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Abstract We report here on the recent application of a now
classical general reduction technique, the Reduced-Basis
(RB) approach initiated by C. Prud’homme et al. in J. Fluids
Eng. 124(1), 70–80, 2002, to the specific context of differen-
tial equations with random coefficients. After an elementary
presentation of the approach, we review two contributions of
the authors: in Comput. Methods Appl. Mech. Eng. 198(41–
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44), 3187–3206, 2009, which presents the application of the
RB approach for the discretization of a simple second order
elliptic equation supplied with a random boundary condi-
tion, and in Commun. Math. Sci., 2009, which uses a RB
type approach to reduce the variance in the Monte-Carlo
simulation of a stochastic differential equation. We conclude
the review with some general comments and also discuss
possible tracks for further research in the direction.

1 Introduction

In this work we describe reduced basis (RB) approximation
and a posteriori error estimation methods for rapid and re-
liable evaluation of input-output relationships in which the
output is expressed as a functional of a field variable that
is the solution of an input-parametrized system. In this pa-
per our emphasis is on stochastic phenomena: the parame-
ter is random; the system is a partial differential equation
with random coefficients, or a stochastic differential equa-
tion, namely a differential equation forced by a Brownian
process.

The reduced basis approach is designed to serve two im-
portant, ubiquitous, and challenging engineering contexts:
real-time, such as estimation and control; and many-query,
such as design, multi-scale simulation, and—our empha-
sis here—statistical analysis. The parametric real-time and
many-query contexts represent not only computational chal-
lenges, but also computational opportunities: we may re-
strict our attention to a manifold of solutions, which can
be rather accurately represented by a low-dimensional vec-
tor space; we can accept greatly increased pre-processing
or “Offline” cost in exchange for greatly decreased “On-
line” cost for each new input-output evaluation. (All of these
terms, such as “Online,” will be more precisely defined in
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the Sect. 2.1 which constitutes a pedagogical introduction
to the reduced basis approach.) Most variants of the reduced
basis approach exploit these opportunities in some important
fashion.

Early work on the reduced basis method focused on de-
terministic algebraic and differential systems arising in spe-
cific domains [2, 23, 51, 57–61]; the techniques were sub-
sequently extended to more general finite-dimensional sys-
tems as well as certain classes of partial differential equa-
tions (and ordinary differential equations) [7, 22, 41, 62, 63,
73, 74, 77, 78]; the next decades saw further expansion into
different applications and classes of equations, such as fluid
dynamics and the incompressible Navier-Stokes equations
[16, 28, 38, 71]. There is ample evidence of potential and
realized success.

Recent research in reduced basis methods for determinis-
tic parametrized partial differential equations both borrows
from earlier efforts and also emphasizes new components:
sampling techniques for construction of optimal reduced ba-
sis approximation spaces in particular in higher dimensional
parameter domains [14, 53, 81]; rigorous a posteriori er-
ror estimation in appropriate norms and for particular scalar
outputs of interest [29, 37]; and fastidious separation be-
tween the offline stage and online stage of the computations
to achieve very rapid response [54]. These reduced basis
methods can now be applied to larger, more global parame-
ter domains, with much greater certainty and error control.

In this paper we emphasize the application of certified
reduced basis methods to stochastic problems. Two illustra-
tive approaches are explored. In the first approach [14] we
consider application of the reduced basis method to partial
differential equations with random coefficients: we associate
realizations of the random solution field to deterministic so-
lutions of a parametrized deterministic partial differential
equation; we apply the classical reduced basis approach to
the parametrized deterministic partial differential equation.
Statistical information may finally be obtained, for example
through Monte Carlo approximations. New issues arise re-
lated to the simultaneous approximation of both the input
random field and the solution random field.

In the second approach [13] we directly consider a sta-
tistical embodiment of the reduced basis notions. Here re-
duced basis ideas originally conceived in the deterministic
differential context are re-interpreted in the statistical con-
text: the deterministic differential equation is replaced by a
parametrized random process; snapshots on the parametric
manifold are replaced by correlated ensembles on the para-
metric manifold; error minimization (in the Galerkin sense)
is replaced by variance reduction; offline and online stages
are effected through fine and coarse ensembles. This tech-
nique is here applied to parametrized stochastic differential
equations.

We begin, in Sect. 2, with an initiation to the RB ap-
proach, considering a simple, prototypical elliptic problem,

with deterministic coefficients. Section 3 then presents the
first approach to stochastic problems, namely the applica-
tion of the reduced basis method to a boundary value prob-
lem supplied with a random boundary condition. The section
summarizes the results some of us obtained in [14]. With
Sect. 4, we consider the second approach, and we address
a problem different in nature, although also involving ran-
domness. The issue considered is the variance reduction of
a Monte-Carlo method for solving a stochastic differential
equation. The RB approach has been successfully employed
in [13] to efficiently generate companion variables that are
used as control variate and eventually reduce the variance
of the original quantities. The section outlines the approach
and shows its success on representative results obtained. We
conclude the article presenting in Sect. 5 some potential, al-
ternate applications of the approach in the random context.

2 An Initiation to Reduced-Basis Techniques

We begin with an overview of Reduced Basis techniques.
The level of our exposition is elementary. Our purpose here
is to introduce the main ideas underlying the approach, leav-
ing aside all unnecessary technicalities. The reader already
familiar with this family of approximation approaches may
easily skip this section and directly proceed to Sects. 3 and 4
where the adaptation of the general technique to the spe-
cific case of partial differential equations with random co-
efficients and to variance reduction using the RB approach
will be addressed. We also refer to [45, 76, 79] for peda-
gogic introductions to the standard RB method, though with
different perspectives.

2.1 Outline of the Reduced Basis Approach

Assume that we need to evaluate, for many values of the pa-
rameter μ, some output quantity s(μ) = F(u(μ)) function
of the solution u(μ) to a partial differential equation para-
metrized by this parameter μ. If the computation of u(μ)

and s(μ) for each single value of the parameter μ already
invokes elaborate algorithms, and this is indeed the case in
the context of partial differential equations, then the numer-
ical simulation of u(μ) and s(μ) for many μ may become
a computationally overwhelming task. Reducing the cost of
parametrized computations is thus a challenge to the numer-
ical simulation. This is the purpose of Reduced Basis tech-
niques (abbreviated as RB throughout this article) to reduce
this cost.

Let us formalize our discussion in the simple case of a
partial differential equation which is an elliptic second order
equation of the form (see (6) below):

−div(A(μ)∇u(μ)) = f,
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on a domain D with homogeneous Dirichlet boundary con-
ditions. The mathematical setting is classical. We assume
that the solution of interest u(μ) ∈ X is an element of a
Hilbert space X with inner product (·, ·)X and norm ‖ · ‖X .
The output s(μ) = F(u(μ)) ∈ R is a scalar quantity where
F : X → R is a smooth (typically linear) function and
μ is a P -dimensional parameter varying in a fixed given
range � ⊂ R

P . An example of such output s is s(μ) =
F(u(μ)) := ∫

D f u(μ) (see (8) below). The function u(μ)

is mathematically defined as the solution to the general vari-
ational formulation:

Find u(μ) ∈ X solution to a(u(μ), v;μ) = l(v), ∀v ∈ X,

(1)

where a(·, ·;μ) is a symmetric bilinear form, continuous and
coercive on X and where l(·) is a linear form, continuous
on X. For all μ ∈ �, a(·, ·;μ) thus defines an inner product
in X. The existence and uniqueness of u(μ), for each μ, is
then obtained by standard arguments.

We henceforth denote by ‖ · ‖μ the norm ‖ · ‖μ =√
a(·, ·;μ) equivalent to ‖ · ‖X (under appropriate assump-

tions on A, see below), which is usually termed the energy

norm. In the sequel, we denote by uN (μ) ∈ XN an accu-
rate Galerkin approximation for u(μ) in a linear subspace
XN ⊂ X of dimension N � 1 and by sN (μ) = F(uN (μ))

the corresponding approximation for the output s(μ). For
that particular choice of XN , we assume that the approx-
imation error |s(μ) − sN (μ)| is uniformly sufficient small
for all μ ∈ �. That is, sN (μ) is considered as a good ap-
proximation of the output s(μ) in practical applications. The
difficulty is, we put ourselves in the situation where comput-
ing sN (μ) for all the values μ needed is too expensive, given
the high dimensionality N of the space XN and the number
of parameters μ for which (1) need to be solved.

The RB approach typically consists of two steps. The
purpose of the first step is to construct a linear subspace

XN ,N = Span(uN (μN
n ), n = 1, . . . ,N), (2)

subset of XN , of dimension N 	 N , using a few approx-
imate solutions to (1) for particular values of the parame-
ter μ. The point is of course to carefully select these val-
ues (μN

n )1≤n≤N ∈ �N of the parameter, and we will discuss
this below (see (4) and (5)). For intuitively clear reasons, the
particular solutions uN (μN

n ) are called snapshots. This first
step is called the offline step, and is typically an expensive
computation, performed once for all. In a second step, called
the online step, an approximation uN ,N (μ) ∈ XN ,N of the
solution to (1) is computed as a linear combination of the
uN (μN

n ). The problem solved states:

Find uN ,N (μ) ∈ XN ,N solution to

a(uN ,N (μ), v;μ) = l(v), ∀v ∈ XN ,N . (3)

This problem is much less computationally demanding
than solving for the fine solution uN (μ), and will be per-
formed for many values of the parameter μ. We denote
by sN ,N (μ) = F(uN ,N (μ)) the corresponding approxima-
tion of the output s(μ). An a posteriori estimator �s

N(μ)

for the output approximation error |sN (μ) − sN ,N (μ)| is
needed in order to appropriately calibrate N and select the
(μN

n )1≤n≤N . This a posteriori estimator may also be used
in the online step to check the accuracy of the output. We
shall make this precise below. For the time being, we only
emphasize that the a posteriori analysis we develop aims
at assessing the quality of the approximation of the output s

(and not the overall quality of the approximation of the solu-
tion), see [1] and references therein. The method is typically
called a goal oriented approximation method.

The formal argument that gives hope to construct an ac-
curate approximation of the solution u(μ) to (1) using this
process is that the manifold M N = {uN (μ),μ ∈ �} is ex-
pected to be well approximated by a linear space of dimen-
sion much smaller than N , the dimension of the ambient
space XN . An expansion on a few snapshots N has there-
fore a chance to succeed in accurately capturing the solu-
tion u(μ) for all parameter values μ. The reduced basis
method is fundamentally a discretization method to approx-
imate the state space M N , with a view to computing an ac-
curate approximation of the output. Of course, this require-
ment strongly depends on the choice of the parametrization
which is a matter of modelling.

The RB method yields good approximations sN ,N (μ) of
sN (μ) under appropriate assumptions on the dependency of
the solution u(μ) on the input parameter μ. As a conse-
quence, optimal choices for the approximation space XN ,N

should account for the dependency of the problem with re-
spect to μ. More precisely, the method should select pa-
rameter values (μN

n )1≤n≤N ∈ �N with a view to control-
ling the norm of the output approximation error |sN (μ) −
sN ,N (μ)| as a function of μ. For most applications, the ap-
propriate norm to consider for the error as a function of μ is
the L∞ norm and this is the choice indeed made by the RB
approach, in contrast to many other, alternative approaches.
The desirable choice of (μN

n )1≤n≤N is thus defined by:

(μN
n )1≤n≤N ∈ arginf

(μn)1≤n≤N∈�N

(
sup
μ∈�

|sN (μ) − sN ,N (μ)|
)
.

(4)

Note that, although not explicitly stated, the rightmost term
sN ,N (μ) in (4) parametrically depends on (μn)1≤n≤N be-
cause the solution to (3) for μ is developed as a linear com-
bination of the corresponding snapshots uN (μn).

It is unfortunately very difficult to compute (4) in prac-
tice. With the publication [75], the RB approach suggests
an alternative, practically feasible procedure. Instead of the
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parameters (μN
n )1≤n≤N defined by (4), the idea is to select

approximate minimizers of

(μN
n )1≤n≤N ∈ arginf

(μn)1≤n≤N∈�N

(
sup

μ∈�trial

�s
N(μ)

)
. (5)

Note that there are two differences between (4) and (5).
First, the set � has been discretized into a very large trial
sample of parameters �trial ⊂ �. Second, and more impor-
tantly, the quantity �s

N(μ) minimized in (5) is an estimator
of |sN (μ)− sN ,N (μ)|. A fundamental additional ingredient
is that the approximate minimizers of (5) are selected using
a specific procedure, called greedy because the parameter
values μN

n , n = 1, . . . ,N , are selected incrementally. Such
an incremental procedure is in particular interesting when
N is not known in advance, since the computation of ap-
proximate μN

n (1 ≤ n ≤ N ) does not depend on N and may
be performed until the infimum in (5) is judged sufficiently
low.

Of course, the computation of approximations to (5) with
such a greedy algorithm can still be expensive, because a
very large trial sample of parameters �trial ⊂ � might have
to be explored. The RB method is thus only considered effi-
cient when the original problem, problem (1) here, has to be
computed for such a large number of input parameter values
μ, that the overall procedure (computationally expensive of-
fline step and then, efficient online step) is practically more
amenable than following the original, direct approach. One
often speaks of a many-query computational context when
it is the case. Notice that the RB method is not to be seen
as a competitor to the usual discretization methods; it rather
builds upon already efficient discretization methods using
appropriate choices of XN in order to speed up computa-
tions that have to be performed repeatedly.

The approach can therefore be reformulated as the fol-
lowing two-step procedure

– in the offline stage (which, we recall, may possibly be
computationally expensive), one “learns” from a very
large trial sample of parameters �trial ⊂ � how to choose
a small number N of parameter values; this is performed
using a greedy algorithm that incrementally selects the
μn, n = 1, . . . ,N ; the selection is based on the estima-
tor �s

N(μ); accurate approximations uN (μn) for solu-
tions u(μn) to (1) are correspondingly computed at those
few parameter values;

– in the online stage, computationally inexpensive approx-
imations uN ,N (μ) of solutions u(μ) to (1) are com-
puted for many values μ ∈ � of the parameter, using the
Galerkin projection (3); the latter values need not be in the
sample �trial, and yield approximations sN ,N (μ) for the
output s(μ); the estimator �s

N(μ), already useful in the
offline step, is again employed to check the quality of the
online approximation (this check is called certification).

Notice that the computation of the error estimator �s
N(μ)

needs to be inexpensive, in order to be efficiently used on
the very large trial sample in the offline stage, and for each
new parameter values in the online stage.

One might ask why we proceed with the reduced basis
approach rather than simply interpolate s(μ), given the few
values {sN (μ1), . . . , sN (μN)}. There are several important
reasons: first, we have rigorous error estimators based on
the residual that are simply not possible based on direct in-
terpolation; second, these residuals and error bounds drive
the greedy procedure; third, the state-space approach pro-
vides Galerkin projection as an “optimal” interpolant for the
particular problem of interest; and fourth, in higher para-
meter dimensions (say of the order of 10 parameters), in
fact the a priori construction of scattered-data interpola-
tion points and procedures is very difficult, and the com-
bination of the greedy and Galerkin is much more effec-
tive.

We are now in position to give some more details on both
the offline and online steps of the RB approach in a very
simple case: an elliptic problem, with an affine dependency
on the parameter. Our next section will make specific what
the greedy algorithm, the estimator �s

N(μ), along with other
objects abstractly manipulated above, are.

2.2 Some More Details on a Simple Case

As mentioned above, we consider for simplicity the Dirich-
let problem

{−div(A(μ)∇u(μ)) = f in D,

u(μ) = 0 on ∂D,
(6)

where D is a two-, or three-dimensional domain and the
matrix A(μ) is parameterized by a single scalar parameter

μ ∈ � = [μmin,μmax] ⊂ R
∗+. We assume that the matrix A

is symmetric and depends on μ in an affine way:

A(μ) = A0 + μ A1, ∀μ ∈ �. (7)

This assumption (7) is a crucial ingredient, responsible, as
we shall explain below, for a considerable speed-up and
thus for the success of the RB approach here. More gen-
erally, either we must identify by inspection or construction
an “affine” decomposition of the form (7), or we must de-
velop an appropriate affine approximation; both issues are
discussed further below.

We assume we are interested in efficiently computing, for
many values of μ ∈ �, the output:

s(μ) = F(u(μ)) :=
∫

D
f u(μ). (8)
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This is of course only a specific situation. The output func-
tion can be much more general, like a linear form

∫
D g u(μ)

with some g = f . Many other cases are possible, but they
all come at a cost, both in terms of analysis and in terms of
workload. The case (8), where the output coincides with the
linear form present in the right-hand side of the variational
formulation of (6) (and where the bilinear form a involved in
the variational formulation is symmetric), is called compli-
ant. Having (8) as an output function in particular simplifies
the a posteriori error analysis of the problem (namely the
construction of �s

N(μ)).
We equip the problem, somewhat vaguely formulated in

(6)–(7)–(8) above, with the appropriate mathematical setting
that allow for all our necessary manipulations below to make
sense. For consistency, we now briefly summarize this set-
ting. The domain D is an open bounded connected domain
with Lipschitz boundary ∂D, the right-hand side f ∈ L2(D)

belongs to the Lebesgue space of square integrable func-
tions, A(μ) is a symmetric matrix, which is positive-definite

almost everywhere in D. Each entry of A(μ) is assumed

in L∞(D). We assume A0 is symmetric positive-definite,

and A1 is symmetric positive. The ambient Hilbert space

X is chosen equal to the usual Sobolev space H 1
0 (D). The

function u(μ) is defined as the solution to the variational
formulation (1) with a(w,v;μ) = ∫

D A(μ)∇w · ∇v, l(v) =
∫

D f v, for all v, w, in X and all μ ∈ �.
As for the direct discretization of the problem, we also

put ourselves in a classical situation. If D is polygonal for
instance, there exist many discretization methods that allow
to compute Galerkin approximations uN (μ) of u(μ) in fi-
nite dimensional linear subspaces XN of X for any fixed
parameter value μ ∈ �. The Finite-Element method [17,
83] is of course a good example. Then, for each parame-
ter value μ ∈ �, the numerical computation of uN (μ) =∑N

n=1 Un(μ)φn on the Galerkin basis (φn)1≤n≤N of XN is
achieved by solving a large linear system

Find U(μ) ∈ R
N solution to B(μ)U(μ) = b,

for the vector U(μ) = (Un(μ))1≤n≤N ∈ R
N , where b =

(l(φn))1≤n≤N is a vector in R
N and B(μ) = B0 + μ B1

is a N × N real invertible matrix. Note that the assump-
tion of affine parametrization (7) makes possible, for each
parameter value μ, the computation of the entries of the
matrix B(μ) in O(N ) operations (due to sparsity), us-

ing the precomputed integrals (Bq)
ij

= ∫
D Aq∇φi · ∇φj ,

i, j = 1, . . . , N for q = 0,1. The evaluation of U(μ) for
many J � 1 parameter values μ using iterative solvers costs
J × O(N k) operations with k ≤ 3 [25], where k depends
on the sparsity and the conditioning number of the involved
matrices.

As mentioned above in our general, formal presentation,
the goal of the RB approach is to build a smaller finite di-
mensional approximation space XN ,N ⊂ XN sufficiently
good for all μ ∈ �, with N 	 N , so that the computational
cost is approximately reduced to N ×O(N k)+J ×O(N3),
where N × O(N k) is the cost of offline computations and
J ×O(N3), the cost of online computations, is independent
of N , using the Galerkin approximation (3) in XN ,N .

We now successively describe in the following three
paragraphs the construction of the a posteriori estimator,
that of the greedy algorithm employed in the offline step,
and the combination of all ingredients in the online step.

2.2.1 A Posteriori Estimator

For the coercive elliptic problem (6), the a posteriori er-
ror estimator �s

N(μ) for the output RB approximation error
|sN (μ) − sN ,N (μ)| is simple to devise, based on a global a
posteriori error estimator �N(μ) for ‖uN (μ)−uN ,N (μ)‖μ

using a classical technique with residuals [8].
We refer to [20, 32, 55, 56, 69, 85, 86] for the construc-

tion of similar a posteriori error estimators in various ap-
plied settings of the RB method.

We first define the residual bilinear form

g(w,v;μ) = a(w,v;μ) − l(v), ∀w,v ∈ X, ∀μ ∈ �,

and the operator G(μ) : XN → XN such that

g(w,v;μ) = (G(μ) w,v)X , ∀w,v ∈ XN , ∀μ ∈ �.

We next assume we are given, for all μ ∈ �, a lower
bound αLB(μ) for the coercivity constant of a(·, ·;μ) on
XN , that is,

0 < αLB(μ) ≤ αc(μ) = inf
w∈XN \{0}

a(w,w;μ)

‖w‖2
X

,

∀μ ∈ �. (9)

The lower bound αLB(μ) can be given by an a priori analy-
sis before discretization (αLB(μ) would then be the coer-
civity constant of a(·, ·;μ) on X), or numerically evaluated
based on an approximation procedure, which might be diffi-
cult in some cases, see [33, 79].

Then the a posteriori estimator we use is defined in the
following.

Proposition 1 For any linear subspace XN ,N of XN , there
exists a computable error bound �s

N(μ) such that:

|sN (μ) − sN ,N (μ)| ≤ �s
N(μ) := ‖G(μ) uN ,N (μ)‖2

X

αLB(μ)
,

∀μ ∈ �. (10)
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For consistency, we now briefly outline the proof of this
proposition. We simply observe the sequence of equalities

|sN (μ) − sN ,N (μ)| = |F(uN (μ)) − F(uN ,N (μ))|
= |l(uN (μ) − uN ,N (μ))|
= |a(uN (μ),uN (μ) − uN ,N (μ);μ)|
= |a(uN (μ) − uN ,N (μ),uN (μ)

− uN ,N (μ);μ)|
= ‖uN (μ) − uN ,N (μ)‖2

μ (11)

using the linearity of F = l, the variational problem and
its discretized approximation in XN , the symmetry of
a(·, ·;μ) and the fact that a(uN (μ) − uN ,N (μ), v) =
0, for all v ∈ XN ,N . On the other hand, inserting v =
uN (μ) − uN ,N (μ) in the general equality a(uN (μ) −
uN ,N (μ), v;μ) = −g(uN ,N (μ), v;μ) (for all v ∈ XN ),
and using the bound

√
αLB(μ)‖v‖X ≤ ‖v‖μ (for all v ∈

XN ), we note that

‖uN (μ) − uN ,N (μ)‖μ ≤ �N(μ) := ‖G(μ) uN ,N (μ)‖X√
αLB(μ)

.

(12)

We conclude the proof of (10) combining (11) with (12).
We may similarly prove (but we will omit the argument

here for brevity) the inverse inequality:

�s
N(μ) ≤

(
γ (μ)

αLB(μ)

)2

|sN (μ) − sN ,N (μ)|, (13)

using the continuity constant

γ (μ) = sup
w∈XN \{0}

sup
v∈XN \{0}

a(w,v;μ)

‖w‖X‖v‖X

(14)

of the bilinear form a(·, ·;μ) on XN for all μ ∈ �, which
is bounded above by the continuity constant on X. The in-
equality (13) ensures sharpness of the a posteriori estima-
tor (10), depending of course on the quality of the lower-
bound αLB(μ).

2.2.2 Offline Stage and Greedy Algorithm

The greedy algorithm employed to select the snapshots
uN (μn) typically reads:

1: choose μ1 ∈ � randomly
2: compute uN (μ1) to define XN ,1 = Span(uN (μ1))

3: for n = 2 to N do
3: choose μn ∈ argmax{�s

n−1(μ),μ ∈ �trial}
3: compute uN (μn) to define XN ,n = Span(uN (μm),

m = 1, . . . , n)

4: end for

In the initialization step, we may equally use μ1 ∈
argmax{|s(μ)|, μ ∈ �smalltrial}, where �smalltrial ⊂ � is a
very small trial sample in �, much smaller than � itself.
Likewise, the algorithm can in practice be terminated when
the output approximation error is judged sufficiently small
(say, |�s

N(μ)| ≤ ε for all μ ∈ �trial), and not when the iter-
ation number reaches a maximum n = N .

The choice of the trial sample �trial (and similarly, the
smaller sample �smalltrial) is a delicate practical issue. It is
often simply taken as a random sample in �. Of course, this
first guess may be insufficient to reach the required accuracy
level ε in �s

N(μ), for all μ ∈ �, in the online stage. But for-
tunately, if the computation of �s

N(μ) for any μ ∈ � is suf-
ficiently inexpensive, one can check this accuracy online for
each query in μ. Should �s

N(μ) > ε occur for some online
value of the parameter μ, one can still explicitly compute
uN (μ) for that exact same μ and enrich the space XN ,N

correspondingly. This bootstrap approach of course allows
to reach the required accuracy level ε at that μ. It provides
significant computational reductions in the online stage pro-
vided that the RB approximation space XN ,N does not need
to be enriched too often online. We will explain the method-
ology for fast computations of �s

N(μ) below.
The offline selection procedure needs to be consistent

with the online procedure, and thus the above greedy algo-
rithm uses the same estimator �s

N(μ) for all μ ∈ �trial as
the online procedure. Since the computation of �s

N(μ) is,
by construction and on purpose, fast for all μ ∈ �, the ex-
ploration of a very large training sample �trial (which is a
subset of �) is possible offline.

No systematic procedure seems to be available, which al-
lows to build good initial guesses �trial ex nihilo. Even for
a specific problem, we are not aware either of any a priori
results that quantify how good an initial guess �trial is. The
only option is, as is indeed performed by the RB approach,
to a posteriori check, and possibly improve, the quality of
the initial guess �trial (however, the quality of the initial
guess �trial can be slightly improved offline by using adap-
tive training samples in the greedy algorithm [30]).

The estimators �s
N(μ) are employed in the greedy al-

gorithm to filter candidate values for �. Numerous numer-
ical evidences support the success of this pragmatic ap-
proach [20, 32, 55, 56, 69, 70, 85, 86].

Last, notice that the cost of offline computations scales as
Woffline = O(|�trial|) × (

∑N−1
n=1 wonline(n)) + N × O(N k)

where wonline(n) is the marginal cost of one online-type
computation for uN ,n(μ) and �s

n(μ) at a selected parame-
ter value μ ∈ �trial (where 1 ≤ n ≤ N − 1), and O(|�trial|)
includes a max-search in �trial. (Recall that k ≤ 3 depends
on the solver used for large sparse linear systems.)
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2.2.3 Online Stage: Fast Computations Including
A Posteriori Estimators

We now explain how to efficiently compute uN ,n(μ),
sN ,n(μ) and �s

n(μ) once the RB approximation space XN ,n

has been constructed. This task has to be completed twice
in the RB approach. First, this is used in the many offline
computations when μ ∈ �trial explores the trial sample in
order to find μn ∈ argmax{�s

n−1(μ),μ ∈ �trial} at each iter-
ation n of the greedy algorithm. Second, this is used for the
many online computations (when n = N ). We present the
procedure in the latter case.

By construction, the family (uN (μn))1≤n≤N generated
by the greedy algorithm described in Sect. 2.2.2 is a basis of

XN ,N = Span(uN (μn), n = 1, . . . ,N).

For any μ ∈ �, we would then like to compute the RB
approximation uN ,N (μ) = ∑N

n=1 UN,n(μ)uN (μn), which
can be achieved by solving a small N × N (full) linear sys-
tem

C(μ)UN(μ) = c,

for the vector UN(μ) = (UN,n(μ))1≤n≤N ∈ R
N , with c =

(l(uN (μn)))1≤n≤N a vector in R
N and C(μ) = C0 +μC1 is

a N × N real invertible matrix. In practice, the matrix C(μ)

is close to a singular matrix, and it is essential to compute the
RB approximation as uN ,N (μ) = ∑N

n=1 ŨN,n(μ)ζn using a
basis (ζn)1≤n≤N of XN ,N that is orthonormal for the inner-
product (·, ·)X . The determination of appropriate (ζn)1≤n≤N

is easily performed, since N is small, using Simple or Modi-
fied Gram-Schmidt procedures. The problem to solve states:

Find ŨN (μ) ∈ R
N solution to C̃(μ)ŨN(μ) = c̃, (15)

where ŨN(μ) = (ŨN,n(μ))1≤n≤N ∈ R
N , c̃ = (l(ζn))1≤n≤N

is a vector in R
N and C̃(μ) = C̃0 + μ C̃1 is a N × N

real invertible matrix. So, for each parameter value μ ∈ �,
the entries of the latter matrix C̃(μ) can be computed in

O(N2) operations using the precomputed integrals (C̃q)
ij

=
∫

D Aq∇ζi · ∇ζj , i, j = 1, . . . ,N for q = 0,1. (Note that the

assumption of affine parametrization is essential here.) And
the evaluation of ŨN (μ) for many J � 1 parameter val-
ues μ ∈ � finally costs J × O(N3) operations using direct
solvers for symmetric problems like Cholesky [25].

For each μ ∈ �, the output sN ,N (μ) = F(uN ,N (μ))

can also be computed very fast in O(N) operations upon
noting that F is linear and all the values F(uN ,N (μn)),
n = 1, . . . ,N can be precomputed offline. The correspond-
ing a posteriori estimator �s

N(μ) given by (10) has now

to be computed, hopefully equally fast. Because of the
affine dependence of A(μ) on μ, a similar affine depen-

dence G(μ) = G0 + μ G1 holds for the operator G (for all
μ ∈ �), where (G0 w,v)X = ∫

D A0∇w · ∇v − ∫
D f v, and

(G1 w,v)X = ∫
D A1∇w · ∇v for all v, w, in XN . So one

can evaluate very fast the norm

‖G(μ) uN ,N (μ)‖2
X = ‖G0 uN ,N (μ)‖2

X

+ 2μ(G0 uN ,N (μ),G1 uN ,N (μ))X

+ μ2‖G1 uN ,N (μ)‖2
X (16)

for μ ∈ �, once, with obvious notation, the scalar products
(Gi uN ,N (μp),Gj uN ,N (μq))X , have been precomputed
offline and stored. Assuming that the lower-bound αLB(μ)

used in (10) is known, the computation of the a posteriori
estimator �s

N(μ) itself is thus also very fast. Notice that the
affine parametrization (7) plays again a crucial role in the
above decomposition of the computation.

Finally, the marginal cost of one online-type computation
on XN ,n for one parameter value μ is wonline(n) = O(n3)

(where n = 1, . . . ,N ). So, assuming that no basis enrich-
ment is necessary during the online stage using the RB ap-
proximation space XN ,N (that is, �s

N(μ) < ε for all the
parameter values μ queried online), the total online cost
for many J � 1 parameter values μ scales as Wonline =
J × O(N3). And, the total cost of computations with the
RB approach is then Woffline + Wonline = N × O(N k) +
(J + O(|�trial|)) × O(N3), which has to be compared to
J ×O(N k) operations for a direct approach (with k ≤ 3 de-
pending on the solver used for large sparse linear systems).
In the limit of infinitely many online evaluations J � 1, the
computational saving of the RB approach is tremendous.

2.3 Some Elements of Analysis, and Some Extensions, of
the RB Method

2.3.1 Some Elements of Theory

The RB approach has undoubtedly proved successful in a
large variety of applications [20, 32, 55, 56, 69, 70, 85, 86].
The theoretical understanding of the approach is however
still limited, and is far from covering all practical situations
of interest. Of course, little theory is to be expected in the
usual a priori way. As already explained, the RB approach
is deliberately designed to a posteriori adapt to practical set-
tings. The only available a priori analysis is related to two
issues: the expected “theoretical” quality of the RB approx-
imation, and the efficiency of the greedy algorithm. We now
briefly summarize what is known to date on both issues.

The RB approach is in fact expected to perform ideally,
in the following sense. In the context of our simple prob-
lem (6), it is possible, adapting the classical Lagrange in-
terpolation theory to the context of parameterized boundary
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value problems and assuming that the matrix A1 is non-

negative, to obtain an upper bound of (4). The following
theoretical a priori analysis result follows. It states the ex-
ponential accuracy of the RB approximation in terms on the
dimension N of the reduced basis.

Proposition 2 For all parameter ranges � := [μmin,μmax]
⊂ R

∗+, there exists an integer N0 = O(ln(
μmax
μmin

)) as μmax
μmin

→
+∞, and a constant c > 0 independent of � such that, for
all N ≥ N0 ≥ 2, there exist N parameter values μmin =:
λN

1 < · · · < λN
n < λN

n+1 < · · · < λN
N := μmax, n = 2, . . . ,

N − 2, satisfying (recall ‖ · ‖0 = ‖ · ‖μ with μ = 0 is an
Hilbertian norm on X):

sup
μ∈�

(
inf{‖uN (μ) − w‖0, w ∈ Span(uN (λN

n ),

n = 1, . . . ,N)})

≤ e
− c

N0−1 (N−1)
sup
μ∈�

‖uN (μ)‖0. (17)

We refer to [12, Chap. 4] and [46, 70] for the proof of
Proposition 2.

The approximation space Span(uN (λN
n ), n = 1, . . . ,N)

used for the statement and the proof of Proposition 2 is dif-
ferent from the RB approximation space XN ,N built in prac-
tice by the RB greedy algorithm. Numerical experiments
even suggest that it is not an equally good choice (see [70]).
So it is desirable to better understand the actual outcome of
the RB greedy algorithm used offline. The concept of greedy
algorithm appears in many numerical approaches for prob-
lems of approximation. It typically consists in a recursive
procedure approximating an optimal solution to a complex
problem, using a sequence of sub-optimal solutions incre-
mentally improved. Otherwise stated, each iteration takes
the solution of the previous iteration as an initial guess and
improves it. In the theory of approximation of functions in
particular [21, 84], greedy algorithms are used to incremen-
tally compute the combinations of functions from a given
dictionnary which best approximate some given function.
The RB greedy algorithm has a somewhat different view-
point: it incrementally computes for integers N some basis
functions uN (μn), n = 1, . . . ,N , spanning a linear space
XN ,N that best approximates a family of functions uN (μ),
∀μ ∈ �. The RB greedy algorithm however has a flavour
similar to other greedy algorithms that typically build best-
approximants in general classes of functions. It is therefore
possible to better understand the RB greedy algorithm using
classical ingredients of approximation theory. The notion of
Kolmogorov width [72] is an instance of such a classical in-
gredient. We refer to [12, Chap. 3] and [15] for more details
and some elements of analysis of the RB greedy algorithm.

2.3.2 Extensions of the Approach to Cases More General
than (6)

The RB approach of course does not only apply to simple
situations like (6). Many more general situations may be
addressed, the major limitation to the genericity of the ap-
proach being the need for constructing fast computable a
posteriori error estimators.

Instances of problems where the RB approach has been
successfully tested are the following: affine formulations,
non-coercive linear elliptic problems, non-compliant lin-
ear elliptic problems, problems with non-affine parame-
ters, nonlinear elliptic problems, semi-discretized (nonlin-
ear) parabolic problems. The purpose of this section is to
briefly review these extensions of our above simple setting.
In the next section, we will then introduce a problem with
random coefficients. For simplicity, we take it almost as sim-
ple as the above problem (6), see (23)–(24) below. We an-
ticipate that, if they involve a random component, most of
the extensions outlined in the present section could also, in
principle, be treated using the RB approach.

Affine Formulations Beyond the simple case presented
above in Sect. 2.2, which involves an elliptic operator in di-
vergence form affinely depending on the parameter, the RB
approach can be extended to general elliptic problems with
variational formulation of the form

Find u(μ) ∈ X solution to g(u(μ), v;μ) = 0, ∀v ∈ X,

(18)

where the form g(·, ·;μ) on X ×X admits an affine parame-
trization, that is, writes

g(w,v;μ) =
Q∑

q=1

�q(μ)gq(w,v), ∀w,v ∈ X, ∀μ ∈ �,

(19)

with parameter-independent forms (gq(·, ·))1≤q≤Q (where
some of the gq may only depend on v) and coefficients
(�q(μ))1≤q≤Q. We emphasize that the whole RB algorithm
presented in the simple case above directly translates in this
situation. In particular, the matrices used in the online eval-
uation procedure can be constructed offline.

Non-coercive Symmetric Linear Elliptic Problems The RB
approach can be extended to the case where the symmetric
continuous bilinear form a(·, ·;μ) is not coercive but only
inf-sup stable. An example is the Helmholtz problem treated
in [82]. Our discussion of the elliptic problem above can be
adapted in a straightforward way, the only change in offline
and online computations being that the inf-sup stability con-
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stant on XN :

0 < βLB(μ) ≤ β(μ) := inf
w∈XN \{0} sup

v∈XN \{0}
a(w,v;μ)

‖w‖X‖v‖X

,

∀μ ∈ �, (20)

is substituted for αLB(μ). In practice, the evaluation of
βLB(μ) is typically more involved than the evaluation of the
coercivity constant αLB(μ). We refer to [34] for an appro-
priate technique.

Non-compliant Linear Elliptic Problems In (8), the partic-
ular choices of F = l for the output and of symmetric ma-
trices A(μ) for the definition of the bilinear form a(·, ·;μ)

correspond to a particular class of problems called, we re-
call, compliant. Non-compliant linear elliptic problems can
be treated as well, but this is somewhat more technical.
These are the cases where, for some μ ∈ � at least, either
u(μ) is solution to a weak form (18) with g(v,w;μ) =
a(v,w;μ)− l(w), ∀v,w ∈ X and the bilinear form a(·, ·;μ)

is not symmetric, or the output is s(μ) = F(u(μ)) = l(u(μ))

with any linear continuous function F : X → R.
For instance, we explain how to treat the case of a bilin-

ear form a(·, ·;μ) that is not symmetric, but of course still
continuous and inf-sup stable. The analysis requires consid-
ering the solution to the adjoint problem

Find ψ(μ) ∈ X solution to a(v,ψ(μ);μ) = −F(v),

∀v ∈ X, (21)

along with the corresponding Galerkin discretization
ψN (μ) ∈ XN , the approximation space X�

N ,N� for the so-
lution to (21), and an additional RB approximation space
X�

N ,N� ⊂ XN of dimension N� 	 N . The a posteriori es-
timator obtained is similar to (10), and writes

|sN (μ) − sN ,N,N�(μ)| ≤ �s
N,N�(μ)

:= ‖G(μ)uN ,N (μ)‖X‖G�(μ)ψN ,N�(μ)‖X

βLB(μ)
, (22)

where G� is defined from the adjoint problem (21) similarly
to how G is defined from the original problem. Notice that
we again used the inf-sup stability condition (20), which in-
deed holds true after permutation of the arguments v and w

(since we work in a finite dimensional space XN ), the value
of the inf sup constant however being not the same. To build
the reduced basis of the primal (respectively the dual) prob-
lem, in the offline stage, the a posteriori estimator is based
on ‖G(μ)uN ,N (μ)‖X (respectively ‖G�(μ)ψN ,N�(μ)‖X).
Apart from the above introduction and use of the adjoint
problem, the treatment of the non-compliant case then ba-
sically follows the same lines as that of the compliant case.

Notice that a simple, but less sharp, estimate of the er-
ror (namely the left-hand side of (22)) can be obtained
as (supx∈XN

|F(x)|
‖x‖X

)‖G(μ)uN ,N (μ)‖X . This simple error
bound does not involve the solution of any dual problem,
and may be of interest in particular in the case when multi-
ple outputs are considered. However, the primal–dual error
bound (22) will be much smaller (since it is quadratic and
not linear in the residual) and in many situations, very easy
to obtain, since the dual problem is typically simpler to solve
than the primal problem (it is indeed linear).

Non-affine Parameters We have exploited in several places
the affine dependence of A(μ) in (6) in terms of the coeffi-

cient μ. However, there are many cases for which the depen-
dency on the parameter is more complicated, as for example,
when associated with certain kinds of geometric variations.
Extending the RB approach to the case of non-affine para-
metrization is feasible using suitable affine approximations.
The computation of approximations

∑M
m=1 βM

m (μ)Am(x)

for functions A(x;μ) (having in mind as an example the

prototypical problem (6)), is a general problem of approx-
imation. A possibility, introduced and further developed in
[6, 27, 47] is to modify the standard greedy procedure de-
scribed above, using interpolation. In short, the approach
consists in selecting the coefficients (β̃M

m (μ))m=1,...,M of the
approximation IM [g(·;μ)] := ∑M

m=1 β̃M
m (μ)g(·;μg

m) of or-
der M to g(·;μ) (g denoting here a general bilinear form, as
in (18)–(19)) using an interpolation at the so-called magic
points xm selected sequentially with

x1 ∈ argmax
x∈D

|g(·;μg

1)|,

xm ∈ argmax
x∈D

|g(·;μg
m) − Im−1[g(·;μg

m)]|,

for all m = 2, . . . ,M . We refer to the contributions cited
above for more details.

Nonlinear Elliptic Problems For the extension of the RB
approach to nonlinear problems, one major difficulty is
again the construction of appropriate a posteriori error esti-
mators, which, additionally, need to be computed efficiently.
Several examples of successful extensions are reported on in
the literature [20, 32, 55, 56, 69, 85, 86]. But no general the-
ory can of course be developed in the nonlinear context.

Semi-discretized Parabolic Problems After time-discretiz-
ation, parametrized parabolic problems can be viewed as a
collection of elliptic problems with the time variable as an
additional parameter. A natural idea is then to build a re-
duced basis spanned by solutions for given values of the
parameter and the time variable. Examples of contributions
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are [26, 27]. This first approach has been improved by tech-
niques combining the RB idea for the parameter with a
proper orthogonal decomposition (POD) in the time vari-
able, first introduced in [29] and further discussed in [37].
A route which would be interesting to follow could be to try
to adapt on-the-fly, as time goes, the reduced basis which is
the most adapted to the current time.

3 RB Approach for Boundary Value Problems with
Stochastic Coefficients

This first application of the RB approach to a problem with
stochastic coefficients is introduced in [14]. The purpose of
this section is to overview this contribution, in particular
showing how the general RB approach needs to be adapted
to the specificities of the problem. We refer to [14] for all
the details omitted below.

3.1 Setting of the Problem

Let us denote by (�, F ,P) a probability space, and by ω ∈
� the stochastic variable. We consider the stochastic field
U(·,ω) that is the almost sure solution to

−div
(
A(x)∇U(x,ω)

) = 0, ∀x ∈ D, (23)

supplied with a random Robin boundary condition

n(x) · A(x)∇U(x,ω) + B(x,ω)U(x,ω) = g(x),

∀x ∈ ∂D. (24)

In (24), the matrix A(x) writes A(x) = σ(x)Id where

0 < σ(x) < ∞ for a.e. x ∈ D. Of course, n denotes the out-
ward unit normal at the boundary of the smooth domain D.
The boundary is divided into three non-overlapping open
subsets: ∂D = (�N ∪ �R ∪ �B) (see Fig. 1). The boundary
source term g is assumed to vanish everywhere except on
�R where it has constant unit value: g(x) = 1�R,∀x ∈ ∂D.
The scalar random field B(·,ω), parametrizing the boundary
condition, also vanishes almost everywhere on the boundary
∂D, except on some subset �B of the boundary ∂D with
non-zero measure, where 0 < b̄min ≤ B(·,ω) ≤ b̄max < ∞
almost surely and almost everywhere. Note that on �N, (24)
thus reduces to homogeneous Neumann conditions. Physi-
cally, U(·,ω) models the steady-state temperature field in a
heat sink consisting of an isotropic material of thermal con-
ductivity σ , contained in the domain D. The sink is subject
to zero heat flux on �N, a constant flux on �R modeling the
heat source, and a convective heat transfer on �B. The Biot
number B models the effect of the exterior fluid convection
on the solid thermal conduction problem inside D. In real

Fig. 1 D has the geometry of a
(piece of) heat sink: a spreader
D2 with a fin D1 on top

world engineering applications, the value of B is only ap-
proximately known. It is therefore legitimate to encode the
uncertainties on B using a random field B(·,ω), see [42] for
more details.

Correspondingly, the solution to (23)–(24), along with
any output computed from this solution, are also random
quantities. Only statistics on these quantities are relevant.
We thus consider two statistical outputs for the problem: the
expected value E(S) and the variance Var(S) of the random
variable

S(ω) = F (U( · ,ω)) =
∫

�R

U( · ,ω) (25)

linearly depending on the trace of the solution U( · ,ω)

on �R.
A typical question, example of an Uncertainty Quantifi-

cation problem, is to quantify the sensitivity of the output
S(ω). Many existing contributions already addressed the is-
sue: [4, 5, 18, 19, 24, 48, 64, 65].

A possible approach (which we will indeed adopt here)
is to evaluate E(S) and Var(S) with the plain Monte-Carlo
method using M independent random variables (Sm)1≤m≤M

with the same distribution law as S. The expectation and the
variance are respectively approached by the empirical sums

EM [(Sm)] = 1

M

M∑

m=1

Sm,

VM [(Sm)] = 1

M − 1

M∑

n=1

(
Sn − EM [(Sm)])2

, (26)

where the normalization factors used (respectively 1
M

and
1

M−1 ) allow, as is traditional in the community of Monte-
Carlo methods, to have unbiased estimators: E (EM [(Sm)]) =
E(S) and E (VM [(Sm)]) = Var(S) for all M . Large values of
M are typically needed to obtain from (26) accurate approx-
imations of E(S) and Var(S). Since, for each m = 1, . . . ,M ,
a new realization of the random parameter B is considered
and the boundary value problem (23)–(24) has to be solved,
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the task is clearly computationally demanding. It is a many-
query context, appropriate for the application of the RB ap-
proach.

3.2 Discretization of the Problem

We begin by considering the Karhunen–Loève (abbreviated
as KL) expansion

B(x,ω) = bG(x) + b

K∑

k=1

�k(x)Yk(ω) (27)

of the coefficient B(x,ω) (see [35, 43, 80]). In (27), K de-
notes the (possibly infinite) rank of the covariance operator
for B(·,ω), which has eigenvectors (�k)1≤k≤K and eigen-
values (λk)1≤k≤K (sorted in decreasing order). The random
variables (Yk)1≤k≤K are mutually uncorrelated in L2

P
(�)

with zero mean, G is supposed to be normalized
∫
∂D G = 1

and b = ∫
�

dP(ω)
∫
∂D B(·,ω) is a fixed intensity factor.

Based on (27), we introduce the deterministic function

b(x, y) = bG(x) + b

K∑

k=1

�k(x)yk (28)

defined for almost all x ∈ ∂D and all y ∈ �y ⊂ R
K , where

�y denotes the range of the sequence Y = (Yk)1≤k≤K of
random variables appearing in (27). Notice that B(x,ω) =
b(x, y(ω)).

It is next useful to consider, for any positive integer
K ≤ K, truncated versions of the expansions above, and to
define, with obvious notation, UK(·,ω) as the solution to
the problem (23)–(24) where B(·,ω) is replaced by the trun-
cated KL expansion BK(·,ω) at order K . Similarly, for all
yK ∈ �y , uK( · ;yK) is defined as the solution to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−div(A(x)∇uK(x;yK)) = 0, ∀x ∈ D,

n(x) · A(x)∇uK(x;yK) + bK(x, yK)uK(x;yK)

= g(x), ∀x ∈ ∂D,

(29)

where bK is the K-truncated sum (28).
For a given integer K ≤ K, we approximate the random

variable S(ω) by SK(ω) := F (UK(·,ω)) where UK(·,ω) ≡
uK(·;YK(ω)), and the statistical outputs E(SK) and Var(SK)

by the empirical sums

EM [(Sm
K)] = 1

M

M∑

m=1

Sm
K,

VM [(Sm
K)] = 1

M − 1

M∑

n=1

(
Sn

K − EM [(Sm
K)])2

, (30)

using M independent realizations of the random vector YK .
In practice, uK( · ;YK

m ) is approached using, say, a finite el-
ement approximation uK,N ( · ;YK

m ) with N � 1 degrees
of freedom. Repeating the task for M realizations of the
K-dimensional random vector YK may be overwhelming,
and this is where the RB approach comes into the picture.
We now present the application of the RB approach to solve
problem (29), parametrized by yK ∈ �y .

In echo to our presentation of Sect. 2, note that prob-
lem (29) is affine in the input parameter yK thanks to the
KL expansion (28) of b, which decouples the dependence
on x and the other variables. To use the RB approach for
this problem, we consider S in (30) as the output of the prob-
lem, the parameter being yK (this parameter takes the values
YK,m, m ∈ {1, . . . ,M} being the realization number of YK )
and, as will become clear below, the offline stage is stan-
dard. On the other hand, in the online stage, the a posteriori
estimation is completed to take into account the truncation
error in K in (28).

Before we turn to this, we emphasize that we have per-
formed above an approximation of the coefficient b, since
we have truncated its KL expansion. The corresponding er-
ror should be estimated. In addition, the problem (29) af-
ter truncation might be ill-posed, even though the origi-
nal problem (23)–(24) is well posed. To avoid any corre-
sponding pathological issue, we consider a stochastic co-
efficient b having a KL expansion (28) that is positive for
any truncation order K (which is a sufficient condition to
ensure the well-posedness of (23)–(24)), and which con-
verges absolutely a.e. in ∂D when K → K. For this pur-
pose, (i) we require for k = 1, . . . , K a uniform bound
‖�k‖L∞(�B) ≤ φ, (ii) we set Yk := ϒ

√
λkZk with indepen-

dent random variables Zk uniformly distributed in the range
(−√

3,
√

3), ϒ being a positive coefficient, and (iii) we also
ask

∑K
k=1

√
λk < ∞. Note that, if K = ∞, condition (iii)

imposes a sufficiently fast decay of the eigenvalues λk while
k increases. We will see in Sect. 3.4 that this fast decay is
also important for the practical success of our RB approach.
Of course, (i)–(ii)–(iii) are arbitrary conditions that we im-
pose for simplicity. Alternative settings are possible.

3.3 Reduced-Basis Ingredients

We know from Sect. 2 that two essential ingredients in the
RB method are an a posteriori estimator and a greedy selec-
tion procedure. Like in most applications of the RB method,
both ingredients have to be adapted to the specificities of the
present context.

As mentioned above, the statistical outputs (30) require
new a posteriori estimators. Moreover, the statistical outputs
can only be computed after M queries YK

m , m = 1, . . . ,M ,
in the parameter yK , so these new a posteriori estimators
cannot be used in the offline step.
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The global error consists of two, independent contribu-
tions: the first one is related to the RB approximation, the
second one is related to the truncation of the KL expansion.

In the greedy algorithm, we use a standard a poste-
riori estimation |Sm

K,N − Sm
K,N ,N

| ≤ �s
N,K(YK

m ) for the
error between the finite element approximation Sm

K,N :=
F (uK,N ( · ;YK

m )) and the RB approximation Sm
K,N ,N

:=
F (uK,N ,N ( · ;YK

m )) of Sm
K at a fixed truncation order K , for

any realization YK
m ∈ �y . This is classical [11, 54, 79] and

similar to our example of Sect. 2, see [14] for details. Note
however that the coercivity constant of the bilinear form for
the variational formulation

Find u(·;yK) ∈ H 1(D) s.t.
∫

D
σ∇u(·;yK) · ∇v +

∫

�B

b(·, yK)u(·;yK)v

=
∫

�R

g v, ∀v ∈ H 1(D) (31)

of problem (29) depends on K . To avoid the additional com-
putation of the coercivity constant for each K , we impose
b(x, yK) ≥ bG(x)/2, for all x ∈ �B , and thus get a uniform
lower bound for the coercivity constant. In practice, this im-
poses a limit 0 < ϒ ≤ ϒmax on the intensity factor in the
ranges of the random variables Yk , thus on the random fluc-
tuations of the stochastic coefficient, where ϒmax is fixed for
all K ∈ {0, . . . , K}

Let us now discuss the online a posteriori error estima-
tion. As for the truncation error, an a posteriori estimation
|Sm

N − Sm
K,N | = |F (uN ( · ;YK

m )) − F (uK,N ( · ;YK
m ))| ≤

�t
N,K(YK

m ) is derived in [14]. The error estimators �s
N,K(YK

m )

and �t
N,K(YK

m ), respectively for the RB approximation and
the truncation, are eventually combined for m = 1, . . . ,M

to yield global error bounds in the Monte-Carlo estimations
of the statistical outputs: |EM [(Sm

K,N ,N
)] − EM [(Sm

N )]| ≤
�E((Sm

K,N ,N
)) and |VM [(Sm

K,N ,N
)] − VM [(Sm

N )]| ≤
�V ((Sm

K,N ,N
)). The control of the truncation error may

be used to improve the performance of the reduced basis
method. In particular, if the truncation error happens to be
too small compared to the RB approximation error, the trun-
cation rank K may be reduced.

3.4 Numerical Results

Our numerical simulations presented in [14] are performed
on the steady heat conduction problem (23)–(24) inside
the T-shaped heat sink D ⊂ D1 ∪ D2 pictured in Fig. 1.
The heat sink comprises a 2 × 1 rectangular substrate
(spreader) D2 ≡ (−1,1) × (0,1) and a 0.5 × 4 thermal fin
D1 ≡ (−0.25,0.25) × (1,5) on top. The diffusion coeffi-
cient is piecewise constant, σ = 1D1 + σ0 1D2 , where 1Di

of course denotes the characteristic function of domain Di

Fig. 2 Global error bounds for the RB approximation error and the KL
truncation error of the output expectation (top: �E((Sm

K,N ,N ))) and
of the output variance (bottom: �V ((Sm

K,N ,N ))), as functions of the
size N = 2, . . . ,14 of the reduced basis, at different truncation orders
K = 5,10,15,20

(i = 1,2). The finite element approximation is computed
using quadratic finite elements on a regular mesh, with
N = 6 882 degrees of freedom. The thermal coefficient is
σ0 = 2.0. To construct the random input field B(·,ω), we
consider the covariance function Covar(b(x,ω)B(y,ω)) =
(bϒ)2 exp(−(x−y)2/δ2) for b = 0.5, ϒ = 0.058, and a cor-
relation length δ = 0.5. We perform its KL expansion and
keep only the largest K = 25 terms. We then fix G(x) ≡ 1
and the variables Yk(ω), 1 ≤ k ≤ K, as independent, uni-
formly distributed random variables. This defines B(·,ω) as
the right-hand side of (27).
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After computing the reduced basis offline with our RB
greedy algorithm on a trial sample of size |�trial| = 10 000,
the global approximation error in the output Monte-Carlo
sums EM [(Sm

K,N ,N
)] and VM [(Sm

K,N ,N
)] decays very fast

(in fact, exponentially) with the size N = 1, . . . ,14 of the re-
duced basis, see Fig. 2 with K = 20. Note that M = 10 000
for the Monte-Carlo sums. We would also like to mention
that these reduced bases have actually been obtained letting
varying not only the parameter YK , but also additional pa-
rameters (namely the diffusion coefficient σ and the mean b

of the Biot number) but this does not influence qualitatively
the results presented here, and we omit this technical issue
for simplicity (see [14] for more details).

It is observed that the global approximation error for trun-
cated problems at a fixed order K and for various N (the size
of the reduced basis) is quickly dominated by the truncation
error. More precisely, beyond a critical value N ≥ Ncrit(K),
where Ncrit(K) is increasing with K , the global approxima-
tion error becomes constant. Notice that the approximation
error is estimated as usual by a posteriori estimation tech-
niques.

When K is infinite (or finite but huge), the control of the
KL truncation error may be difficult. This is a general issue
for problems involving a decomposition of the stochastic co-
efficient. Our RB approach is still efficient in some regimes
with large K , but not all. In particular, a fast decay of the
ranges of the parameters (yk)1≤k≤K facilitates the explo-
ration of �y by the greedy algorithm, which allows in return
to treat large K when the eigenvalues λk decay sufficiently
fast with k.

In [14], we have decreased the correlation length to δ =
0.2 and could treat up to K = 45 parameters, obtaining the
results in a total computational time still fifty times as short
as for the same Monte-Carlo sampling with direct finite ele-
ment computations.

4 Variance Reduction Using an RB Approach

In this section, we present a variance reduction technique
based upon an RB approach, which has been proposed re-
cently in [13]. In short, the RB approximation is used as a
control variate to reduce the variance of the original Monte-
Carlo calculations.

4.1 Setting of the Problem

Suppose we need to compute repeatedly, for many values of
the parameter λ ∈ �, the Monte-Carlo approximation (using
an empirical mean) of the expectation E(Zλ) of a functional

Zλ = gλ(Xλ
T ) −

∫ T

0
f λ(s,Xλ

s ) ds (32)

of the solutions (Xλ
t , t ∈ [0, T ]) to the Stochastic Differen-

tial Equation (SDE)

Xλ
t = x +

∫ t

0
bλ(s,Xλ

s ) ds +
∫ t

0
σλ(s,Xλ

s )dBs, (33)

where (Bt ∈ R
d, t ∈ [0, T ]) is a d-dimensional standard

Brownian motion. The parameter λ parametrizes the func-
tions gλ, f λ, bλ and σλ. In (33), we assume bλ and σλ al-
low for the Itô processes (Xλ

t ∈ R
d , t ∈ [0, T ]) to be well

defined, for every λ ∈ �. Notice that we have supplied the
equation with the deterministic initial condition Xλ

0 = x ∈
R

d . In addition, f λ and gλ are also assumed smooth, such
that Zλ ∈ L2(�). Recall that a symbolic concise notation
for (33) is

dXλ
t = bλ(t,Xλ

t ) dt + σλ(t,Xλ
t ) dBt with Xλ

0 = x.

Such parametrized problems are encountered in numer-
ous applications, such as the calibration of the volatility in
finance, or the molecular simulation of Brownian particles
in materials science. For the applications in finance, E(Zλ)

is typically the price of an European option in the Black-
Scholes model, and λ enters the diffusion term (the latter
being called the volatility in this context). The calibration
of the volatility consists in optimizing λ so that the prices
observed on the market are close to the prices predicted by
the model. Any optimization procedure requires the evalu-
ation of E(Zλ) for many values of λ. On the other hand,
the typical application we have in mind in materials science
is related to polymeric fluids modelling. There, E(Zλ) is
a stress tensor which enters the classical momentum con-
servation equation on velocity and pressure, and Xλ

t is a
vector describing the configuration of the polymer chain,
which evolves according to an overdamped Langevin equa-
tion, namely a stochastic differential equation such as (33).
In this context, λ is typically the gradient of the velocity field
surrounding the polymer chain at a given point in the fluid
domain. The parameter λ enters the drift coefficient bλ. The
computation of the stress tensor has to be performed for each
time step, and for many points in the fluid domain, which
again defines a many-query context, well adapted to the RB
approach. For more details on these two applications, we re-
fer to [13, 39].

We consider the general form (32)–(33) of the prob-
lem and as output the Monte-Carlo estimation EM [(Zλ

m)] =
1
M

∑M
m=1 Zλ

m parametrized by λ ∈ �, where we recall (Zλ
m)

denotes i.i.d. random variables with the same law as Zλ.
These random variables are build in practice by consider-
ing a collection of realizations of (33), each one driven by
a Brownian motion independent from the others. In view of
the Central Limit Theorem, the rate at which the Monte-
Carlo approximation EM [(Zλ

m)] approaches its limit E(Zλ)
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is given by 1√
M

, the prefactor being proportional to the vari-

ance of Zλ. A standard approach for reducing the amount of
computations is therefore variance reduction [3, 10, 31, 49,
50, 66]. We focus on one particular variance reduction tech-
nique: the control variate method. It consists in introducing
a so called control variate Yλ ∈ L2(�), assumed centered
here for simplicity:

E(Y λ) = 0,

and in considering the equality:

E(Zλ) = E(Zλ − Yλ).

The expectation E(Zλ − Yλ) is approximated by Monte-
Carlo estimations EM [(Zλ

m − Yλ
m)] which hopefully have,

for a well chosen Yλ, a smaller statistical error than di-
rect Monte-Carlo estimations EM [(Zλ

m)] of E(Zλ). More
precisely, Yλ is expected to be chosen so that Var(Zλ) �
Var(Zλ − Yλ). The law of large numbers yields

EM [(Zλ
m − Yλ

m)] := 1

M

M∑

m=1

(Zλ
m − Yλ

m)

P-a.s.−−−−→
M→∞ E(Zλ − Yλ), (34)

where, by the central limit theorem, the error is controlled
by confidence intervals, in turns functions of the variance of
the random variable at hand. The empirical variance

VarM
(
(Zλ

m − Yλ
m)

)

:= 1

M − 1

M∑

n=1

(
Zλ

n − Yλ
n − EM((Zλ

m − Yλ
m))

)2
(35)

which, as M → ∞, converges to Var(Zλ), yields a com-
putable error bound. The Central Limit Theorem indeed
states that: for all a > 0,

P

(
∣
∣E(Zλ − Yλ) − EM

(
(Zλ

m − Yλ
m)

)∣∣

≤ a

√
VarM((Zλ

m − Yλ
m))

M

)

−−−−→
M→∞

∫ a

−a

e−x2/2

√
2π

dx. (36)

Evaluating the empirical variance (35) is therefore an ingre-
dient in Monte-Carlo computations, similar to what a poste-
riori estimates are for a deterministic problem.

Of course, the ideal control variate is, ∀λ ∈ �:

Yλ = Zλ − E(Zλ), (37)

since then, Var(Zλ − Yλ) = 0. This is however not a prac-
tical control variate since E(Zλ) itself, the quantity we are

trying to evaluate, is necessary to compute (37). Itô calculus
shows that the optimal control variate (37) also writes:

Yλ =
∫ T

0
∇uλ(s,Xλ

s ) · σλ(s,Xλ
s )dBs, (38)

where uλ(t, y) ∈ C1([0, T ],C2(Rd)) satisfies the backward
Kolmogorov equation [52]:
⎧
⎨

⎩

∂tu
λ + bλ · ∇uλ + 1

2
σλ(σλ)T : ∇2uλ = f λ,

uλ(T , ·) = gλ(·).
(39)

Even using this reformulation, the choice (37) is imprac-
tical since solving the partial differential equation (39) is
at least as difficult as computing E(Zλ). We will however
explain now that both “impractical” approaches above may
give birth to a practical variance reduction method, when
they are combined with a RB type approximation.

Loosely speaking, the idea consists in: (i) in the offline
stage, compute fine approximations of E(Zλ) or respectively
uλ for some appropriate values of λ, in order to obtain fine
approximations of the optimal control variate Yλ (at those
values) and (ii) in the online stage, for a new parameter λ,
use as a control variate the best linear combination of the
variables built offline.

4.2 Two Algorithms for Variance Reduction by the RB
Approach

Using suitable time discretization methods [36], realizations
of the stochastic process (33) and the corresponding func-
tional (32) can be computed for any λ ∈ �, as precisely as
needed. Leaving aside all technicalities related to time dis-
cretization, we thus focus on the Monte Carlo discretization.

We construct two algorithms, which can be outlined as
follows.

Algorithm 1 (based on formulation (37)):

– Offline stage: Build an appropriate set of values
{λ1, . . . , λN } and, concurrently, for each λ ∈ {λ1, . . . , λN }
compute an accurate approximation EMlarge [(Zλ

m)] of
E(Zλ) (for a very large number Mlarge of realizations).
At the end of the offline step, accurate approximations

Ỹ λ = Zλ − EMlarge [Zλ
m]

of the optimal control variate Yλ are at hand. The set of
values {λ1, . . . , λN } is chosen in order to ensure the maxi-
mal variance reduction in the forthcoming online compu-
tations (see below for more details).

– Online stage: For any λ ∈ �, compute a control variate
Ỹ λ

N for the Monte-Carlo estimation of E(Zλ) as a linear
combination of

(Ȳi = Ỹ λi )1≤i≤N .
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Algorithm 2 (based on formulation (38)):

– Offline stage: Build an appropriate set of values
{λ1, . . . , λN } and, concurrently, for each λ ∈ {λ1, . . . , λN },
compute an accurate approximation ũλ of uλ, by solving
the partial differential equation (39). The set of values
{λ1, . . . , λN } is chosen in order to ensure the maximal
variance reduction in the forthcoming online computa-
tions (see below for more details).

– Online stage: For any λ ∈ �, compute a control variate
Ỹ λ

N for the Monte-Carlo estimation of E(Zλ) as a linear
combination of
(

Ȳi =
∫ T

0
∇ũλi (s,Xλ

s ) · σλ(s,Xλ
s )dBs

)

1≤i≤N

.

In both algorithms, we denote by Ỹ λ
N the control variate built

online as a linear combinations of the Ȳi ’s, the lowerscript
index N emphasizing that the approximation is computed
on a basis with N elements. An important practical ingredi-
ent in both algorithms is to use for the computation of Zλ

the exact same Brownian motions as those used to build the
control variates.

The construction of set of values λ ∈ {λ1, . . . , λN } in the
offline stage of both algorithms is done using a greedy algo-
rithm similar to those considered in the preceding sections.
The only difference is that the error estimator used is the
empirical variance. Before entering that, we need to make
precise how the linear combinations are built online, since
this linear combination construction is also used offline to
choose the λi ’s.

The online stages of both Algorithms 1 and 2 follow the
same line: for a given parameter value λ ∈ �, a control vari-
ate Ỹ λ

N for Zλ is built as an appropriate linear combination
of the control variates (Ȳi)1≤i≤N (obtained from the offline
computations). The criterium used to select this appropriate
combination is based on a minimization of the variance of
the output:

Ỹ λ
N =

N∑

n=1

α∗
n Ȳn, (40)

where

(α∗
n)1≤n≤N = arg min

(αn)1≤n≤N∈RN
Var

(

Zλ −
N∑

n=1

αnȲn

)

. (41)

In practice the variance in (41) is of course replaced by its
empirical approximation VarMsmall . Notice that we have an
error estimate of the Monte Carlo approximation by con-
sidering VarMsmall(Z

λ − Ỹ λ
N ). It is easy to check that the

least squares problem (41) is computationally inexpensive
to solve since it amounts to solving a linear N × N system,
with N small. More precisely, this linear system writes:

CMsmallα
∗ = bMsmall

where α∗ here denotes the vector with components α∗
n ,

CMsmall is a matrix with (i, j)-th entry

CovMsmall(Ȳi,m, Ȳj,m)

and bMsmall is a vector with j -th component

CovMsmall(Z
λ
m, Ȳj,m)

where for two collections of random variables Um and Vm,

CovM(Um,Vm) = 1

M

M∑

m=1

UmVm

−
(

1

M

M∑

m=1

Um

)(
1

M

M∑

m=1

Vm

)

.

In summary, the computational complexity of one online
evaluation is the sum of the computational cost of the con-
struction of bMsmall (which scales like NMsmall), and of the
resolution of the linear system (which scales like N2 for
Algorithm 1 since the SVD decomposition of CMsmall may
be precomputed offline, and scales like N3Msmall for Algo-
rithm 2, since the whole matrix CMsmall has to be recomputed
for each new value of λ).

The greedy algorithms used in the offline stages follow
the same line as in the classical RB approach. More pre-
cisely, for Algorithm 1, the offline stage writes: Let λ1 ∈
�trial be already chosen and compute EMlarge(Z

λ1). Then, for

i = 1, . . . ,N −1, for all λ ∈ �trial, compute Ỹ λ
i and inexpen-

sive approximations:

Ei(λ) := EMsmall(Z
λ − Ỹ λ

i ) for E(Zλ),

εi(λ) := VarMsmall

(
Zλ − Ỹ λ

i

)
for Var(Zλ − Ỹ λ

i ).

Select λi+1 ∈ argmax
λ∈�trial\{λj ,j=1,...,i}

{εi(λ)}, and compute

EMlarge(Z
λi+1).

In practice, the number N is determined such that
εN(λN+1) ≤ ε, for a given threshold ε. The greedy proce-
dure for Algorithm 2 is similar.

4.3 Reduced-Basis Ingredients

The algorithms presented above to build a control variate
using a reduced basis share many features with the classi-
cal RB approach. The approach follows a two-stage offline/
online strategy. The reduced basis is built using snapshots
(namely solutions for well chosen values of the parameters).
An inexpensive error estimator is used both in the offline
stage to build the reduced basis in the greedy algorithm, and
in the online stage to check that the variance reduction is
correct for new values of the parameters. The construction of
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the linear combinations for the control variates is based on a
minimization principle, which is reminiscent of the Galerkin
procedure (3).

The practical efficiency observed on specific examples is
similar for the two algorithms. They both satisfactorily re-
duce variance. Compared to the plain Monte Carlo method
without variance reduction, the variance is divided at least
by a factor 102, and typically by a factor 104. Algorithm 2
appears to be computationally much more demanding than
Algorithm 1 and less general, since it requires the computa-
tion (and the storage) of an approximation of the solution to
the backward Kolmogorov equation (39) for a few values of
the parameter. In particular, Algorithm 2 seems impractical
for high dimensional problems (Xλ

t ∈ R
d with d large). On

the other hand, Algorithm 2 seems to be more robust with
respect to the choice of �trial: it yields good variance re-
duction even for large variations of the parameter λ, in the
online stage. We refer to [13] for more details.

Notice also that Algorithm 1 is not restricted to a random
variable Zλ that is defined as a functional of a solution to a
SDE. The approach can be generalized to any parametrized
random variables, as long as there is a natural method to
generate correlated samples for various values of the para-
meter. A natural setting for such a situation is the computa-
tion of a quantity E(gλ(X)) for a random variable X with
given arbitrary law, independent of the parameter λ. In such
a situation, it is easy to generate correlated samples by using
the same realizations of the random variable X for various
values of the parameter λ.

4.4 Numerical Results

The numerical results shown on Fig. 3 are taken from [13]
and relate to the second application mentioned in the in-
troduction, namely multiscale models for polymeric fluids
(see [40] for a general introduction). In this context, the non-
Newtonian stress tensor is defined by the Kramers formula
as an expectation E(Zλ) of the random variable:

Zλ = Xλ
T ⊗ F(Xλ

T ), (42)

where Xλ
t is a vector modelling the conformation of the

polymer chain. The latter evolves according to an over-
damped Langevin equation:

dXλ
t = (

λXλ
t − F(Xλ

t )
)

dt + dBt . (43)

Equation (43) holds at each position of the fluid domain,
the parameter λ ∈ R

d×d (d = 2 or 3) being the local in-
stantaneous value of the velocity gradient field at the po-
sition considered. The evolution of the “end-to-end vec-
tor” Xλ

t is governed by three forces: a hydrodynamic force
λXλ

t , Brownian collisions Bt against the solvent molecules,
and an entropic force F(Xλ

t ) specific to the polymer mole-
cule. Typically, this entropic force reads either F(Xλ

t ) = Xλ
t

(for the Hookean dumbbells), or F(Xλ
t ) = Xλ

t

1−|Xλ
t |2/b (for the

Finitely-Extensible Nonlinear Elastic (FENE) dumbells, as-
suming |Xλ

t | < √
b).

The numerical simulations of the flow evolution of a
polymeric fluid using such a model typically consist, on
many successive time slots [nT , (n + 1)T ], of two steps:
(i) the computation of (43), for a given gradient velocity

Fig. 3 Algorithm 1 (left) and 2
(right) for FENE model with
b = 16. The x-axis is the size N

of the reduced basis. We
represent the minimum +, mean
× and maximum ◦ of
VarM [Zλ − Ỹ λ

N ]/EM [Zλ − Ỹ λ
N ]2

over online test samples
�test ⊂ � (top) and
�test wide ⊃ � (bottom) of
parameters
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field λ, at many points of the fluid domain (think of the
nodes of a finite element mesh) and (ii) the computation
of a new velocity gradient field in the fluid domain, for a
given value of the non-Newtonian stress tensor, by solving
the classical momentum and mass conservation equations,
which we omit here for brevity. Thus, E(Zλ) has to be com-
puted for many values λ corresponding to many spatial po-
sitions and many possible velocity fields at each such posi-
tions in the fluid domain.

In the numerical simulations of Fig. 3, the SDE (43)
for FENE dumbbells when d = 2 is discretized with the
Euler-Maruyama scheme using 100 iterations with a con-
stant time step �t = 10−2 starting from a deterministic ini-
tial condition x = (1,1). Reflecting boundary conditions are
imposed on the boundary of the ball with radius

√
b. For

b = 16 and |�trial| = 100 trial parameter values randomly
chosen in the cubic range � = [−1,1]3 (the traceless matrix
λ has entries (λ11 = −λ22, λ12, λ21)), a greedy algorithm is

used to incrementally select N = 20 parameter values af-
ter solving |�trial| = 100 least-squares problems (41) (with
Msmall = 1000) at each step of the greedy algorithm (one
for each of the trial parameter values λ ∈ �trial). Then, the
N = 20 selected parameter values are used online for vari-
ance reduction of a test sample of |�test| = 1000 random
parameter values.

The variance reduction obtained online by Algorithm 1
with Mlarge = 100 Msmall is very interesting, of about 4
orders of magnitude. For the Algorithm 2, we use the
exact solution ũλ to the Kolmogorov backward equation
for Hookean dumbells as an approximation to uλ solution
to (39). This also yields satisfying variance reduction though
apparently not as good as in Algorithm 1. As mentioned
above, Algorithm 2 is computationally more demanding but
seems to be slightly more robust than Algorithm 1 (namely
when some online sample test �testwide uniformly distrib-
uted in [−2,2]3 extrapolates the trial sample used offline,
see Fig. 3).

Our numerical tests, although preliminary, already show
that the reiterated computations of parametrized Monte-
Carlo estimations seem to be a promising opportunity of ap-
plications for RB approaches. More generally, even if RB
approaches may not be accurate enough for some applica-
tions, they may be seen as good methods to obtain first esti-
mates, which can then be used to construct more refined ap-
proximations (using variance reduction as mentioned here,
or maybe preconditioning based on the coarse-grained RB
model). This is perhaps the most important conclusion of
the work described in this section.

5 Perspectives

The standard RB method has proved numerically efficient
and reliable at reducing the cost of computations for the

approximation of solutions to parametrized boundary value
problems in numerous benchmark many-query frameworks.
These accomplishments claim for a wider use of the RB
method in more realistic settings, and even suggest that
some RB ideas could still be extended in numerous many-
query frameworks yet largely unexplored, including the sto-
chastic context. The success of the RB approach in parame-
trized boundary value problems is only understood precisely
from a mathematical perspective in a few very simple cases.
This should motivate further theoretical investigations.

In this section, we discuss various tracks for the develop-
ment of reduced basis techniques, both from a methodolog-
ical viewpoint and in terms of possible applications, with a
focus on the stochastic context presented above.

5.1 A Posteriori Estimation in the Stochastic Context

We already emphasized that a crucial ingredient in the RB
approach is an accurate and fast a posteriori estimator for
the approximation error between two levels of discretization
(the initially discretized, non-reduced one and the reduced
one). Therefore, before everything, the future developments
of the RB method should definitely concentrate on improv-
ing the a posteriori estimators. In particular, for the new con-
texts of application that are stochastic, there seems to remain
some room for a yet better understanding of the a posteriori
error estimation. More precisely, the best way to evaluate the
reduction error when the Galerkin approximations (used by
deterministic applications) are replaced with Monte-Carlo
approximations is still unclear. For a first application of the
RB ideas to stochastic applications, we have used confidence
intervals as a probabilistic measure of the Monte-Carlo ap-
proximation error. These confidence intervals are only reli-
able in the limit of infinitely many realizations of the random
variables. But there are other possibilities, like using non-
asymptotic upper-bounds for the error which hold whatever
the number of realizations (using for example Chebyshev in-
equalities or Berry-Esseen type bounds). In addition, the nu-
merical evaluation of the variance is not obvious either. Until
now, we have used Monte-Carlo estimators, but there exist
other possibilities too which could be faster or more accurate
and should thus be tested. Finally, another idea related to the
method presented in Sect. 4 would be to mimick the usual
RB approach, by considering that the reference result is the
one obtained with Mlarge realizations, and to develop a pos-
teriori error bounds with respect to this reference solution
(using for example conditional expectations with respect to
the Mlarge realizations).

5.2 Affine Decompositions and the Stochastic Context

As explained above, the RB approach is to date only effi-
cient at yielding computational reductions in the context of
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affine parametrization. However, as shown in the previous
sections, a many-query parametrized framework is not nec-
essarily parametrized in an affine way. So one may have to
pretreat the problem in order to transform it as the limit of
a sequence of affinely-parametrized problems. It would thus
be interesting to derive rapidly convergent affine approxima-
tions for non-affine problems. For instance, the Karhunen-
Loeve decomposition used to pretreat a random field enter-
ing a partial differential equation as a coefficient may con-
verge too slowly for an efficient use of the RB method ap-
plied to truncated decompositions, in the context of random
fields with small correlation lengths. One should then look
for other possible affine representation of the random varia-
tions in the input coefficient. Now, there are many possible
tracks to solve this problem, like projecting the random field
on a well-chosen basis for the oscillation modes of the co-
efficient for instance (many possible bases may exist for the
realizations of the random field, depending on its regular-
ity), interpolating (recall the so-called empirical interpola-
tion with magic points), homogenizing fast oscillations (see
the preliminary RB approach to homogenization [11]), etc.

5.3 Application to Bayesian Statistics

A context where the RB ideas could be applied is Bayesian
statistics where the many-query parametrized framework is
naturally encountered. We now make this more precise by
presenting a specific example that would be well-suited for
the application of Algorithm 1 in Sect. 4.

Let us consider, for given values of a parameter μ1,
an ensemble of observations (x

μ1
i )1≤i≤N

μ1
data

. Following the

Bayesian framework, a stochastic model is proposed to
model the observation: the quantities (x

μ1
i )1≤i≤N

μ1
data

are sup-

posed to form a set of independent and identically distrib-
uted samples following a given distribution parametrized by
another set of parameters μ2 (think for example of a mixture
of Gaussians, μ2 being then the triplets of weights, means
and variances of each Gaussians). The Bayesian approach
then consists in postulating a so-called prior distribution
(with a probability density function denoted Prior(μ2) be-
low) on the parameters μ2, and to compute the so-called
posterior distribution, namely the distribution of μ2 given
the observations (with a probability density function de-
noted �(μ2|(xμ1

i )1≤i≤N
μ1
data

) below). Of course, the poste-

rior distribution for μ2 is expected to depend on μ1: for
each μ1, the aim is thus to sample the probability mea-
sure �(μ2|(xμ1

i )1≤i≤N
μ1
data

) dμ2, with

�
(
μ2|(xμ1

i )1≤i≤N
μ1
data

)

= (Zμ1)−1�
(
(x

μ1
i )1≤i≤N

μ1
data

|μ2
)

Prior(μ2)

where Zμ1 is the normalization constant, and
�((x

μ1
i )1≤i≤N

μ1
data

|μ2) is the so-called likelihood function,

namely the probability density function of the observations
given the datas. One possible technique to sample the pos-
terior distribution consists in drawing samples according to
the prior distribution, and to weight each of them using the
likelihood function, which depends on μ1. With such a sam-
pling technique, it is easy to draw correlated samples for
various values of μ1. Following Algorithm 1 in Sect. 4, it
would thus be possible to build a reduced basis based on the
sampling of the posterior distribution for some selected val-
ues of μ1 (offline stage), in order to reduce the variance for
the sampling of the posterior distribution for other generic
values of μ1 (online stage).

5.4 Relation to Functional Quantization

One computationally demanding stochastic context that de-
fines a many-query framework is the approximation of the
solution to a parametrized stochastic differential equation,
for many values of the parameter. We already mentioned ap-
plications in finance and rheology in Sect. 4, where a vari-
ance reduction technique based on RB was proposed. An-
other idea consists in first computing precise discretizations
of a few processes at some well-chosen parameter values,
and then to use them for a faster computation of an approxi-
mation of the processes for other values of the parameter.

Functional quantization is an approach that has indepen-
dently been developed along this line, see for instance [44,
67]. The idea of quantization is to approximate a square-
integrable random variable with values in a Hilbert space
by a random variable that takes a finite number of values,
in an optimal way. In its simplest form, quantization deals
with Gaussian random variables with values in R

d , but it
can also be applied to Gaussian processes. The numerical
approach developed in [68] to solve stochastic differential
equations is to first quantize the Brownian motion, and then
to solve a collection of ordinary differential equations in or-
der to recover approximations of the solutions to the stochas-
tic differential equations as linear combinations of the ordi-
nary differential equations solutions. Clearly, this approach
for the discretization of stochastic differential equations has
intimate connection with a RB approach. In particular, the
computations are split into two parts: an offline step, which
is computationally expensive, to quantize the Brownian mo-
tion, and then an online step to solve ordinary differential
equations rather than stochastic differential equations.

In a setting where the stochastic differential equations
are parametrized, a natural similar idea would be to quan-
tize the solution to the stochastic differential equations for a
few values of the parameter, and next to build the solution
to the stochastic differential equation for another value of
the parameter as a linear combination of these precomputed
solutions.
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