can thus evaluate
ρLB

N (μ) = ρLB
N (μ; CJ max ,M) from (51)—and Proposition 3 remains valid—for any

N ∈ [1,Nmax] and any μ ∈ Dμ. Of course, our tolerance εSCM may not be precisely
satisfied for all N , and in particular smaller N ; however, for the larger N of interest,
the greedy selection ensures a sufficiently good lower bound.

Finally, we close by noting that SCM calculation of the nonlinear Burgers’ stabil-
ity factor is particularly demanding: the number of terms in the affine expansion of
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the objective function increases with N , the dimension of the reduced basis approx-
imation space. (In contrast, for linear problems, the coercivity and inf-sup stability
factors depend only on the parametric form of the associated PDE operator.) How-
ever, it is important to note that the σ N

Nn,σ
N
Nn,1 ≤ n ≤ N, tend to zero very rapidly

as n increases and furthermore ΦN n = ωk
Nn(ν) ≈ O(1),1 ≤ n ≤ N ; the variations in,

and contributions of, the higher modes are thus tightly controlled—largely mitigating
the nominal high dimensionality. As a result, and as we shall observe in Sect. 5, Jmax
is relatively small in particular compared to ntrain,SCM.

5 Numerical results

We consider the time interval [0, T ] with T = 2 and viscosity range D = [νmin, νmax]
with νmin = 0.005 and νmax = 1. For the truth approximation we consider a reg-
ular mesh of N = 201 degrees of freedom and a constant timestep Δt = 0.02
corresponding to K = 100 timesteps. We present in Fig. 1 the truth solution of
the time-dependent viscous Burger problem as a function of space and time for
ν = 1, ν = 0.1, ν = 0.01, and ν = 0.005: the field evolves to a steady state with
outer solution ∼ √

2x and inner boundary layer (at x = 1) of thickness ν. (We have
confirmed that the results presented in this section are largely insensitive to further
increases in N .)

There are of course initial conditions and Burgers’ solutions that are more chal-
lenging from a reduced basis approximation perspective: in particular, reduced basis
spaces are not particularly well suited to the approximation of solutions that exhibit
sharp propagating fronts. However, we recall that our analysis of the Burgers’ equa-
tion is motivated by the incompressible Navier-Stokes equations—for which the “de-
veloping boundary layer” Burgers’ solution presented here is in fact a more appropri-
ate model problem than a “traveling near shock.” In [26, 27] we apply the techniques
developed in the current paper to fluid flows which exhibit significant boundary layer
structure as well as traveling (but incompressible) waves.

We next choose a log uniformly distributed training sample Ξtrain,RB of size
ntrain,RB = 50 and pursue the POD-GreedyRB sampling procedure with ρ∗

N = 0,
ν∗

0 = 0.005, and ε∗
tol = 10−3. The POD-GreedyRB sampling procedure terminates

after 6 POD-Greedy iterations—one iteration is defined as one pass through the While
loop—and yields Nmax = 17 and the optimal RB parameter sample

S∗ = [0.0050,0.0365,0.0107,0.1424,0.0057,0.0065,0.0074].
We observe, not surprisingly, that most of the POD-GreedyRB sample points are close
to νmin = 0.005. We present in Fig. 2 ε∗

N,max as a function of POD-GreedyRB iteration
number (and N ). Clearly, the error indicator ε∗

N,max decreases very rapidly with N ;
we shall subsequently confirm that the rigorous error bound, and hence also the true
error, also decreases very rapidly with N .

We now turn to the stability factor. Given the GreedySCM training sample
Ξtrain,SCM = {t2, t4, . . . , tK} × Ξtrain,RB we perform the GreedySCM procedure of
Sect. 4.3 to construct the lower bound for the stability factor. We present in Fig. 3



Reduced basis approximation and a posteriori error estimation 179

Fig. 1 Solution of the Burgers’ equation uN (x, tk;ν) as a function of x and tk : (a) ν = 0.005,
(b) ν = 0.01, (c) ν = 0.1, and (d) ν = 1

the SCM parameter sample CJ for J = J max = 80; we observe that most of the sam-
ple points are close to νmin = 0.005, and that many sample points correspond to the
final time T = 2. Note that J max is much less than ntrain,SCM and hence the SCM
is clearly providing substantial approximation in (discrete) time and (continuous)
parameter. The (POD-GreedyRB) reduced basis approximation uN(tk;ν) will con-

verge much more rapidly to uN (tk;ν) in N than the (GreedySCM) SCM approxima-

tion ρLB
N (tk;ν) will converge to ρN(tk;ν) in J : the reduced basis projection exploits

smoothness in parameter and Galerkin optimality, whereas the SCM construction—
focused on a lower bound—enlists only rather weak constraints and (implicitly) low-
order interpolation. Fortunately, whereas we require a highly accurate reduced basis
approximation, we are content with a relatively crude stability factor; note also that
whereas the reduced basis Online operation count depends on N , the SCM Online
operation count depends on M—here M = 16—and not J max.
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Fig. 2 The error indicator
ε∗
N,max as a function of

POD-Greedy iteration number
and also N

Fig. 3 Distribution of the SCM
parameter sample CJ in time
(linear scale) and parameter (log
scale). The grid represents
Ξtrain,SCM: each horizontal
gray line corresponds to a
tk, k = 2,4, . . . ,K ; each
vertical gray line corresponds to
a point in Ξtrain,RB

We now present in Fig. 4 the stability factor ρN(tk;ν) as a function of tk for
ν = 1,0.1,0.01, and 0.005 for N = 17; we also present the stability factor lower
bound ρLB

N (tk;ν) as well as the corresponding upper bound ρUB
N (tk;ν). As al-

ready indicated, ρN(tk;ν) reflects the detailed spatial and temporal structure of
uk

N(ν),1 ≤ k ≤ K , as well as viscous stabilization effects. As a result, even for
ν = 0.005—clearly a convectively-dominated highly nonlinear flow—ρN(tk;ν) is
still mostly positive (stable): in our particular example, uk

N(ν) is “dangerous” only
within the boundary layer. It should also be noted that the SCM yields a very good
upper bound for the stability factor (this SCM upper bound is also significantly less
complicated and less costly than a standard reduced basis Rayleigh-Ritz approxi-
mation): the difference between ρUB

N (tk;ν) and ρN(tk;ν) is indeed very small. (If
we replace ρLB

N (tk;ν) with ρUB
N (tk;ν) in (26) we will certainly obtain better error

bounds—but we can no longer provide rigorous guarantees.)
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Fig. 4 Stability factors ρN (tk;ν), ρLB
N

(tk;ν), and ρUB
N

(tk;ν) as a function of tk for N = 17:
(a) ν = 0.005, (b) ν = 0.01, (c) ν = 0.1, and (d) ν = 1

Finally, we present in Fig. 5 the actual L2(Ω) error, ‖uN (·, tk;ν) − uN(·, tk;ν)‖,
and the error bound, ΔN(tk;ν), as a function of discrete time tk for N = 5,10, and 15
and for ν = 0.005,0.01,0.1, and 1. Figure 6 provides the output error, |sN (tk;ν) −
sN(tk;ν)|, and the output error bound, Δs

N(tk;ν), for the same values of N and ν.
We observe that the reduced basis approximation converges quite rapidly, and that
furthermore the a posteriori error bound ΔN(tk;ν) is (rigorous, but also) reasonably
sharp; indeed, even for ν = 0.005, the numerical approximation and associated a
posteriori error estimators are both still quite good for times of order unity. However,
the output error bound Δs

N(tk;ν) is not as sharp as the L2 error bound ΔN(tk;ν): the
output effectivity ηs

N(tk;ν) can be as large as O(1000), whereas the L2 effectivity
ηN(tk;ν) is only O(10); we believe that the sharpness of the output error bound
can be significantly improved by introduction of adjoint techniques [22, 29]—this
development will be pursued in future work.
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Fig. 5 The actual L2(Ω) error, ‖uN k(ν) − uk
N

(ν)‖ (solid line), and the L2 error bound, Δk
N

(ν) (square

symbol), as a function of discrete time tk for N = 5 (first column), 10 (second column), and 15 (third
column) and for ν = 0.005 (top row), ν = 0.01 (second row), ν = 0.1 (third row), and ν = 1 (bottom row)

In summary, for ν very small—Reynolds number very large—and for large final
times T our a posteriori error bounds will certainly no longer be useful. However, our
initial calculations for the full incompressible Navier-Stokes equations [26, 27] indi-
cate that our methods can in fact treat problems relevant to engineering and science—
for example, complex flow bifurcations: we obtain certified accuracies of 1%–5% at
greatly reduced (Online) cost relative to classical finite element approaches.
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Fig. 6 The output error, |sN k(ν) − sk
N

(ν)| (solid line), and the output error bound, Δs k
N

(ν) (square

symbol), as a function of discrete time tk for N = 5 (first column), 10 (second column), and 15 (third
column) and for ν = 0.005 (top row), ν = 0.01 (second row), ν = 0.1 (third row), and ν = 1 (bottom row)
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